

A Dell EMC Technical White Paper

14G Support for HTTP and HTTPS across
iDRAC9 with Lifecycle Controller Interfaces
Harness HTTP/HTTPS to inventory, provision, monitor, and update the 14th
generation PowerEdge servers.

Dell Engineering
June 2017

Authors

Paul Rubin, Sr. Product Manager
John Paul Harvey, Firmware Senior Principal Engineer
Rohitkumar Arehalli, Firmware Engineer

2 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Revisions

Date Description

June 2017 Initial release

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other

trademarks may be the property of their respective owners. Published in the USA [6/17/2017] [Technical White Paper]

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

3 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Contents
Revisions... 2

Executive summary ... 5

1 Introduction ... 6

1.1 Overview of 14th generation PowerEdge HTTP/HTTPs support .. 6

1.1.1 BIOS UEFI HTTP Boot ... 6

1.1.2 iDRAC9 Auto Config ... 7

1.1.3 Lifecycle Controller UI .. 7

1.1.4 iDRAC REST with Redfish APIs ... 7

2 Extent of the changes ... 8

2.1 RACADM Command Line Interface (CLI) .. 8

2.1.1 RACADM sub-commands with HTTP/HTTPS support ... 8

2.2 WS-Man API support for HTTP/HTTPS ... 9

2.2.1 WS-Man APIs and Profile with HTTP/HTTPS support ... 9

2.3 Lifecycle Controller user interface .. 10

2.3.1 LC-UI support for HTTP .. 10

2.3.2 LC-UI HTTP deployment and configuration guide .. 12

2.3.3 Best practices ... 17

2.3.4 Lifecycle Controller user interface testing .. 17

2.3.5 Lifecycle Controller attributes ... 17

2.4 iDRAC9 Graphical User Interface (GUI) ... 17

2.4.1 Certificate upload .. 18

2.4.2 Cryptography and Security ... 18

3 Useful information for using HTTP and HTTPS ... 20

3.1 General file download info .. 20

3.2 General file upload info ... 20

3.3 Case sensitivity of URIs .. 20

3.4 Encoding URIs .. 20

3.5 HTTPS Certificate generation ... 21

3.5.1 DNS name matching .. 21

3.5.2 Using a Certificate Authority ... 21

3.5.3 Using a self-signed Certificate .. 22

3.6 Apache server info .. 23

4 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

3.6.1 Uploading files to Apache ... 23

3.7 Microsoft-IIS server info .. 24

3.7.1 Downloading files from Microsoft-IIS server ... 24

3.7.2 Uploading files to Microsoft-IIS server .. 24

3.8 General proxy information .. 25

3.8.1 Using HTTP with a proxy .. 25

3.8.2 Using HTTPS with a proxy ... 25

3.9 Choice of proxy ... 25

3.9.1 Squid proxy info .. 25

3.9.2 Tinyproxy proxy info ... 26

A An example PUT script ... 27

B Configuration details ... 33

C Glossary ... 34

D Technical support and resources ... 35

5 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Executive summary

This technical white paper describes the enhanced support for HTTP and HTTPS file services in the 14th

generation Dell EMC PowerEdge servers. These enhancements enable iDRAC9 with Lifecycle Controller

embedded management automation for server inventory, provisioning, monitoring, and update to operate by

using performant and secure HTTP and HTTPS-based file sharing.

It describes the facilities within iDRAC9 with Lifecycle Controller and also provides information about security

considerations, network, server, proxy, and configuration along with key resources and information.

6 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

1 Introduction
Enabling web technology-based data center automation, 14th generation Dell EMC PowerEdge servers

provide enhanced embedded management automation by using HTTP and HTTPS.

14th generation PowerEdge HTTP and HTTPS support, including proxy support, has been extended to BIOS

UEFI HTTP Boot, iDRAC9 Auto Config, the Lifecycle Controller User Interface (UI), the iDRAC Graphical

User Interface (GUI), RACADM CLI, WS-Man, and Redfish APIs, thus enhancing the automation of server

lifecycle management.

1.1 Overview of 14th generation PowerEdge HTTP/HTTPs support
Some of these additions are covered in other whitepapers. For the most detailed information see the feature

documentation.

1.1.1 BIOS UEFI HTTP Boot
14th generation of PowerEdge server BIOS supports Unified Extensible Firmware Interface (UEFI) HTTP

Boot. HTTP boot is client-server communication-based application which uses DHCP, DNS, and HTTP

protocols to provide the capability for system deployment and configuration over the network. HTTP boot is a

replacement of PXE boot, with higher security and more reliable performance.

 14G BIOS configuration for UEFI HTTP Boot

7 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Similarly to PXE, 14G BIOS enables the bootstrap of operating system (OS) images stored on a network file

share. HTTP Boot is configured by using the BIOS attributes that describe the network interface and settings

required to access a specified boot image stored on an HTTP server. HTTP Boot attributes are configurable

by using the BIOS UI, the iDRAC9 GUI, RACADM CLI, WS-Man, and Redfish APIs. For more information

about HTTP Boot and 14G BIOS, see the relevant Owner’s Manual of the 14th generation of PowerEdge

servers available on the support site.

1.1.2 iDRAC9 Auto Config
iDRAC firmware for 12th, 13th, and 14th generation PowerEdge servers provide Auto Config, a complete

“zero-touch” mechanism for configuring a bare-metal server from a common server configuration profile. This

feature allows IT admins to build an environment in which servers can automatically configure all hardware

settings using existing data center infrastructure. This removes the need for high-touch, manual steps to

configure server subsystems such as storage, networking, and BIOS. Administrators can develop

configuration profiles for classes of servers and apply those profiles without interacting with individual

systems.

For 14th generation of PowerEdge servers, iDRAC9 Auto Config has been updated to enable delivery of

server configuration profiles via HTTP and HTTPS. For more information see the whitepaper Zero-Touch

Bare Metal Server Provisioning using Dell iDRAC with Lifecycle Controller Auto Config.

1.1.3 Lifecycle Controller UI
iDRAC9 with Lifecycle Controller firmware version 3.00.00.00 enables HTTP support for a range of features

for 14th generation PowerEdge servers. iDRAC9 expands HTTP support for the Lifecycle Controller User

Interface (LC-UI) to include export of server inventory, export of the Lifecycle Controller log, import and export

of server profiles, and import of iDRAC with Lifecycle Controller licenses. Earlier, iDRAC with Lifecycle

Controller firmware included HTTP support for firmware update only. These enhancements expand the

options for network file share support with the Lifecycle Controller UI to include CIFS, NFS, and HTTP,

simplifying Lifecycle Controller UI operations.

1.1.4 iDRAC REST with Redfish APIs
iDRAC9 includes enhancements to the iDRAC REST with Redfish APIs to include support for network file

sharing via HTTP and HTTPS. In particular, the iDRAC REST APIs that support export, import preview and

import of Server Configuration Profiles (SCP) have been enhanced to support accessing SCP files by using

HTTP and HTTPS, in addition to existing support for CIFS and NFS file sharing.

For more information on using the iDRAC REST with Redfish APIs with HTTP/HTTPS, see the whitepaper

RESTful Server Configuration with iDRAC REST API.

8 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

2 Extent of the changes

The HTTP and HTTPS changes extend beyond the interfaces and commands that perform data transfers.

 There are new attributes to support user proxy settings.

 There is a new attribute to support enabling/disabling HTTPS certificate verification.

 There is a facility to upload a certificate for HTTPS certificate verification.

2.1 RACADM Command Line Interface (CLI)

RACADM sub-commands allow HTTP and HTTPS to be given when entering a network location. Those that

supported entering proxy settings with command line options still support them. For those sub-commands that

don't have ways of entering proxy settings on the CLI, those values are taken from attributes. Also, the setting

to validate or ignore the server certificate in the HTTPS case is also taken from an attribute.

When a proxy will be used with a RACADM sub-command be sure to set or verify the proxy attributes.

LifeCycleController.LCAttributes.UserProxyPassword

LifeCycleController.LCAttributes.UserProxyPort

LifeCycleController.LCAttributes.UserProxyServer

LifeCycleController.LCAttributes.UserProxyType

LifeCycleController.LCAttributes.UserProxyUserName

When HTTPS will be used with a RACADM sub-command be sure to set or verify the

LifeCycleController.LCAttributes.IgnoreCertWarning attribute.

2.1.1 RACADM sub-commands with HTTP/HTTPS support
The following RACADM sub-commands provide support for HTTP/HTTPS:

 racadm update - firmware update using a single DUP or repository

 racadm get - import a server configuration profile

 racadm set - export a server configuration profile

 racadm lclog export - export the Lifecycle Log

 racadm hwinventory export - export the hardware inventory

 racadm inlettemphistory export - export the inlet temperature history

 racadm license export - export a license

 racadm license import - import a license

 racadm license replace - import a license to replace an existing one

 racadm autoupdatescheduler - perform firmware updates from a repository on a schedule

 racadm systemconfig backup - export a server profile backup image

 racadm systemconfig restore - import a server profile backup image

 racadm systemconfig backup - perform exports of backup images on a schedule

 racadm diagnostics export - export a diagnostics report

 racadm bioscert export - export BIOS Secure Boot Certificates. For more information see the

whitepaper Secure Boot Management In PowerEdge Servers available on the support site.

9 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 racadm bioscert import - import BIOS Secure Boot Certificates For more information see the

whitepaper "Secure Boot Management In PowerEdge Servers".

2.2 WS-Man API support for HTTP/HTTPS

For many of the iDRAC9 WS-Man interfaces, the APIs have been enhanced by adding ShareType values for

HTTP and HTTPS and by making ShareName optional. Keep in mind that not all methods use the same

ShareType values; for examples DM_LCService.ImportSystemConfigration and

DCIM_SoftwareInstallationService.InstallfromRepository use varying values for the same types.

DM_LCService.ImportSystemConfigration uses these values for ShareType:

 0 = NFS

 2 = CIFS

 4 = LocalStore

 5 = HTTP

 6 = HTTPS

DCIM_SoftwareInstallationService.InstallfromRepository uses these values for ShareType:

 0 = NFS

 1 = FTP

 2 = CIFS

 3 = HTTP

 4 = TFTP

 6 = HTTPS

Check the description for each method to determine which values apply to that specific method.

2.2.1 WS-Man APIs and Profile with HTTP/HTTPS support
The following WS-Man APIs provide support for HTTP/HTTPS

 Exporting the Lifecycle Controller Log with ExportLCLog, ExportCompleteLCLog

 Exporting the Hardware Inventory with ExportHWInventory

 Exporting the Factory Shipped Configuration with ExportFactoryConfiguration

 Exporting the System Configuration Profile with ExportSystemConfiguration

 Exporting a backup server profile image with BackupImage, SetBackupSchedule

 Exporting a certificate with ExportCertificate

 Exporting a diagnostic report with ExportePSADiagnosticsResult

 Exporting a license with ExportLicenseToNetworkShare

 Import a System Configuration Profile with ImportSystemConfiguration,

ImportSystemConfigurationPreview

 Import a server profile backup image with RestoreImage

10 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 Install firmware update with InstallFromURI, InstallFromRepository, SetUpdateSchedule

 Import a license with ImportLicenseFromNetworkShare

2.3 Lifecycle Controller user interface

In this section, we provide the details about using the HTTP option from Lifecycle Controller on the 14th

generation servers of Dell.

Note: iDRAC9 with Lifecycle Controller firmware version 3.00.00.00 does not support HTTPS. This white paper

addresses only the use of HTTP in the Lifecycle Controller UI.

2.3.1 LC-UI support for HTTP
Prior to iDRAC with Lifecycle Controller firmware version 3.00.00.00 firmware, the Lifecycle Controller UI

supported CIFS and NFS to exchange files with a network share based on the user selected file transfer

method. Here are the features in Lifecycle Controller UI that support the HTTP file transfer method:

1. Import Features

 Import/Restore Server profile image

 Import Licenses

 Unattended OS Deployment

2. Export Features

 Lifecycle Controller Logs (LCL)

 Hardware inventory

 Factory shipped inventory

 Server profile image

 Tech Support Report

The following flow diagram shows the overall workflow of the HTTP method by using the Lifecycle Controller

UI. The flow shows Import/Export mechanisms by using the IP network using HTTP as an option.

11 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Launch Lifecycle Controller by
pressing F10 when system boots

System enters the Lifecycle
Controller GUI

Configure Network Settings.
Assign LOM to DHCP/Static IP

Address

Click on Platform Restore

Click on Import Server License/
Click on Export server profile

Select the Network Share
checkbox – HTTP option

Enter the directory to Export file/
Enter the fi lename to import file

Enter HTTP server IP/Domain
name

Click Finish to Upload

Click on Import Server
Profile

select Local USB or Network share
option

Click on Hardware Configuration

Click on Hardware Inventory

Click on Export Current Inventory/
Click on Export Factory Shipped

Inventory

Click on LifeCycle Log

Click on Export
LifeCycle Log

Click on OS
Deployment

Click on OS Deploy

At Step 3 of 5, Select
Unattended install

Click on Hardware
Diagnostics

Click on Export
SupportAssist

Collection

Goto Step 3 of 4

 - Workflow of HTTP method via LC-UI interface

12 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

2.3.2 LC-UI HTTP deployment and configuration guide

2.3.2.1 HTTP method to export from Lifecycle Controller
Lifecycle Controller allows users to execute the following Export operations by using HTTP:

 Lifecycle Controller Logs (LCL)

 Hardware inventory

 Factory shipped inventory

 Server profile image

 Tech Support Report

Here is an example screen shot of the Export Lifecycle Log page,

 Example showing Export Lifecycle Log

1. Select the Network Share check box, and HTTP as the transfer method.

2. Enter the IP address or HTTP domain name in Share Name (For example, mywebserver.com or 10.1.1.10), and

directory name or path in File Path (For example, dir0) to where the file must be exported

3. Click Finish.

HTTP method does not require “user name” and “Password” Hence these field are grayed out for HTTP option.

13 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 Note: There is no option to browse through to the folder from Lifecycle Controller UI.

You can also have the proxy server options enabled, the details of proxy fields are:

 Server — the host name of the proxy server.

 Port — the port number of the proxy server.

 User Name — the user name required to access the proxy server.

 Password — the password required to access the proxy server.

 Type — the type of proxy server. Lifecycle Controller supports HTTP and SOCKS4 and SOCKS5 (for IPv6) proxy

server types.

Note: The Lifecycle Controller web interface accesses the web server by using the default HTTP port (80). Ensure

that the HTTP server is configured to the default port (80) to enable operations with the Lifecycle Controller UI. If the

HTTP web server is configured to a port other than the default, Lifecycle Controller will not be able to access the web

server.

2.3.2.2 HTTP method for import to Lifecycle Controller
Lifecycle Controller allows user to execute below Import operations by using HTTP:

 Import/Restore Server profile image

 Import License

 Unattended OS Deployment

Here is a sample screen shot of the Import server License page.

14 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 Example showing Import Server License

Type or select data in all the details about the HTTP share and its proxy details (if using proxy) and click Finish.

Note: Make sure to copy the License xml file in the HTTP repository. For information about the proxy option

usage, see section 1.2.1 in this white paper.

15 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

2.3.2.3 Error scenarios and resolution
SWC0066: unable to connect to network share

Description: If user is using a server-name/IP address of HTTP:

 That is not reachable or

 The HTTP web server is not running on the specified IP/server-name or

 If HTTP web server is not configured to port 80 then the following message is displayed.

Solution: Make sure HTTP web server is reachable by pinging to the same, and that the HTTP web server is

up and running, and check if the HTTP is configured on port 80.

 LC-UI unable to connect to the network share

16 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

SWC0037: unable to export the file to the network share

Description - If user tries to export/import a file to a folder that is not present on the HTTP repository, the

message shows in the screen shot is displayed.

Solution – Make sure the folder/path to which the file is being exported is present and accessable (user has

permission to access the folder).

 Lifecycle Controller UI unable export to the network share

17 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

SWC0057: unable to complete the operation

Description - If user specifies any share name followed by IP/server-name in the “Share Name” field then tries

to export/import a file via HTTP then user will see this error message.

Solution – Make sure the “Share Name” field contains only the server-name/IP address of the HTTP server as

expalined in section 1.2 of this white paper.

2.3.3 Best practices
Refer “Error Scenarios and resolution” under Section 1.2.3 for recommended actions in case of any error’s

during Export or Import operations by using HTTP.

2.3.4 Lifecycle Controller user interface testing

2.3.5 Lifecycle Controller attributes
The following attributes are also used in interfaces other than the LC-UI. Attributes are available to allow

values to be set when an interface is not able to set them itself. One set of these is for proxy settings.

LifeCycleController.LCAttributes.UserProxyPassword

LifeCycleController.LCAttributes.UserProxyPort

LifeCycleController.LCAttributes.UserProxyServer

LifeCycleController.LCAttributes.UserProxyType

LifeCycleController.LCAttributes.UserProxyUserName

These attributes are used with both HTTP and HTTPS.

The UserProxyServer is an important attribute. If it is not set then the other attributes cannot be used and the

behavior will be as if none of them are set.

The LifeCycleController.LCAttributes.IgnoreCertWarning attribute is used only with HTTPS. If set to "On"

then certificate warnings will be ignored. This is another way of saying HTTPS server certificate validation will

not be done.

2.4 iDRAC9 Graphical User Interface (GUI)

The iDRAC GUI is available over HTTPS, as it has been. The addition of HTTP and HTTPS support refers to

the way data is transferred over the network by operations initiated via the iDRAC GUI. The interface has

Is Is not

Tested and validated on all 14G servers,
having iDRAC9 3.0.0.0.

Supported on 14G servers having iDRAC9
3.0.0.0 version are below.

Tested on Apache HTTP server 2.4.18 on
Windows OS.

Tested on other than Apache HTTP server 2.4.18
on Windows OS.

18 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

controls and fields to allow HTTP and HTTPS to be selected when entering a network location and allow

proxy settings to be entered.

The following iDRAC9 GUI features support HTTP/HTTPS:

 Firmware Update and Scheduled Update

 Server Profile Backup, Scheduled Backup, and Import

 Server Configuration Profile export, preview import, and import

 Lifecycle Log Export

 Certificate upload

 License import and export

2.4.1 Certificate upload

There is an existing iDRAC facility to upload and store certificates for various uses. This has been expanded

in iDRAC9 to allow the upload of the HTTPS server certificate. With the Apache server for example this will

often be the ca.crt file found in /etc/pki/tls/certs. This allows the uploaded certificate to be compared with the

HTTPS server certificate at the time of a data transfer to validate the identity of the server.

Note that this is not the certificate used with the iDRAC GUI or WS-Man for in-bound HTTPS connections to

the iDRAC. It is the one used for out-bound connections from the iDRAC to an external HTTPS server. For

example, using a web browser to connect to the iDRAC via HTTPS will use one certificate. When the iDRAC

fetches a firmware update package from an HTTPS server, it uses this other different certificate.

2.4.2 Cryptography and Security
The addition of HTTPS adds complexity not present with other forms of transport like CIFS or NFS. New

controls and facilities are necessary. Some previously unrelated iDRAC settings can now affect data

transport.

The iDRAC does not have the facility to maintain an up-to-date certificate store for validating the identity of

HTTPS servers. If a certificate store was included there would be no opportunity to update it with new or

revoked certificates without an iDRAC firmware update. This required the addition of the facility to upload the

server certificate for doing the server validation.

Using HTTPS without certificate validation may be useful to some. This required the addition of a way to turn

validation off in the interfaces or with an attribute.

Part of the process of certificate validation is the comparison of the CN name in the certificate with the IP

address or DNS name used to connect to the server. If a DNS name was used in the certificate then that

name is required on the iDRAC. This requires DNS resolution be enabled on the iDRAC. DNS servers can be

obtained via DHCP or can be set manually. These settings are off by default.

The implementation of HTTPS uses SSL, TLS and various cipher suites. It is possible for there to be a

mismatch in what is supported. This means the iDRAC may not be able to communicate with a legacy HTTPS

server. There is also a FIPS mode setting. Communication with a legacy HTTPS server may not be possible

with FIPS turned on. This is normal and expected. A more up-to-date HTTPS server should be used.

19 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

Using HTTPS with a self-signed certificate and certificate validation turned off does have some usefulness. It

is an incremental improvement over HTTP which transfers data in the clear. It prevents simple

eavesdropping. It does not protect against main-in-the-middle attacks. But it does force an adversary to

conduct a main-in-the-middle attack to get access to or alter the data. Using a certificate signed by a

certificate authority with validation turned on is an improvement over both.

The iDRAC implementation does not support client authentication to the server.

For data connections outbound from the iDRAC (perfect), forward secrecy is preferred but not required.

20 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

3 Useful information for using HTTP and HTTPS

3.1 General file download info

HTTP and HTTPS web servers generally allow file downloads. But they may not allow or support unlimited file

size and may only allow limited file types. The web server documentation should be consulted to adjust file

size limits and file type permissions, securely, if needed.

3.2 General file upload info

HTTP and HTTPS web servers generally don't support file upload in the default configuration. The web server

documentation should be consulted to enable file upload, securely, if needed.

3.3 Case sensitivity of URIs

With some HTTP and HTTPS servers it may appear that directory/folder and file names in URIs are case-

insensitive. That is a property of the OS or file system being used on the server. (This isn't necessarily an

error.) With different OSs and with different file systems the directory/folder and file names in URIs will be

found as case sensitive as they really are. When in doubt and to avoid frustrating problems, match upper and

lower case characters in all cases.

3.4 Encoding URIs
Sometimes URIs must contain special characters that interfere with proper parsing of the URI. These special

characters are required to be encoded. This encoding should be done once when the URI is constructed from

its component parts. When the user provides a URI to an interface, such as WS-Man or RACADM, the user

must perform this encoding when needed. When the user provides the component parts, such as for many

iDRAC GUI places, the user should not encode the component parts.

Passwords often have special characters because password rules often require them. This leads to URIs

being inadvertently constructed without the required encoding. In general a http URI can look like this. (This is

not an exact/robust definition. See RFC 3986.)

http://username:password@host:port/path/file

If the password for example were to contain special characters such as pas@sw:ord then it would need to be

encoded like this.

http://username:pas%40sw%3aord@host:port/path/file

Inadvertently leaving it unencoded like this would cause the URI to be parsed incorrectly.

http://username:pas@sw:ord@host:port/path/file

There is also a special case with IPv6 numerical addresses where the: special character is not encoded. The

IPv6 numerical address should be enclosed by using square brackets. This is not required with domain

names that resolve to IPv6 addresses and not needed with IPv4 addresses.

21 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

http://username:pas%40sw%3aord@[fd76:6c:61:6e36:597f:7ec4:e1f:a97c]:port/p

ath/file

For more information, see RFC 3986 or its follow-on.

3.5 HTTPS Certificate generation

Certificates used with HTTPS are intended to be signed by a certificate authority. The certificate authorities

publish public keys that allow the certificates to be validated. Software, such as web browsers, use a bundle

of these public keys that is regularly updated to validate the certificates from web sites that are visited.

It is possible to create self-signed certificates, but software such as web browsers would not be able to

validate them by using the bundle of public keys. Self-signed keys can protect against eavesdropping but not

man-in-the-middle attacks.

3.5.1 DNS name matching
Note that the CN value specified in the Certificate Signing Request, CSR, must match the DNS name of the

HTTPS server that will use the certificate. Otherwise the certificate may be rejected. That also means the

DNS name must be used when referring to the server. Using an IP address to connect to the server will allow

a connection to be made but the name comparison will fail and the certificate will be rejected. If a DNS name

is not used with a server then the IP address can be used in the CN value. But that would require the server

to always have that particular IP address via a static setting. Setting the server to use DHCP, with the

possibility of getting one of a range of addresses, can cause a CN mismatch and the certificate will be

rejected.

3.5.2 Using a Certificate Authority
These are some example commands to create a certificate on Linux for Apache. The basic steps will be the

same for other OSs and servers but the commands and file names will be different. The basic steps are:

 Generate a private key

 Generate a Certificate Signing Request, CSR, from the key

 Send the CSR file to a certificate authority with the application or required info

 Receive the certificate signed by the authority

 Copy the files to the correct locations where they can be used

 Restart or reload the configuration of the web server

Generate private key

openssl genrsa -out ca.key 2048

Generate CSR

subj='/C=Norrath/ST=Starter Zone/L=Refuge Island/O=Blur/OU=Logo/CN=logo.blur.example.com'

openssl req -new -key ca.key -out ca.csr -subj "$subj"

display and check the rsa key

openssl rsa -in ca.key -check -noout -text

display the CSR

openssl req -text -noout -in ca.csr

22 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

echo ...

display the certificate authority signed certificate

openssl x509 -in ca.crt -noout -text

Copy the files to the correct locations

cp ca.crt /etc/pki/tls/certs

cp ca.key /etc/pki/tls/private/ca.key

cp ca.csr /etc/pki/tls/private/ca.csr

This is just an example. There are many types of keys that can be generated with different key lengths. The

locations of the files will also change with Linux distribution and web server configuration.

3.5.3 Using a self-signed Certificate

These are some example commands to create a self-signed certificate on Linux for Apache. The basic steps

will be the same for other OSs and servers but the commands and file names will be different. The basic

steps are:

 Generate a private key

 Generate a Certificate Signing Request, CSR, from the key

 Generate a self-signed certificate

 Copy the files to the correct locations where they can be used

 Restart or reload the configuration of the web server

Generate private key

openssl genrsa -out ca.key 2048

Generate CSR

subj='/C=US/ST=Arizona/L=Monument Valley/O=ACME/OU=Anvil Division/CN=anvil.acme.example.com'

openssl req -new -key ca.key -out ca.csr -subj "$subj"

Generate Self-Signed Certificate

openssl x509 -req -days 3652 -in ca.csr -signkey ca.key -out ca.crt

display and check the rsa key

openssl rsa -in ca.key -check -noout -text

display the CSR

openssl req -text -noout -in ca.csr

display the self-signed certificate

openssl x509 -in ca.crt -noout -text

Copy the files to the correct locations

cp ca.crt /etc/pki/tls/certs

cp ca.key /etc/pki/tls/private/ca.key

cp ca.csr /etc/pki/tls/private/ca.csr

This is just an example. There are many types of keys that can be generated with different key lengths. The

locations of the files will also change with Linux distribution and web server configuration.

23 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

3.6 Apache server info

This sections contains info that may help by using an Apache HTTP and HTTPS server. This info may go out

of date as time passes since publication. This info was gathered when working with Server: Apache/2.2.15

and PHP version 5.3.3.

3.6.1 Uploading files to Apache
Uploading files to an Apache HTTP and HTTPS server requires a PUT script. The script name comes from

the protocol command that is used. This ability to upload a file is used when transferring data from the iDRAC

to the Apache server via HTTP and HTTPS. This is useful for:

 Exporting the Lifecycle Controller Log

 Exporting the Hardware Inventory

 Exporting the Factory Shipped Configuration

 Exporting the System Configuration

 Exporting a backup image

 Exporting a certificate

 Exporting a diagnostic report

 Exporting a license

If a given use case does not require exporting data from the iDRAC then it is not necessary to configure or

use this type of script. Transfers from the server to the iDRAC do not use it.

The Apache server does not support PUT (upload) requests by default. It must be configured to pass the PUT

requests to a script to process the request. There is no native, non-script support for PUT requests in Apache.

An example put.php script is shown in Appendix A. It requires modification before it can be used. It was

written with the goal of allowing file upload safely, but history shows that software that was thought safe is

sometimes later found unsafe. If a variation of the example script is used then the user should be prepared to

update it as issues are discovered.

This is an example configuration file fragment for enabling put.php. The script could be placed in the

configured cgi-bin directory, but keep in mind it is not a CGI script. In that case, the line "Script PUT

/scripts/put.php" would be something like "Script PUT /cgi-bin/put.php" and the ScriptAlias and Directory

settings for "/some_safe_directory/scripts/" wouldn't be needed. As always, be sure to modify it as needed to

be secure.

<Directory "/web_server_root">

 Order allow,deny

 Allow from all

 <Limit PUT DELETE>

 Order allow,deny

 Allow from all

 </Limit>

 <LimitExcept PUT DELETE>

 Order deny,allow

 Deny from all

 </LimitExcept>

24 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 Script PUT /scripts/put.php

</Directory>

ScriptAlias /scripts/ "/some_safe_directory/scripts/"

<Directory "/some_safe_directory/scripts">

 AllowOverride None

 Options None

 Order allow,deny

 Allow from all

</Directory>

PHP may need to be installed. Installing Apache does not necessarily pull in the PHP package. If this is the

first PHP script being configured for a particular server and it isn't working, this is a quick first thing to check.

 The Apache server does not support authentication in the default configuration. It must be configured

with user credentials.

 Credentials given for HTTP connections are not secure. Use HTTPS to use server credentials

securely.

3.7 Microsoft-IIS server info

This sections contains info that may help with using a Microsoft-IIS HTTP and HTTPS server. This info may

go out of date as time passes since publication. This info was gathered when working with Server: Microsoft-

IIS/8.5, X-AspNet-Version: 4.0.30319t.

3.7.1 Downloading files from Microsoft-IIS server

The default server configuration has some limits that may need to be adjusted. There are limits on file types.

3.7.1.1 File type limitation

The server matches file name extensions to MIME types. With the default configuration, files that have

extensions that are not mapped to a MIME type are not allowed to be downloaded. If this is encountered the

file name can be changed to a known type which could then be downloaded. For more information see

https://support.microsoft.com/en-us/help/326965/iis-6.0-does-not-serve-unknown-mime-types.

3.7.2 Uploading files to Microsoft-IIS server

The default server configuration has some limits that may need to be adjusted. There is a limit on file size.

Folders are not created automatically.

3.7.2.1 File size limitation

The value of the default upload file size limit varies with server version. The limit may be adjusted by changing

the "maxAllowedContentLength" value in various places or using the IIS Manager to modify "Features View" -

> "Request Filtering" -> "Edit Feature Settings" -> "Request Limits" -> "Maximum allowed content length

(Bytes):". This info may vary or be out of date. Please see the documentation for the server version being

used for more authoritative and up-to-date info. For more information see

https://www.iis.net/configreference/system.webserver/security/requestfiltering/requestlimits.

25 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

3.7.2.2 Folder creation

When a file is uploaded, the destination Folder must already exist. Else, the upload will fail. The user must

create the folder in the backing filesystem using some other method than through the PUT method.

3.8 General proxy information

3.8.1 Using HTTP with a proxy
When using credentials with a proxy to connect to an HTTP server to send or upload a file, without using

tunneling, there may be a performance impact. Because of the sequence used for the credentials the data file

payload may be sent two or three times. This could cause the transfer to take two to three times longer than

when not using proxy credentials. This does not apply to receiving or downloading a file. It also does not

apply when proxy credentials are not used.

3.8.2 Using HTTPS with a proxy
When using HTTPS with a proxy the connection between the iDRAC and the proxy is not as secure as the

connection between the iDRAC and the HTTPS server. The connection between the iDRAC and the HTTPS

server is encrypted and credentials used to log into the server (if any) are carried over the encrypted

connection. The connection between the iDRAC and the proxy is not encrypted. The credentials used to log

into the proxy (if any) are transferred before the encrypted connection is started. Because of this the

credentials used to log into the proxy should not be the same credentials used to log into the server. That way

if the proxy credentials are compromised it means the HTTPS server credentials are not also compromised.

3.9 Choice of proxy
During development and test many different proxy packages were tested running on various Linux and

Windows releases. Each had different capabilities and could be configured and customized to varying

degrees. It appears that no two operated alike. It may be necessary to choose different proxy packages for

different use cases. The two packages listed below are intended as a representative sample of the kinds of

variation that may be found.

3.9.1 Squid proxy info

 The Squid proxy does not support HTTP PUT requests. In other words, uploading a file via HTTP

through a squid proxy fails.

 The Squid proxy does support PUT requests for HTTPS connections because they are tunneled. This

only applies when tunneling for HTTPS is enabled (which it is by default).

 The Squid proxy does not support authentication in the default configuration. It must be configured

with user credentials.

 Proxy credentials are not secure in both the HTTP and HTTPS cases. There is no way to have

secure proxy credentials through a proxy because the client-proxy connection is not encrypted. Do

not use the same credentials for the server and the proxy.

26 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

3.9.2 Tinyproxy proxy info

 The Tinyproxy proxy does not support HTTP PUT requests when authentication is required. The

problem has to do with the need to upload data two or more times when handling "authentication

required" responses.

 The Tinyproxy proxy does support PUT requests for HTTPS connections because they are tunneled.

This only applies when tunneling for HTTPS is enabled (which it is by default).

 The Tinyproxy proxy does not support authentication in the default configuration. It must be

configured with user credentials.

 Proxy credentials are not secure in both the HTTP and HTTPS cases. There is no way to have

secure proxy credentials through a proxy because the client-proxy connection is not encrypted. Do

not use the same credentials for the server and the proxy.

27 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

A An example PUT script

A PUT script allows a file to be uploaded to an Apache HTTP and HTTPS server. The name comes from the

protocol command that is used. This ability to upload a file is used when transferring data from the iDRAC to

the Apache server via HTTP and HTTPS. This is useful for:

 Exporting the Lifecycle Controller Log

 Exporting the Hardware Inventory

 Exporting the Factory Shipped Configuration

 Exporting the System Configuration

 Exporting a backup image

 Exporting a certificate

 Exporting a diagnostic report

 Exporting a license

If a given use case does not require exporting data from the iDRAC then it is not necessary to configure or

use this type of script. Transfers from the server to the iDRAC do not use it.

This is an example put.php script for uploading files to an Apache HTTP and HTTPS server. This is an

example and not a supported software product. It requires modification before it can be used. It was written

with the goal of allowing file upload safely, but history shows that software that was thought safe is sometimes

later found unsafe. If a variation of the example script is used then the user should be prepared to update it as

issues are discovered.

This is a script to handle PUT requests to the server. It is not a CGI script. It looks a lot like one and some of

the configuration is the same. It can configured to be in the same place as CGI scripts. But it doesn't operate

the same.

This is the file 'put.php'.

<?php

// This script is an example.

// Please adjust and secure it for your environment.

// Directory mode. If this script creates a directory it will

// be given this file mode. Files and directories will be owned

// by the user and group of the server process.

$new_directory_mode=0770;

// File mode. If this script creates a file it will

// be given this file mode. Files and directories will be owned

// by the user and group of the server process.

$new_file_mode=0640;

// Buffer size. This is how much data will be transferred from

// input to the destination file per chunk.

$buffer_size=1024;

$no_overwrite=false;

28 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

// Set this to true to disable overwriting files that already exist.

//$no_overwrite=true;

ini_set("allow_url_fopen",false);

// PUT root

// Set $putroot to the directory under which destination

// files will be written.

// Use this if you want files to go under the document root

// defined by the server config file.

//$putroot=$_SERVER['DOCUMENT_ROOT'];

$putroot=$_SERVER['DOCUMENT_ROOT'];

// Use this if you want files to go under a subdirectory of

// the document root defined by the server config file. In

// this case they will go under the "pub" directory under the

// document root. This makes it so that nothing outside that

// subdirectory can be overwritten by a PUT request.

//$putroot=$_SERVER['DOCUMENT_ROOT']."/pub/";

// This will restrict the location of destination files. The translated

// path part of the URI must begin with this string or the

// request will be rejected. This makes it so that nothing outside

// the given path can be overwritten by a PUT request.

// This is relative to the DOCUMENT_ROOT. If $putroot is not

// set to the DOCUMENT_ROOT then this value will have to take

// that into account.

//$restrict_to="/";

//$restrict_to="/pub/";

$restrict_to="/pub/";

// Generate a document with the response code, short

// message, and verbose message.

function gen_doc($code,$message,$verbose)

{

 $message_encoded=htmlspecialchars($message);

 $verbose_encoded=htmlspecialchars($verbose);

 echo '<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">'."\n";

 echo "<http>\n";

 echo "<head>\n";

 echo "<title>".$code." ".$message_encoded."</title>\n";

 echo "</head>\n";

 echo "<body>\n";

 echo "<h1>".$code." ".$message_encoded."</h1>\n";

 echo "<p>".$verbose_encoded."</p>\n";

 echo "</body>\n";

 echo "</http>\n";

}

// Output a header line with the response code and

// short message.

// Generate a document with the response code, short

// message, and verbose message.

function header_doc($code,$message,$verbose)

{

 script_debug("HTTP/1.0 ".$code." ".$message);

 header("HTTP/1.0 ".$code." ".$message);

 header("DebugVerbose: ".$verbose);

 gen_doc($code,$message,$verbose);

29 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

}

// Output just the header line with the response code

// and short message, then exit.

function header_exit($code,$message,$exit_value)

{

 script_debug("HTTP/1.0 ".$code." ".$message);

 header("HTTP/1.0 ".$code." ".$message);

 exit($exit_value);

}

// Output the header line with the response code and

// short message.

// Generate a document with the response code, short

// message, and verbose message.

// Then exit.

function header_doc_exit($code,$message,$verbose,$exit_value)

{

 header_doc($code,$message,$verbose);

 exit($exit_value);

}

// This script is an example.

// Please adjust and secure it for your environment.

function example_code()

{

 header_doc_exit(418,"This script is an example. Please adjust and secure it for your

environment.","",1);

}

function script_debug($message)

{

 global $dboutFP;

 if(! $dboutFP)

 {

 return;

 }

 $ending="\n";

 $len=strlen($message);

 if($len >= 1 && substr_compare($message,$ending,-1) === 0)

 {

 $ending="";

 }

 fwrite($dboutFP,$message.$ending);

 fflush($dboutFP);

}

function script_debug_variables()

{

 foreach($_SERVER as $key => $value)

 {

 script_debug($key." ".$value."\n");

 }

}

function copy_input_to_file($outname)

{

 global $new_file_mode, $buffer_size;

30 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 $inFP=@fopen("php://input","rb");

 if(! $inFP)

 {

 header_doc_exit(500,"Internal script error.","Unable to open the php input

'php://input'.",1);

 }

 $outFP = @fopen($outname, "wb");

 if(! $outFP)

 {

 header_doc_exit(403,"Unable to open.","Unable to open the destination file. The

filesystem or directory may be readonly. The filesystem may be out of space or inodes.

filename=[".$outname."]",1);

 }

 chmod($outname,$new_file_mode);

 $waswritten=0;

 while(!feof($inFP))

 {

 $data=fread($inFP,$buffer_size);

 if($data === false) {

 // The read failed.

 header_doc_exit(403,"Unable to read.","Unable to read the input.",1);

 }

 $rc=fwrite($outFP,$data);

 if($rc === false) {

 // The write failed.

 header_doc_exit(403,"Unable to write.","Unable to write to the destination file.

Opening the file was ok. The filesystem may be out of space. filename=[".$outname."]",1);

 }

 $l=strlen($data);

 if($l != $rc){

 // write length mismatch

 header_doc_exit(403,"Failed write length.","Unable to complete a write to the

destination file. Opening the file was ok. The filesystem may be out of space.

filename=[".$outname."]",1);

 }

 $waswritten += $rc;

 }

 fclose($inFP);

 fclose($outFP);

 return $waswritten;

}

example_code();

$dboutFP=false;

// This line opens a debug output file under the PUT root for

// debugging this script. Comment-out to disable debug.

//$dboutFP = @fopen($putroot."/debugout.txt","wb");

$dboutFP = @fopen($putroot."/debugout.txt","wb");

script_debug_variables();

// REQUEST_URI is percent encoded

// PATH_INFO has been decoded

// PATH_TRANSLATED is decoded and could be used instead of PATH_INFO if

// $putroot was set to DOCUMENT_ROOT.

// $fullpath is the full path name to the destination file.

31 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

//$fullpath=$_SERVER['PATH_TRANSLATED'];

//$fullpath=$putroot.$_SERVER['PATH_INFO'];

$fullpath=$putroot.$_SERVER['PATH_INFO'];

// Clean out any multiple / in the path to get ready for the comparison.

script_debug("fullpath ".$fullpath."\n");

$fullpath=preg_replace('/\/\/+/','/',$fullpath);

script_debug("fullpath ".$fullpath."\n");

// Get the full restriction path relative to the host filesystem.

$full_restrict_to=$_SERVER['DOCUMENT_ROOT'].$restrict_to;

// Clean out any multiple / in the path to get ready for the comparison.

script_debug("full_restrict_to ".$full_restrict_to."\n");

$full_restrict_to=preg_replace('/\/\/+/','/',$full_restrict_to);

script_debug("full_restrict_to ".$full_restrict_to."\n");

if(substr_compare($fullpath,$full_restrict_to,0,strlen($full_restrict_to)) === 0)

{

 script_debug("The desitnation file path is inside the restricted path.\n");

}

else

{

 header_doc_exit(403,"Forbidden file destination.","The destination file path is outside the

allowed destination path. filepath=[".$fullpath."] restrictedto=[".$full_restrict_to."]",1);

}

// Get the name of the file without any of the directory path.

$filebase=basename($fullpath);

// Get the directory path of the file without the name.

$filedir=dirname($fullpath);

script_debug("filebase ".$filebase."\n");

script_debug("filedir ".$filedir."\n");

// See if any directories need to be created before we are able

// to write the destination file.

if(is_dir($filedir))

{

 script_debug("The directory already exists.");

}

else

{

 script_debug("The directory does not exist.\n");

 if(! mkdir($filedir,$new_directory_mode,true))

 {

 // The mkdir failed.

 script_debug("mkdir failed\n");

 header_doc_exit(403,"Unable to make a directory.","Unable to make a directory needed in

the destination path. The filesystem or parent directory may be readonly. The filesystem may be

out of space. dir=[".$filedir."]",1);

 }

}

// Check for an existing file if we don't want to allow any overwrites.

if(is_file($fullpath))

{

 script_debug("The destination file already exists.");

32 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

 if($no_overwrite)

 {

 header_doc_exit(403,"File exists.","The destination file already exists. The PUT script

has been configured to not allow overwrites. filepath=[".$fullpath."]",1);

 }

}

// Copy the PUT data to the destination file.

$waswritten=copy_input_to_file($fullpath);

// Indicate success.

header_doc("200","Success","The PUT operation was successful.");

if($dboutFP)

{

 fclose($dboutFP);

 $dboutFP=false;

}

// vim:expandtab:tabstop=4:shiftwidth=4

?>

33 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

B Configuration details

 Component table

Component Description

Firmware version LC 3.0.0.0 , iDRAC9 3.00.00.00

Server All Dell PowerEdge 14G servers

HTTP Server Apache 2.4.18

PHP 7 PHP language used for server-side web development.

o For Apache HTTP server configurations, visit:

 https://danielarancibia.wordpress.com/2015/09/27/installing-apache-2-4-and-php-7-for-

development-on-windows/

o You can also refer to some of the below YouTube links to install Apache on windows,

 https://www.youtube.com/watch?v=fYrBLw_A8zU

 http://www.wikihow.com/Install-the-Apache-Web-Server-on-a-Windows-PC

Note: The “Listen” string to configure port of Apache under “httpd.conf” file should be set to 80 to work with

LCUI.

https://danielarancibia.wordpress.com/2015/09/27/installing-apache-2-4-and-php-7-for-development-on-windows/
https://danielarancibia.wordpress.com/2015/09/27/installing-apache-2-4-and-php-7-for-development-on-windows/
https://www.youtube.com/watch?v=fYrBLw_A8zU
http://www.wikihow.com/Install-the-Apache-Web-Server-on-a-Windows-PC

34 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

C Glossary

Term Meaning

HTTP Hyper Text Transfer protocol

NFS Network File System

CIFS Common Internet File System

35 14G Support for HTTP and HTTPS across iDRAC9 with Lifecycle Controller Interfaces

D Technical support and resources

 Dell.com/support is focused on meeting customer needs with proven services and support.

 Dell TechCenter is an online technical community where IT professionals have access to numerous

resources for Dell EMC software, hardware and services.

 Storage Solutions Technical Documents on Dell TechCenter provide expertise that helps to ensure

customer success on Dell EMC Storage platforms.

http://www.dell.com/support
http://en.community.dell.com/techcenter/
http://en.community.dell.com/techcenter/storage/w/wiki/2631.storage-applications-engineering

	1 Introduction
	1.1 Overview of 14th generation PowerEdge HTTP/HTTPs support
	1.1.1 BIOS UEFI HTTP Boot
	1.1.2 iDRAC9 Auto Config
	1.1.3 Lifecycle Controller UI
	1.1.4 iDRAC REST with Redfish APIs

	2 Extent of the changes
	2.1 RACADM Command Line Interface (CLI)
	2.1.1 RACADM sub-commands with HTTP/HTTPS support

	2.2 WS-Man API support for HTTP/HTTPS
	2.2.1 WS-Man APIs and Profile with HTTP/HTTPS support

	2.3 Lifecycle Controller user interface
	2.3.1 LC-UI support for HTTP
	2.3.2 LC-UI HTTP deployment and configuration guide
	2.3.2.1 HTTP method to export from Lifecycle Controller
	2.3.2.2 HTTP method for import to Lifecycle Controller
	2.3.2.3 Error scenarios and resolution

	2.3.3 Best practices
	2.3.4 Lifecycle Controller user interface testing
	2.3.5 Lifecycle Controller attributes

	2.4 iDRAC9 Graphical User Interface (GUI)
	2.4.1 Certificate upload
	2.4.2 Cryptography and Security

	3 Useful information for using HTTP and HTTPS
	3.1 General file download info
	3.2 General file upload info
	3.3 Case sensitivity of URIs
	3.4 Encoding URIs
	3.5 HTTPS Certificate generation
	3.5.1 DNS name matching
	3.5.2 Using a Certificate Authority
	3.5.3 Using a self-signed Certificate

	3.6 Apache server info
	3.6.1 Uploading files to Apache

	3.7 Microsoft-IIS server info
	3.7.1 Downloading files from Microsoft-IIS server
	3.7.1.1 File type limitation

	3.7.2 Uploading files to Microsoft-IIS server
	3.7.2.1 File size limitation
	3.7.2.2 Folder creation

	3.8 General proxy information
	3.8.1 Using HTTP with a proxy
	3.8.2 Using HTTPS with a proxy

	3.9 Choice of proxy
	3.9.1 Squid proxy info
	3.9.2 Tinyproxy proxy info

	A An example PUT script
	B Configuration details
	C Glossary
	D Technical support and resources

