Hands on Lab
Script development on Dell EMC switches

Jose Gonzalez

May 5%, 2017

Introduction

This is a quick tutorial to show you an environment to implement and debug automation scripts
executed on Dell EMC switches running OS9 and OS10 Enterprise.

Environment
You will be using a PC with Windows to run a development IDE (Integrated Development Environment)

and Dell EMC switches. Your PC must be able to reach the management interface of the Dell EMC
switches.

You will also need an NFS share to access the scripts from a central location. 0S9 and Windows 7/8/10
only support client NFS. For a NFS server, you can install any Linux distro on a VM or use 0S10. There are
free programs that offer server NFS functionality on Windows:

e http://freenfs.sourceforge.net
e https://sourceforge.net/projects/winnfsd

Mount NFS share from Windows
Enable the NFS Service from the “Windows Features”

|5 Windows Features - m} x

Turn Windows features on or off [7]

To turn a feature on, select its check box. To turn a feature off, clear its check
box. A filled box means that only part of the feature is turned on.

|

Keyboard Filter ~
[J Legacy Components

Media Features

Microsoft Message Queue (MSMQ) Server

Microsoft Print to PDF

MultiPoint Connector

Print and Document Services

RAS Connection Manager Administration Kit (CMAK)

Remote Differential Compression APl Support

RIP Listener

Simple Network Management Protocol (SNMP)

Simple TCPIP services (i.e. echo, daytime etc) v

=]

=]

EH ®

OO OR O @& =]

Then, open Windows Explorer, right-click “This PC”, and select “Map network drive”.

On that dialog box, enter the remote path with the format: \\<ip-or-hostname>:\<share-path>

http://freenfs.sourceforge.net/
https://sourceforge.net/projects/winnfsd

Hands on Lab Script development on Dell EMC switches

% Map Network Drive

What network folder would you like to map?

Specify the drive letter for the connection and the folder that you want to connect to:

Drive: zZ ~

Folder | \\10.10.50.3\Share | [Browse..

Example: \\server\share
[[] Reconnect at sign-in

I:‘ Connect using different credentials

Connect to a Web site that you can use to store your documents and pictures.

Mount NFS share from OS9
Open a CLI session and enter the “mount” command

Dell# configure

Dell (conf) # mount nfs 10.10.50.3:/Share share
Dell (conf)# end

Dell# dir nfsmount://share

Directory of nfsmount:/share

1 drwx 64 May 06 2016 03:23:45 +00:00
2 drwx 20 May 03 2017 12:32:11 +00:00

Dell# script exec mount

10.10.50.3:/Share on /£f10/mnt/nfs/share type nfs

Mount NFS share from 0OS10
0S10 does not ship with support for NFS. You will need to install one of the following packages:

e nfs-common: NFS client. Use this option if you have already an NFS share somewhere else
e nfs-kernel-server: NFS client and server. Use this option to export directories from 0S10

NFS client

From the CLI session, enter the underlying Linux shell

0S10# system bash

admin@0S10:/config/home/admin$ sudo su

<Root credentials>

root@0S10:~# apt install nfs-common

rootQ0S10:~# mkdir /mnt/share

root@0S10:~# mount -t nfs 10.10.50.3:/Share /mnt/share
root@0OS10:~# mount

10.10.50.3:/Share on /£f10/mnt/nfs/share type nfs (rw,vers=3

Hands on Lab Script development on Dell EMC switches

NFS server

The file /etc/exports contains the definition of the subnets that are allowed to access the exported
directories.

root@0S10:~# apt install nfs-kernel-server

root@0S10:~# mkdir /share

root@0OS10:~# chmod a+rwx /share

root@0S10:~# vi /etc/exports

<Append at the end similar lines, one for each allowed subnet>
/share 10.10.0.0/16 (xw,sync,no_subtree_check, insecure)

root@0S10:~# service nfs-kernel-server restart
root@0S10:~# showmount -e 127.0.0.1

Export list for 127.0.0.1:

/share 10.10.0.0/16

Basic development in OS9
From the PC, create a new file on the Network drive using Linux line terminations:

test.tcl

#!/usr/bin/tclsh

set count 5

puts "Start"

for {set i 1} {$i <= Scount} {incr 1} {
puts " TCL $i"

}

puts "End"

From OS9, verify you see the file:

Dell# dir nfsmount://share/test.tcl
1 -—-rwx 112 May 2 2017 01:31:47 +00:00 test.tcl

Dell# show file nfsmount://share/test.tcl
#!/usr/bin/tclsh

If the file is not executable or not writable, change the permissions:

Dell# script exec chmod args "777 /£f10/mnt/nfs/share/test.tcl"

Runit:

Hands on Lab Script development on Dell EMC switches

Dell# script exec /£f10/mnt/nfs/share/test.tcl
Start
TCL
TCL
TCL
TCL
TCL

End

g s w N

By now, you are able to edit the script from the PC using any good visual editor and execute it from the
switch. For small scripts, that is all you need. When you are satisfied with the results, you can copy the
script to the switch flash:

Dell# script get nfsmount://share/test.tcl
|

112 bytes successfully copied

Dell# script exec test.tcl

Start
TCL
TCL
TCL
TCL
TCL

End

g w N

Finally, remove the NFS share:

Dell (conf)# no mount nfs 10.10.50.3:/Share share
Dell (conf)# end

Basic development in OS10
From the PC, create a new file on the Network drive using Linux line terminations:

test.py

#!/usr/bin/python

i=1

print "Start"

while 1 <= count:
print " Python", i
i=1i+1

print "End"

Hands on Lab

Script development on Dell EMC switches

Start
Python
Python
Python
Python
Python

End

g w N

0S10# system /share/test.py

Development and debugging with an IDE

For more complex scripts, you need an IDE with an integrated debugger and a language that supports
remote debugging. Fortunately, 0S9 and OS10 include several scripting options. Let’s review them:

0S9 (Except S3100)

Language Where Path to binary Remote debugging?

Unix/Linux shells 0S9 #1/bin/sh No

(sh, ksh, zsh) #1/bin/ksh

#1/bin/zsh

TCL 0S9 #1/usr/bin/tclsh Yes

Python SmartScripts #!/usr/pkg/bin/python | Yes

Perl SmartScripts #!/usr/pkg/bin/perl Yes

Ruby SmartScripts #!/usr/pkg/bin/ruby Yes
$3100 does not support Ruby, and the path to python is #!/f10/flash/pkg/usr/pkg/bin/python
0S10

Language Where Path to binary Remote debugging?

Unix/Linux shells 0S10 #1/bin/sh No

(sh, bash) #!/bin/bash

Python 0S10 #!/usr/bin/python Yes

Perl 0S10 #!/usr/bin/perl Yes

Note that you can install other languages in OS10 using Linux package management tools.

There are several IDE’s available with good support for scripting languages, such as Eclipse, Visual Studio
and Komodo. Choosing an IDE is a personal preference. In this guide, we will use two: The free version

of Microsoft Visual Studio and ActiveState’s Komodo IDE.

e Eclipe: Open source and free. Supports many languages via a plugin architecture. There are
plugins to edit and debug TCL, Perl, Python, Java, etc. Requires some time to master its
possibilities: https://eclipse.org

e Visual Studio Community: Free version of Microsoft’s capable Visual Studio. It supports edit and

debugging of Python: https://www.visualstudio.com

https://eclipse.org/
https://www.visualstudio.com/

Hands on Lab Script development on Dell EMC switches

e Komodo IDE: Commercial tool. It has very good support for scripting languages. Easy and
intuitive: https://www.activestate.com/komodo-ide

Install your favorite IDE. The procedure between tools should not differ much.

Test scripts
Mount the share from Windows and from the switches as described earlier.

Create two new files from the PC, a Python and a Perl script.
These scripts will not run if they use MSDOS line terminations. Configure your editor to use Linux style.

test.py

#!/usr/pkg/bin/python
if name ==" main ":

i=1

print "Start"

while i <= count:
print " Python", i
i=1i+1

print "End"

test.pl

#!/usr/pkg/bin/perl

Sval = 5;

print "Start\n";

for (my $i = 1; $1i <= S$val; S$i++) {
print " Perl $i\n";

}

print "End\n";

In 0S9, you must have SmartScripts installed in order to execute Python, Perl and Ruby scripts:

https://www.activestate.com/komodo-ide

Hands on Lab Script development on Dell EMC switches

Dell# show packages system

Package Information

1 SMARTSCRIPTS 9.11(0.0) Installed

Dell# script exec /f10/mnt/nfs/share/test.py
Start
Python
Python
Python
Python
Python
End
Dell# script exec /f10/mnt/nfs/share/test.pl
Start
Perl
Perl
Perl
Perl
Perl
End

g w N

g w N

Komodo IDE

Komode IDE is the leading and affordable Integrated Development Environment for Pyhton, Perl, TCL,
and other dynamic languages. Komodo IDE is commercialized by ActiveState:

http://www.activestate.com/komodo-ide

It has versions for Windows, Mac, and Linux. Komodo IDE has per user licensing: the same license covers
any platform and any computer owned by the user.

Refer to the ActiveState documentation for the installation procedure.

Debugging with Komodo IDE

Komodo IDE supports local as well as remote editing and debugging of scripts in several dynamics
languages, including Perl and Python. Actually, remote debugging is a native feature of these languages,
but unlike Java, the Perl and Python runtimes initiate the connection with the remote debugger.

Komodo IDE uses customized versions of the runtime libraries that enable remote debugging. The
installation includes these Remote Debugging Client packages. They are also freely available from:

http://code.activestate.com/komodo/remotedebugging

After installing Komodo IDE, download the Perl and Python Remote Debugging Client packages for Linux
(32bits) to the network share. Note that ActiveState does not support a TCL Remote Debugging Client
for NetBSD (0S9).

http://www.activestate.com/komodo-ide
http://code.activestate.com/komodo/remotedebugging

Hands on Lab Script development on Dell EMC switches

Komodo

A

Runtime

Switch

/ DBGP Proxy \
Komodo \

Runtime

Switch

Sometimes, firewalls rules prevent a direct connection with the debugger, or the user needs to run
multiple remote debugging sessions. In these cases a Debugger Proxy can be used to forward debug
traffic between the switch and the debugger.

Komodo includes a DBGP Proxy written in Python at <Komodo>\lib\support\dbgp\bin.
All documentation can be found here:

http://docs.activestate.com

http://docs.activestate.com/komodo/8.5/debugger.html

Debugging Python
Configuration
On the machine running Komodo:

1. Open Komodo. Click on the menu Edit -> Preferences -> Debugger -> Connection. Select a port,
e.g., 9000. Exit the Preferences dialog

http://docs.activestate.com/
http://docs.activestate.com/komodo/8.5/debugger.html

Hands on Lab Script development on Dell EMC switches

Preferences
Category Debugger Connection
+ Appearance komodo should listen for debugging connections on:
Code Inteligence () a system-provided free port
Database Explorer (%) a specific port: | 9000
= Debugger
onnection
Advanced [1 1 am running a debugger prosy and Komodo should use it &
+ Editor
Environmenk
Fast Open
File Assaciations
Find
Fonts and Colors
Formatters Summary': Komodo will listen For debugging connections on port 9000, Currently
HTTP Inspector komodo is listening on port 9000, Current connection status.

Interactive Shell

Internationalization

If Komodo IDE connects the switch via a DBGP Proxy activate the box and set the address and
port, and any unique string for the Proxy Key:

P -

Preferences
Category Debugger Connection
+ Appearance Komodo should listen for debugging connections on:
Code Inteligence () asystem-provided free port
Database Explorer (%) a specific port: | 9000
= Debugger
Connection i . deb K do should T
Lo
Advanced am running a debugger proxy and Komodo should use it b
+ Editor Prowy Listener Address (.9, 127.0.0.1:9001):
Environment 11.22,33.44:9001
Fast Open Prosey Key (the name by which the prosy identifies this instance of Komoda; if
File Associations left empty your username is used):
Find jmg
Fonts and Colors
Formatters Summary: Komodo will register (as ‘img" with your debugger prosey at
HTTP Inspector 11.22,33.44:9001 and listen For connections From it on port 2000, You should

configure your remote conneckions ba kalk ko the other address and port on which

Interactive Shell wour proxy is running. Currenk connection skatus,

Internationalization
Language Help

2. Click on the menu Debug and activate the option Listen for Debugger Connections.
3. Create a new rule in the PC’s firewall to allow incoming connections to TCP-9000

4. Komodo has a very versatile mount-like feature called URI Mapping. It supports ftp, sftp, and
scp. When a remote debugging session is established, the runtime sends a string with the
format:
file://<hostname or ip-address>/<script absolute path>
then, you create a map telling Komodo how to retrieve the file with the format:
<protocol>://<user>:<password>@<switch-ip-address>/<path>
For example, if the script is located at or under /f10/flash, click on the menu Edit -> Preferences
-> Mapped URIs and enter two maps for

file:///<script absolute path>

Hands on Lab Script development on Dell EMC switches

and
file://<hostname or ip-address>/<script absolute path>

URI Mapping

AddjEdit Path Mapping
|IRI: file:ff10.42.6.61/F10/flash

Maps to: | Ftpeffadmin:admin@10.42.6.61(F10/Flash

[Local. ..] ’Remute...]

[(214] ’ Cancel]

Preferences
Category Mapped URIs
Appearance Specify any mapping of a URI to & local path that you would like Komodo to use

Code Intelligence when opening files, previewing, debugging, etc.

Database Explarer @X 1Tl
+ Debugger LRI Maps bo ®
+ Editor file: {1 FLOfFlash frpe)fadmin: admin@ 10,42.6.61,F10/flash

Enwiranment File: /{1042, 6.61/FLOfFlash Frpeffadmin:admin@10.42.6.61/FLO/Flash

Fast Cpen

File Associations
Find
Fonts and Colors

Forrnatters

HTTP Inspectar For URIs where no mapping yet exisks

Interactive Shell When remaote debugging a URL:

Internationalization Ask me what ko do &

Language Help

+ Languages
Mapped LURIs
Mew Files

0S9
On the switch:

1. Create a directory on the switch flash

Dell# script exec mkdir args Komodo

2. Copy the remote debugging package (Tarball format) to the Komodo directory in the switch
flash. Untar the file

10

Hands on Lab Script development on Dell EMC switches

Dell# cd Komodo

Dell# copy nfsmount://share/Komodo-PythonRemoteDebugging-8.5.4-86985-
linux-x86.tar.gz kpython.tar.gz

|

191889 bytes successfully copied

Dell# script exec tar args "zxf kpython.tar.gz"

<Ignore timestamp errors>

Dell# delete kpython.tar.gz no-confirm

Dell# dir

Directory of flash:/Komodo

Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-x86
Dell# cd

3. Access the switch’s shell prompt. Add the path of the remote debugging package to the
environment variable PYTHONPATH, and the bin path to PATH. For example:

Dell# start shell
<use same CLI credentials>
$ vi .profile
<Append these lines at the end>
KOMODO_PYTHON=/flash/Komodo/Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-x86
PATH=$ { PATH} : $ {KOMODO_PYTHON}
if [-z ${PYTHONPATH}]; then
export PYTHONPATH=${KOMODO_ PYTHON}/pythonlib
else
PYTHONPATH=$ { PYTHONPATH} : $ {KOMODO_PYTHON} /pythonlib
fi
S exit
Dell#

If a DBGP Proxy is used, the remote address must point to the proxy and the variable

DBGP_IDEKEY must be set to the Proxy Key:
export DBGP_IDEKEY="]jmg"

4. To save some typing while invoking the Python scripts, create this shell script and copy it to the
debugger path

pydbgp.sh

#!/bin/ksh
PYDBGP=5{0% basename $0° }pydbgp
exec python -S $PYDBGP ${1+"$@"}

11

Hands on Lab Script development on Dell EMC switches

Dell# cd Komodo/Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-x86

Dell# copy nfsmount://share/pydbgp.sh pydbgp.sh
|

76 bytes successfully copied

Dell# dir

Directory of flash:/Komodo/Komodo-PythonRemoteDebugging-8.5.4-86985-
linux-x86

pydbgp. sh

Dell# cd
0S10

On the switch:

1. Create a directory on the switch flash

0S10# system bash
admin@0OS10:/config/home/admin$ cd
admin@0S10:~$ mkdir Komodo

2. Download the remote debugging package (Tarball format) and untar the file

admin@0S10:~$ cd Komodo

admin@0S10:~/Komodo$ wget
http://downloads.activestate.com/Komodo/releases/archive/8.x/8.5.4/re
motedebugging/Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-
x86.tar.gz

admin@0S10:~/Komodo$ tar zxf Komodo-PythonRemoteDebugging-8.5.4-
86985-1inux-x86.tar.gz

admin@0S10:~/Komodo$ rm Komodo-PythonRemoteDebugging-8.5.4-86985-
linux-x86.tar.gz

admin@0S10:~/Komodo$ cd

3. Access the switch’s shell prompt. Add the path of the remote debugging package to the
environment variable PYTHONPATH, and the bin path to PATH. For example:

admin@0S10:~$ vi .bashrc

<Append these lines at the end>
KOMODO_PYTHON=/home/admin/Komodo/Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-x86
PATH=$ { PATH} : $ {KOMODO_PYTHON}
if [-z ${PYTHONPATH}]; then
export PYTHONPATH=${KOMODO PYTHON}/pythonlib
else
PYTHONPATH=$ { PYTHONPATH} : $ {KOMODO_PYTHON} /pythonlib
fi
admin@O0S10:~$ exit
OS10#

12

Hands on Lab Script development on Dell EMC switches

If a DBGP Proxy is used, the remote address must point to the proxy and the variable

DBGP_IDEKEY must be set to the Proxy Key:
export DBGP_IDEKEY="]jmg"

4. To save some typing while invoking the Python scripts, create this shell script and copy it to the
debugger path

pydbgp.sh

#!/bin/bash
PYDBGP=S (dirname $0) /pydbgp
exec python -S $PYDBGP ${1+"$@"}

0S10# system bash
admin@0S10:/config/home/admin$ cp /share/pydbgp.sh Komodo/Komodo-
PythonRemoteDebugging-8.5.4-86985-1inux-x86
admin@0OS10:/config/home/admin$ pydbgp.sh --help

pydbgp [dbgp args below] script.py [script args]

-d hostname:port to debug a script

admin@0S10:/config/home/admin$ exit
OS10#

Debug session
From the switch shell invoke the auxiliary shell script with the -d option, and optionally, the -k if the
switch has to contact a DBGB Proxy:

$ pydbgp.sh -d <ip-address>:<port> [-k key] <script> [arguments]
The following command returns all options:
$ pydbgp.sh -help

0Ss9

Dell# start shell

<use same CLI credentials>
$ pydbgp.sh -d 10.10.16.10:9000 /f10/mnt/nfs/share/test.py

0s10

0S10# system bash
admin@0S10:~$ pydbgp.sh -d 10.10.16.10:9000 /share/test.py

13

Hands on Lab Script development on Dell EMC switches

The Python process will try to contact the machine running Komodo. Komodo will display a notification
asking the user to accept the debug session:

Mew Remote Debugger Connection

o A remote application has requested a debugger session, would you like bo debug now?

[] Don't ask me again.

Click Yes. Next, Komodo will complain that it does not have a mapping for the URL:
file:///£f10/mnt/nfs/share/test.py

Create two entries both mapped to the Network share’s directory where the scripts are:

B
Add/Edit Path Mapping
URL | fie://10.10.40.1/f10/mnt/nfs/share
Maps to: I Z:\
Local... | Remote... |
ok | cancel |
ﬂ

Add/Edit Path Mapping
URL | fiez///f10/mnt/nfs/share

Maps to: I Z:\
Local... Remote... |

o e

Now, Komodo will retrieve the script and show the first line to execute. Komodo will not start the script
until you enter F5 (GO). You can set breakpoints, stop the execution, read and write variables, etc.

Fle Edit Code Navigation View Debug Project Tools Help
ED- LB 40D 22 290 FASS-
. Open| ~| & Fnd|
test.py x

1 #!/usr/pkg/bin/python

2

30 if name ==" main ":

4 |ig count = 5

5 i=1

6 print "Start"

= while i <= count:

8 print " Python",i

9 - i=1i+1

10

11 - print "End"

12

14

Hands on Lab Script development on Dell EMC switches

And more importantly, since the script is stored in the Network share, you can edit, save and try it
directly, which allows you to test and optimize your code in a true IDE environment.

Debugging Per]

Configuration

The steps to configure Komodo IDE for Perl are identical to the Python case. The only difference is on
the switch, you need to install the Perl remote debugging package.

0S9
On the switch:

1. Copy the remote debugging package (Tarball format) to the Komodo directory in the switch
flash. Untar the file

Dell# cd Komodo

Dell# copy nfsmount://share/Komodo-PerlRemoteDebugging-8.5.4-86985-
linux-x86.tar.gz kperl.tar.gz

|

109143 bytes successfully copied

Dell# script exec tar args "zxf kperl.tar.gz"

<Ignore timestamp errors>

Dell# delete kperl.tar.gz no-confirm

Dell# dir

Directory of flash:/Komodo

Komodo-PerlRemoteDebugging-8.5.4-86985-1inux-x86
Komodo-PythonRemoteDebugging-8.5.4-86985-1inux-x86
Dell# cd

2. Access the switch’s shell prompt. Set the following environment variables: PERL5LIB and
PERLDB_OPTS in the users’s profile file.
PERL5LIB must be set to the path to the remote debugging package
PERLDB_OPTS must contain the string
"RemotePort=<komodo-ip-address>:<komodo-port> async=1"
async=1 enables “Break Now” on Komodo
For example:

Dell# start shell

<use same CLI credentials>

$ vi .profile

<Append these two lines at the end>

export PERL5SLIB=/flash/Komodo/Komodo-PerlRemoteDebugging-8.5.4-86985-1inux-x86
export PERLDB_ OPTS="RemotePort=10.10.16.10:9000 async=1"

S exit
Dell#

15

Hands on Lab Script development on Dell EMC switches

If a DBGP Proxy is used, the remote address must point to the proxy and the variable
DBGP_IDEKEY must be set to the Proxy Key:
export DBGP_ IDEKEY="jmg"

This procedure works on any platform running ActiveState’s remote packages.

Note However, the syntax on Windows does not use double quotes:
> set PERL5SLIB=C:\Program Files\ActiveState\Komodo IDE 6\lib\support\dbgp\perllib
> set PERLDB OPTS=RemotePort=10.10.16.10:9000 async=1

0S10
On the switch:

1. Create a directory on the switch flash

0S10# system bash
admin@OS10:/config/home/admin$ cd
admin@0S10:~$ mkdir Komodo

2. Download the remote debugging package (Tarball format) and untar the file

0S10# system bash

admin@0OS10:/config/home/admin$ ed ~/Komodo

admin@0S10:~/Komodo$ wget
http://downloads.activestate.com/Komodo/releases/archive/8.x/8.5.4/re
motedebugging/Komodo-PerlRemoteDebugging-8.5.4-86985-1inux-x86.tar.gz
admin@0S10:~/Komodo$ tar zxf Komodo-PerlRemoteDebugging-8.5.4-86985-
linux-x86.tar.gz

admin@0S10:~/Komodo$ rm Komodo-PerlRemoteDebugging-8.5.4-86985-1inux-
x86.tar.gz

admin@0S10:~/Komodo$ cd

3. Access the switch’s shell prompt. Add the path of the remote debugging package to the
environment variable PYTHONPATH, and the bin path to PATH. For example:

admin@0S10:~$ vi .bashrc

<Append these lines at the end>
export PERL5LIB=/home/admin/Komodo/Komodo-PerlRemoteDebugging-8.5.4-86985-1inux-x86
export PERLDB OPTS="RemotePort=10.10.16.10:9000 async=1"

admin@ROS10:~$ exit
OS10#

Debug session

From the switch shell invoke the Perl script with the -d option:
$ perl -d <script> [arguments]

0Ss9

16

Hands on Lab Script development on Dell EMC switches

Dell# start shell
<use same CLI credentials>
$ perl -d /£10/mnt/nfs/share/test.pl

0s10

0S10# system bash
admin@0S10:~$ perl -d /share/test.pl

The Perl process will try to contact the machine running Komodo. Komodo will display a notification
asking the user to accept the debug session:

Mew Remote Debugger Connection

0 A remote application has requested a debugger session, would you like bo debug now?

[] Don't ask me again.

Click Yes. If you have created the URL mappings then Komodo will display the script ready to start:

File Edit Code Navigation View Debug Project Tools Help
@eD- DouEB 4OHD 2 @9d-d& 2|
~1 2 fnd]

[
o
B

=
:

=

3

#!/usr/pkg/bin/perl

Mlsval = 5;
print "Startin";
for (my S$i = 1; Si <= Sval; Sit+)
print "™ Perl Si\n";
}

print "End\n";

(=l B R S

Like Python, Komodo IDE will retrieve the main script and show the program counter in the first
instruction. If the script is found under one of the mapped URIs, then you can edit the script from the
IDE.

Visual Studio

Visual Studio is the flagship and richest IDE for implementing Microsoft’s technologies (Windows, Office,
Azure, Web). For the past several releases, Visual Studio has added support for Linux environments,
Mobile apps and Python.

Microsoft offers a free edition called Visual Studio Community, which contains enough functionality to
develop, debug and troubleshoot Windows and Linux applications.

17

Hands on Lab Script development on Dell EMC switches

https://www.visualstudio.com

Debugging Python

Visual Studio can debug Pythons applications running remotely, using a connector: “Python Tools for
Visual Studio Debugger”, ptvsd library. One drawback of this method is that the source code of your
Python scripts have to be modified in order to invoke the ptvsd agent.

See more details here:
https://docs.microsoft.com/en-us/visualstudio/python/debugging-cross-platform-remote

Download the latest version of the ptvsd library from https://pypi.python.org/pypi/ptvsd

At the time of this writing, Microsoft announced that Python will be included and installed with Visual
Studio 2017. Users of Visual Studio 2015 and earlier versions have to download and install a separate
Visual Studio Add-on “Python Tools for Visual Studio” (PTVS) to enable Python. If you are using Visual
Studio 2015, install the latest PTVS from https://github.com/Microsoft/PTVS

Per this blog, Python will be available on Visual Studio 2017 around June 2017. For now, it is only
available on the Visual Studio 2017 Preview versions
https://blogs.msdn.microsoft.com/pythonengineering/2017/03/07/python-support-in-vs2017

Visual Studio 2017 Community Preview: https://www.visualstudio.com/vs/preview

Installing — Visual Studio Community 2017 Preview — 15.2 (26430.1-Preview)

Workloads Individual components Language packs

ASP.NET and web development
Build web applications using ASP.NET,

ASP.NET Core, HTML, JavaScript, and CS5.

C. Azure development
a Azure SDK, tools, and projects for
developing cloud apps and creating...
ﬂ Python development

Editing, debugging, interactive
development and source control for...

Node.js development
Build scalable network applications using
Mode,js, an asynchronous event-driven...

Configuration

0S9
On the switch:

1. Create a directory on the switch flash

Dell# script exec mkdir args VisualStudio

18

https://www.visualstudio.com/
https://docs.microsoft.com/en-us/visualstudio/python/debugging-cross-platform-remote
https://pypi.python.org/pypi/ptvsd
https://github.com/Microsoft/PTVS
https://blogs.msdn.microsoft.com/pythonengineering/2017/03/07/python-support-in-vs2017
https://www.visualstudio.com/vs/preview

Hands on Lab Script development on Dell EMC switches

2. Download the latest version of ptvsd from https://pypi.python.org/pypi/ptvsd. Unzip it into the

Network share

3. Copy the ptvsd files to the VisualStudio directory in the switch flash

Dell# cd VisualStudio

Dell# script exec cp args "-r /£f10/mnt/nfs/share/ptvsd-3.1.0rcl
Dell# dir

Directory of flash:/VisualStudio

"

ptvsd-3.1.0rcl
Dell# cd

4. Access the switch’s shell prompt. Add the path of the remote debugging package to the
environment variable PYTHONPATH. For example:

Dell# start shell
<use same CLI credentials>
$ vi .profile
<Append these lines at the end>
PTVSD_PYTHON=/flash/VisualStudio/ptvsd-3.1.0rcl
if [-z ${PYTHONPATH}]; then
export PYTHONPATH=${PTVSD_ PYTHON}
else
PYTHONPATH=$ { PYTHONPATH} : $ { PTVSD_PYTHON}
fi
$ sysctl -a | grep net.inet.ip.lowportmax
net.inet.ip.lowportmax = 34999
$ sysctl -a | grep net.inet.ip.anonportmin
net.inet.ip.anonportmin = 49152
$ exit
Dell#

While you are still in the shell, run sysct1 to find out the highest value of the reserved ports
and the lowest value of the ephemeral ports (eg., 34999 and 49152, respectively)

0S10
On the switch:

1. Create a directory on the switch flash

0S510# system bash
admin@0S10:/config/home/admin$ cd
admin@0S10:~$ mkdir VisualStudio

2. Download the remote debugging package (Tarball format) and untar the file

19

https://pypi.python.org/pypi/ptvsd

Hands on Lab Script development on Dell EMC switches

0S10# system bash

admin@0OS10:/config/home/admin$ ed ~/VisualStudio
admin@0S10:~/VisualStudio$ cp -r /share/ptvsd-3.1.0rcl
admin@0S10:~/VisualStudio$ ed

3. Access the switch’s shell prompt. Add the path of the remote debugging package to the
environment variable PYTHONPATH, and the bin path to PATH. For example:

admin@0OS10:~$ wvi .bashrc

<Append these lines at the end>
PTVSD_PYTHON=/home/admin/VisualStudio/ptvsd-3.1.0rcl
if [-z ${PYTHONPATH}]; then
export PYTHONPATH=S$ { PTVSD_PYTHON}
else
PYTHONPATH=S$ { PYTHONPATH} : $ { PTVSD_PYTHON}
fi
admin@0S10:~$ exit
OS10#

Script preparation

Add the highlighted code to test.py right before the entry point. These new lines will cause the Python
Tools for Visual Studio Debugger (ptvsd) module to wait 10 seconds for Visual Studio to connect. Then,
there is a small pause (5 seconds) to allow you set some breakpoints in the code.

After 10 seconds, if Visual Studio has not established a debugging session, the script will run normally.

The enable attach function defines two parameters. The first is a secret (“jmg”). It is a simple string
that identifies the connection, similar to the community name in SNMPv2. The second is the address
and port to listen. The port must be any value within the range shown above, eg., 39,900

test.py

20

Hands on Lab

Script development on Dell EMC switches

#!/usr/pkg/bin/python

import time
import ptvsd

ptvsd.enable attach('jmg', ('', 39900))

ptvsd.wait for attach(10)

time.sleep (5)

if name ==" main ":

count = 5

i=1

print "Start"

while i <= count:
print " Python", i
i=1+1

print "End"

Debug session
Open test.py from the Network share in Visual Studio.

From the switch shell invoke the python script as usual:

0Ss9

Dell# start shell
<use same CLI credentials>
$ /£f10/mnt/nfs/share/test.py

0s10

0S10# system bash
admin@0S10:~$ /share/test.py

Now, you have 10 seconds to establish a connection from Visual Studio. Click on Debug -> Attach to
Process. In the Connection Type, select “Python remote (ptvsd)”. In the Connection Target field enter a

string with the format:
tcp://secret@hostname:port

For example, tcp://jmg@10.10.40.1:39900

21

Hands on Lab Script development on Dell EMC switches

Attach to Process

Connection Type: IPython remote (ptvsd)

Connection Target: Itcp:Hjmg@lﬂ.lDAD.l:BQQDD LI

r~Connection Type Information
Allows debugging a Python process on a remote machine running any OS, if it can be connected to via TCP, and remo

has been enabled by using the 'ptvsd’ module. Specify the secret, hostname and port to connect to in the 'Qualifier’ te:
'tep://secret@localhost:5678'.

Aftach to: I Autornatic

Available Processes
Filter Proceq

Process | D | Title Type User Name

While the focus is still on the “Connection Target” edit box, press “Enter”. If the handshake is
successful, you will see details of the process running on the switch. Select it and click on “Attach”

~Available Pr
Filter Processes P~

Process D Title Type User Name Session

python @ tcp://10.... 19541 CPython 2.7.8 (NetBSD 32-bit) Python admin

[~ Show processes from all users Refresh |
Attach I Cancel |

Now you have 5 seconds (the call to s1eep) to set a breakpoint of pause the execution.

22

Hands on Lab

Script development on Dell EMC switches

e- - &

testpy + X

;‘g@ test.py (Debugging) - Microsoft...
Fle Edit View Project Debug

N9

Team

PREVIEW

Tools

Process: [19606] python @ tcp://10.10.40.1 -

Test

Lfecycle Events = Thread: [-1082130432] [-

X & 9
Analyze Window Help
P Continue

#!/usr/pkg/bin/python

import time

import ptvsd

—if _ _name__=="__main__":
@ count = 5
i=1
print "Start”
$ while Iv::Az;unt:
100 % ~
AUTOE ol el e e T D e D e DD e e D
Name Value
@ _name_ main

ptvsd.enable_attach('jmg', ('', 39988))
ptvsd.wait_for_attach(18)
time.sleep(5)

v 0 X | (CalStack o

Name
c» test module line 11

23

