

A Dell EMC Technical White Paper

Signing UEFI images for Secure Boot feature
in the 14th generation and later Dell EMC
PowerEdge servers
This technical white paper provides an overview about signing UEFI images for
development and test by using Microsoft Windows hosted tools.

Dell Engineering
June 2016

Authors (Dell EMC Server Solutions)

Vinod P

Sreenivasula Reddy

Sheshadri PR Rao (InfoDev)

2 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

Revisions

Date Description

June 2017 Initial release

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © June-2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries.

Other trademarks may be the property of their respective owners. Published in the USA [6/17/2017] [Technical White Paper]

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

3 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

Contents
Revisions... 2

Executive summary ... 4

1 Db and Dbx control image execution ... 5

1.1 PK and KEK control policy updates .. 5

1.1.1 Acceptable file formats ... 6

1.2 Process of Signing UEFI images for Secure Boot feature in Dell EMC PowerEdge servers............................. 7

1.2.1 Microsoft Windows Hosted Signing Tools .. 7

1.2.2 Required Tools ... 8

1.2.3 Getting the tools.. 8

1.2.4 Acceptable formats of certificate image file .. 8

1.2.5 Files Used in this Document ... 8

2 Creating Keys and Certificates for Development and Test .. 9

2.1 Generating a self-signed Root certificate ... 9

2.2 Signing sub-certificate by using the Root certificate... 11

3 Signing a UEFI Image .. 14

3.1 Converting the PVK file to PFX format (PKCS#12) .. 14

3.2 Sign MyDriver.efi using SHA-256 ... 14

Conclusion .. 15

4 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

Executive summary

Before booting, the system BIOS launches a variety of code modules such as device firmware, diagnostics,

and OS loaders. Secure Boot aims to distinguish trusted modules from untrusted modules. Before the

system BIOS loads a module into memory, Secure Boot checks whether the module has authorization to

execute. If a module does not have authorization, the system BIOS continues without loading or executing

the module.

How does Secure Boot distinguish between trusted and untrusted modules? The Secure Boot policy, which

the system administrator defines, specifies the rules for authorization. The policy contains keys and

certificates for signed modules, and image digests for unsigned modules. Providers of pre-boot code

modules sign the code with private keys, and the Secure Boot policy contains public keys needed to verify

the digital signatures. Signature verification gives the system BIOS assurance that the module came from a

trusted entity, and that other entities have not tampered with the module.

A Secure Boot policy consists of four components: the Platform Key (PK), the Key Exchange Key database

(KEK), the Authorized Signature Database (db), and the Forbidden Signature Database (dbx). The system

BIOS uses the first two components (PK and KEK) to verify changes to the Secure Boot policy itself. The

last two components (db and dbx) help the system BIOS determine whether to execute a pre-boot image.

Secure Boot policies contain public keys only; private keys are not saved anywhere in the system. The system BIOS uses

public keys to verify signatures, while module providers use private keys to sign modules. Owners of private keys use

specialized hardware and techniques for protecting the keys, such as Hardware Security Modules (HSMs), secure Smart

Cards, or a Key Management System (KMS). Neither the system BIOS nor Secure Boot require private keys during the

boot process.

5 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

1 Db and Dbx control image execution
First, consider the authorization of pre-boot image files:

 The Authorized Signature Database (db) contains public keys, certificates, and image digests for

image files authorized to execute.

 If a pre-boot image file includes a digital signature, the BIOS verifies the signature by using the keys

and certificates in the database (DB).

 If a pre-boot image file does not contain a digital signature, the system BIOS determines the digest

(also known as a hash value) of the image and compares it against the image digests in db.

 The BIOS executes the image file only if it verifies the digital signature by using a key in db, or finds

the digest in db.

The Forbidden Signature Database (dbx) specifies image files that must not execute even if they are allowed by the db.

Similar to db, dbx may contain public keys, certificates, or hash values. The BIOS will not execute an image if it verifies

the image’s digital signature with a key in dbx, or finds the image’s hash value in dbx.

Meaning, db acts as a “whitelist” and dbx acts as a “blacklist”. To execute an image file, Secure Boot must

verify that the image file is on the “whitelist” and not on the “blacklist”. If Secure Boot does not find the image

file in either list, the system BIOS will not execute the image file. Similarly, if Secure Boot finds the image file

in both lists, the system BIOS will not execute the image file.

The Secure Boot policy applies to all pre-boot code image files, including device firmware and OS boot

loaders. When installing expansion cards or operating systems, make sure that db includes information to

authorize the images (and dbx does not forbid them). Otherwise, the images will not execute.

1.1 PK and KEK control policy updates
Second, consider changes to the Secure Boot policy itself. Periodically, administrators might add or remove

entries in the policy, and attackers might attempt malicious updates to the policy. Anyone wanting to modify

db or dbx must sign their modifications with the private PK or KEK. In this way, the BIOS can use the public

keys in PK and KEK to verify updates to db and dbx. Therefore, if an attacker attempts to modify db or dbx,

the signature verification with PK and KEK fails (because the attacker does not possess the private PK or

KEK), and the system BIOS does not permit the modifications.

Also, any agent wanting to modify PK or KEK must possess the private half of PK. PK acts as a master key—

anyone with access to the private half of PK can modify any portion of the Secure Boot policy. Figure

illustrates the relationship between PK, KEK, db, and dbx.

6 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

 Relationship between PK, KEK, DB, and DBX

The Secure Boot policy contains only one key in PK, but multiple keys may reside in KEK. Ideally, either the

platform manufacturer or platform owner maintains the private key corresponding to the public PK. Third

parties (such as OS providers and device providers) maintain the private keys corresponding to the public

keys in KEK. In this way, platform owners or third parties may add or remove entries in db or dbx.

Observe that the owner of a private KEK possesses similar authority as the owner of a private PK. Similar to

the private PK owner, owners of private KEKs can authorize or prevent module execution by updating db and

dbx. The private PK owner possesses slightly more authority—they can modify the contents of KEK or PK.

In summary, the Secure Boot policy uses db and dbx to authorize pre-boot image file execution. For an image

file to get executed, it must associate with a key or hash value in db, and not associate with a key or hash

value in dbx. Any attempts to update the contents of db or dbx must be signed by a private PK or KEK. Any

attempts to update the contents of PK or KEK must be signed by a private PK.

1.1.1 Acceptable file formats
Policy

Component

Acceptable File Formats Acceptable File

Extensions

Max records

allowed

PK
X.509 Certificate (binary DER format only)

.cer

.der

.crt

One

KEK
X.509 Certificate (binary DER format only)
Public Key Store

.cer

.der

.crt

.pbk

More than
one

DB and DBX
X.509 Certificate (binary DER format only)
EFI image (system BIOS will calculate and import image
digest)

.cer

.der

.crt

.efi

More than
one

7 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

1.2 Process of Signing UEFI images for Secure Boot feature in Dell

EMC PowerEdge servers

1.2.1 Microsoft Windows Hosted Signing Tools

8 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

1.2.2 Required Tools

1.2.3 Getting the tools
Currently, the most current version of these three tools are all provided in the Windows 8 Consumer Preview

SDK available at: http://msdn.microsoft.com/en-us/windows/hardware/hh852363.

1.2.4 Acceptable formats of certificate image file
 pvk is a Microsoft private key file format

 cer is a X509 certificate format using ASN.1 DER encoding

 pfx format is defined by the PKCS#12 standard (http://www.rsa.com/rsalabs/node.asp?id=2138)

Note: These tools must be run from their location in the SDK because they require additional DLL and

manifest files from that location. That is, the .EXEs must not be copied to and run from any another location.

1.2.5 Files Used in this Document
The scenario used in this technical white paper references the following files:

 Driver being signed: MyDriver.efi

 Root Certificate: Use for development and test only

 TestRoot.cer: Root certificate in X509 format

 TestRoot.pvk: The Root Certificate’s private key in Microsoft PVK format. Has a password.

 TestRoot.pfx: Root Certificate’s private key in PKCS#12 format.

 Sub-Certificate: Signed by the root certificate. Used to sign the driver. Will be enrolled in the KEK

variable. • TestSub.cer – Sub-certificate in X509 format. Will be enrolled as KEK.

 TestSub.pvk: Sub-Certificate’s private key in Microsoft PVK format. Has a password.

 TestSub.pfx: Sub-Certificate’s private key in PKCS#12 format.

http://msdn.microsoft.com/en-us/windows/hardware/hh852363
http://www.rsa.com/rsalabs/node.asp?id=2138

9 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

2 Creating Keys and Certificates for Development and Test
This section describes about creating the keys and certificates required to sign a Portable Executable (PE) or

Common Object File Format (COFF) image for development and test purposes by using the Microsoft

SignTool. It may also be possible to sign development and test images by using other signing tools or a

Certificate Authority (CA) provided by an OSV or trusted third party.

2.1 Generating a self-signed Root certificate
The certificate is used as the Root Certificate and is named as TestRoot.cer. It is untrusted, and intended

only for development and test use. Its related private key file is TestRoot.pvk.

1. Enter the following at the command line interface (CLI):

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ makecert -n "CN= TestRoot " -r

-sv c:\SB_CERTS\TestRoot.pvk c:\SB_CERTS\TestRoot.cer

2. In the Create Private Key Password dialog box, type the private key password, and then confirm.

Keep the password safe for future use.

 Creating private key password

10 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

 Enter configured Root Certificate Private Key Password

 Self-signed Root certificate successfully generated

The self-signed Root certificate is generated and listed in the certificate file list. See the sample screen shot

here.

11 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

2.2 Signing sub-certificate by using the Root certificate
1. Enter the following at the command line interface (CLI):

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ makecert -n "CN= TestSub " -iv

c:\SB_CERTS\TestRoot.pvk -ic c:\SB_CERTS\TestRoot.cer -sv c:\SB_CERTS\TestSub.pvk

c:\SB_CERTS\TestSub.cer

2. In the Create Private Key Password dialog box, type the sub-certificate’s password, and then

confirm. Keep the password safe for future use.

 Create Private key Password for Sub-Certificate

12 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

 Enter configured Sub-Certificate private key password

13 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

3. Enter the Passwords of Root certificate with which sub-certificate is signed.

 Enter configured Root Certificate private key password

 Sub Certificates generated successfully

The sub-certificate is successfully signed and the .pvk file is listed in the certificate file list. See the sample

screen shot here.

14 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

3 Signing a UEFI Image
To sign a UEFI Secure Boot image:

 Convert the .pvk file to .pfx format

 Sign MyDriver.efi by using SHA-256

3.1 Converting the PVK file to PFX format (PKCS#12)
The command line under DOS environment is (xxx stands for SubIssuer.pvk password):

1. At the CLI, enter:

> "C:\Program Files (x86)\Windows Kits\8.0\bin\x64"\ pvk2pfx.exe –pvk

c:\SB_CERTS\TestSub.pvk –pi xxx –spc c:\SB_CERTS\TestSub.cer –pfx

c:\SB_CERTS\TestSub.pfx –f

 The TextSub.pvk Is successfully converted to TextSub.pfx

2. The .pvk file is converted to .pfx file and listed in the certificate file list. See the sample screen shot

here.

3.2 Sign MyDriver.efi using SHA-256
1. At the CLI, enter:

SignTool.exe sign /ac c:\SB_CERTS\TestSub.cer /f c:\SB_CERTS\TestSub.pfx /p xxx /fd sha256

c:\SB_CERTS\MyDriver.efi

Note: xxx indicates the TestSub.pvk password.

 Signing MyDriver.efi

15 Signing UEFI images for Secure Boot feature in the 14th generation and later Dell EMC PowerEdge servers

Conclusion

Secure Boot is UEFI standard which removes the Legacy Threat and provides software identity checking at

every step of boot process: Platform Firmware, Option Cards, and OS Boot loader. UEFI Secure Boot is a

technology to eliminate a major security void during handoff from UEFI firmware to UEFI OS. The concept of

UEFI secure boot is to have each component in the chain validated and authorized against a given policy

before allowing it to execute.

This technical white paper is intended for firmware architects, engineers, and IT administrators who want to

explore the advantages of using Secure Boot feature on Dell EMC PowerEdge servers and who need to

design and plan implementations by using it. This whitepaper describes the process of generating certificates

and signing UEFI images by using those certificates for development and test purposes.

	1 Db and Dbx control image execution
	1.1 PK and KEK control policy updates
	1.1.1 Acceptable file formats

	1.2 Process of Signing UEFI images for Secure Boot feature in Dell EMC PowerEdge servers
	1.2.1 Microsoft Windows Hosted Signing Tools
	1.2.2 Required Tools
	1.2.3 Getting the tools
	1.2.4 Acceptable formats of certificate image file
	1.2.5 Files Used in this Document

	2 Creating Keys and Certificates for Development and Test
	2.1 Generating a self-signed Root certificate
	2.2 Signing sub-certificate by using the Root certificate

	3 Signing a UEFI Image
	3.1 Converting the PVK file to PFX format (PKCS#12)
	3.2 Sign MyDriver.efi using SHA-256

