

PowerEdge Product Group

Direct from
Development

FPGA’s – Some Use Cases in the Data Center

Tech Note by:

Robert Hormuth

Duk Kim

Nelson Mak

Krishna Ramaswamy

SUMMARY

Emerging workloads and use
cases will continue to drive the
need for new and different
compute.

Field Programmable Gate
Arrays (FPGA’s) can be a part
of this journey, when applied
to the right problem.

FPGA’s are not a panacea for
all compute problems, but
when applied selectively and
appropriately, they can deliver
significantly better business
outcomes, as described in this
tech note.

Previously it appeared that the impact of Moore’s Law on Field Programmable
Gate Arrays (FPGA’s) would be more profound than ever. It seemed that
FPGA’s were never quite big enough, couldn’t run fast enough and were difficult
to program. However, technology moves quickly and those attributes of
FPGA’s have changed lot – they are certainly big enough now, clock rates are
up, you can even get an embedded ARM core, and lastly the programming has
improved a lot. OpenCL has made it easier and more portable. Note the use of
the term “easier” and not “easy” – but the results for the right problem make it
worthwhile.

To find the right kind of problem that makes it worthwhile, let me do some
context setting on where FPGAs work best – this is not an absolute but rather
some high-level guidance. If we take a step back, it’s clear that we’ve been
operating in a world of Compute Intensive problems – meaning, problems and
data that you can move to the compute because you are going to crunch on it
for a result. Generally, this has been a lot of structured data, convergence
algorithms and complex math, and general purpose x86 has been awesome at
these problems. Also, sometimes we throw GPUs at the problem – especially in
life science problems.

A law of opposites

But, there is a law of opposites. The opposite of Compute Intensive is Data
Intensive. Data Intensive is simple data that is unstructured and only used for
simple operations. In this case, we want the compute and simple operators to
move as close to the data as possible. For example, if you’re trying to count the
number of blue balls in a bucket that’s a pretty simple operation that’s data
intensive – you’re not trying to compute the next digit of π. Computing the
average size of each ball in the bucket would be more compute intensive.

Figure 1: FPGA’s excel on data intensive problems shown in the upper right quadrant.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

If we treat the spectrum of Compute Intensive and Data Intensive as one axis, and overlay that with the “law of
opposites” axis of General Purpose compute and Optimized compute, we get the four quadrants in Figure 1 above,
showing where various technologies fit best.

But why are CPUs not great for everything, and why do FPGAs need to be brought into the discussion? One reason is
that CPUs are very memory-cache hierarchical centric to get data in and out from DRAM to Cache to registers for the
CPU to do an operation – as it takes just as much data movement to do complex math as simple math with a general
purpose CPU. In this new world of big unstructured data that memory-cache hierarchy can get in the way.

If you think about the link list pointer chasing problem shown in Figure 2 below – in a general purpose CPU when you
need to traverse the link list every time you do a head/tail pointer fetch due to the data’s unstructured nature, you get a
cache miss, and thus the CPU does a cache line fill - generally 8 datum’s. But only the head/tail pointer was needed,
which means 7/8th’s of the memory bus bandwidth was wasted on unnecessary accesses – potentially blocking another
CPU core from getting datum it needed. Therein lies a big problem for general purpose CPUs in some of these new
problems face today.

Figure 2: Schematic of a link list pointer chasing problem

Some real world examples

As mentioned earlier, programming is now simpler and easier (not simple and easy, but simpler and easier). Open
Computing Language (OpenCL) is a framework in C++ for writing programs that execute across heterogeneous
platforms consisting of CPUs, GPUs, DSPs, and FPGAs. OpenCL provides a standard interface for parallel computing
using task- and data-based parallelism. A quick example and flow is shown in Figure 3 below.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

https://www.khronos.org/opencl/

Direct from
Development

PowerEdge Product Group

Figure 3: OpenCL provides a standard interface for parallel computing

Now, consider two examples that we’ve worked on in the PowerEdge Server Solutions Group to prove out FPGA
technology and make sure our server platforms intercept the technology when it’s ready.

Problem #1: “Drowning in pictures, save me…..”
Say you’re a picture gallery site, social media, etc., and want end users to upload full size images from their mega pixel
smart phones, so that they can enjoy them on a wide range of devices/screen sizes. How do you solve this problem?
The typical approach is using scale out compute and resize as needed for the end device. However, as shown above,
it’s not a great fit for general purpose compute, as it scales at a higher cost and you must manage scale out. Other
options are batching processes and saving static images of all the sizes you needed – so it becomes a blowout storage
problem. Or, force the end user device to resize, but you must send down the entire image – blowing out your network
and delivering a poor customer experience.

To avoid any of the above options, we decided to do a real time offload resizing on the FPGA. For large images, we
saw around a 70x speedup and about 20x speedup on small images. We replaced 20-70 servers into just 1 server and
saved power, cost, and increased performance – easy TCO. So, now the CPU is handling the request for resized
images and delivery but using an FPGA to process the images, as shown in Figure 4 below.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

Figure 4: Real-time offload resizing on the FPGA

Problem #2: “I have all these images, and I’d like to sort them by feature”

Digital content is everywhere, and we’re moving from text search to image search. Edge detection is an image
processing technique for finding the boundaries of objects within images. It works by detecting discontinuities in
brightness. Edge detection is also used for image segmentation and data extraction in areas such as image
processing, computer vision, and machine vision. In this example, we simply wanted to see what we could accomplish
on a CPU and FPGA. We started on the CPU with OpenCL and quickly discovered that the performance was not up
to par…. less than 1FPS (frames per second). The compiler was struggling so we manually unrolled the code to
swamp every core (all 32 of them) and got up to 110FPS. But at 85% CPU load across 32 cores you could barely
move the mouse.

The next step was the same OpenCL code (different #defines) and targeted an FPGA. With the FPGA and parallel

nature of the problem we could hit 108FPS. In the FPGA offload case the CPU was only 1% loaded, so we had a

server with compute cycles left to do something useful. To experiment, we went back to the CPU and forced a 1%

CPU load limit and found we could not even get 1FPS. The point being made here is that in this new world of different

compute architectures and emerging problems, “it depends” will come up a lot. Figure 5 below shows the data for the

various results described:

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

Direct from
Development

PowerEdge Product Group

Figure 5: In this example, the FPGA offload delivers outstanding performance for a specific task while freeing up the
CPU for other purposes.

Future Problems

In the future, emerging workloads and use cases including those in Figure 6 below will continue to drive the need for
new and different compute. Every company will become a data compute company and must optimize for these new

Figure 6: Emerging workloads and use cases will drive the need for new and different compute.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

uses. If not, they are open to disruption by those who embrace change more aggressively. FPGA’s can be a part of this
journey when applied to the right problem. Machine learning inference, network protocol acceleration/inspection, image
processing (discussed above) and other tasks are great examples of challenges that can benefit from the
reprogrammable nature of FPGAs.

Summary

FPGA’s can be very useful in solving real-world problems. As the saying goes, however, “use the right tool for the right
job”. That is, FPGA’s are not a panacea for all compute problems, but when applied selectively and appropriately, they
can deliver significantly better business outcomes. To see how FPGA’s can benefit your business or organization,
contact your Dell EMC Sales Representative. Maybe we can help you, too.

© 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries

