Dell Networking

OS10 Open Edition
Administration and
Programmability

TABLE OF CONTENTS

Front Matter

Copyright 2
Contributors 3
Intended Audience 4
How This Document is Organized 5
Dell Networking Support 6
0OS10 Terminology 7

Product Overview

What is the Dell OS10 Open Edition? 9
Architecture

Components and Services 14
Run-Time Overview 19
Installation

Overview 24
System Setup 25
Install OS10 26
0OS10 Boot Sequence 29

System Administration

Overview 34
System Defaults 35
Operations 39
Maintenance 44
Upgrade OS10 46
Use Case: Orchestration Using Puppet 51
Use Case: Monitoring Using Nagios 56

Networking Features

Overview 61
Interfaces 63
Layer 2 Features 69
Layer 3 Features 77
Monitoring 89
Access Control Lists (ACLs) 97
Quality of Service (QoS) 98
Use Case: BGP Routing Using Quagga 99

Programmability

Overview 113
Introduction to Control Plane Services 114
YANG Modeling of CPS Objects 123
YANG Model Reference 130
CPS Application Templates 132
CPS Application Examples 148
CPS API Reference 192
Troubleshooting

Overview 194
0OS10 Linux and Network Debugging 195
Log Management 200
sosreport 204
CPS API Object Management 206

Front Matter

FRONT MATTER

Copyright

Copyright © 2016 Dell Inc. All rights reserved. This product is protected by U.S. and
international copyright and intellectual property laws. Dell and the Dell logo are trademarks
of Dell Inc. in the United States and/or other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies.

2016-03

Rev. AO1

FRONT MATTER

Contributors

The Dell Networking team took guidance from the Book Sprints team
(www.booksprints.net) and created the OS10 Open Edition User Guide in five days. On Day
One, the team had no idea that they would have the capability to write and edit a
comprehensive document by the end of Day Five. The team assembled here worked with
amazing coordination and dedication to make this happen.

The contributors (in alphabetical order):

Devireddy, Srideep

Goodall, Darius

Kaludjerovic, Stevan

Lazar, Mike

Marisetty, Anitha

Mishra, Abhishek

Moopath Velayudhan, Mukesh
Mynam, Satish

Myneni, Bala

Narlajarla, Pratima

Persh, Howard

Planting, Laura

Raiyani, Viraj

Santhanam, Madhusudhanan
Schwartzberg, Alan

Sunny, Prince

Wichmann, Clifford

Book Sprints Team:

[llustrations and Cover Design: Henrik Van Leeuwen
HTML Book Production: Julien Taquet

Text Clean-Up: Raewyn Whyte

Tech Support: Juan Gutierrez

Book Sprint Facilitation: Barbara Ruhling

FRONT MATTER

Intended Audience

This document is intended for System Administrators and Developers with a technical
background in:

o Advanced Linux

o Standard and Open Linux utilities
o Data Modelling using YANG

o Python and C/C++ Languages

The information in this document allows you to install, operate, administer, and develop
applications for the Dell Networking Operating System 10 (OS10) Open Edition (OE).

FRONT MATTER

How This Document is Organized

This document is organized as follows:

o What is OS10? provides a brief description of the functionality provided by OS10.

o Architecture describes the components and services included in OS10, including an
overview of the run-time organization.

o Installation describes the installation procedures (manual and automatic).

o System Administration covers the tasks needed to properly maintain and upgrade a
platform running OS10.

o Networking Features describes the operation and configuration of the various
networking features the OS10 supports.

o Programmability provides an introduction to Control Plane Services (CPS) and YANG
Models.

o Troubleshooting covers troubleshooting and debugging procedures.
The document provides use cases for:

o QOrchestration Using Puppet (in System Administration)

o Monitoring Using Nagios (in System Administration)

o BGP Routing Using Quagga (in Networking Features)

o CAM Optimization using CPS APIs (in Networking Features)

All readers of this document should start by reading the Product Overview.

System administrators may want to continue with the sections Installation, System
Administration, Networking Features, and the respective use cases.

DevOps engineers or software developers can go directly to the section Programmability.

All users should refer to the Troubleshooting section for troubleshooting and debugging
procedures.

D (Note: In this document, OS10 refers to the Dell Networking OS10 Open Edition.]

FRONT MATTER

Dell Networking Support

The OS10 Open Edition software is supported only on a Dell ONIE-enabled switch. For a
complete list of supported Dell switches, see http://www.dell.com/support. Dell does not

provide support for third-party software/drivers, community projects, code development or
implementation and development of security rules/policies.

http://www.dell.com/support/home/us/en/04

FRONT MATTER

OS10 Terminology

ACL - Access Control List

API - Application Programming Interface

CPS - Control Plane Service

EEPROM - Electrically Erasable Programmable Read-Only Memory
NAS - Network Adaptation Service

NPU - Network Processing Unit

NRPE - Nagios Remote Plugin Executor server

ONIE - Open Network Install Environment

PAS - Platform Adaptation Service

QSFP - Quad Small Form-factor Pluggable

QoS - Quality of Service

SDI - System Device Interface

SAI - Switch Abstract Interface

Physical port - System physical port (typically front-panel port)
Linux interface - Linux network device mapped to physical port
LAG port - Link Aggregation Group port in NPU

Bond interface - Link Aggregation Group interface in Linux

Product Overview

What is the Dell OS10 Open Edition?

The Dell Networking Operating System 10 (OS10) Open Edition (OE) is an innovative
operating system for Dell Networking systems. This document describes how OS10 enables
you to unleash new and creative ways to deploy, orchestrate, and manage your
networking, servers and storage solutions in your data centers and enterprise
environments. OS10 uses an unmodified Linux kernel and standard Linux distribution to
take advantage of the rich Linux ecosystem and provide flexibility in customizing OS10
according to your networking needs.

Figure 1 — Dell OS10 Open Edition

Customer-developed

Native Linux App Applications

Automation
Tools

Management
Tools

Fabric Services

IP Services

Linux Networking Security Services

Development Enviroment via Control Plane Services (CPS)

Dell Networking OS10 Open Edition

Platform Abstraction via OCP Switch Abstraction Interface (SAI)

Supported Hardware Platforms

OS10 version 10.1.0B is supported on the following Dell Networking systems:

o 53048-ON
o 54048-ON

PRODUCT OVERVIEW

WHAT IS THE DELL OS10 OPEN EDITION? PRODUCT OVERVIEW

o S6000-ON

For more information about a supported switch, refer to the hardware documentation at
www.dell.com/support: display the Product Support page for a switch (View Products-

>Servers, Storage & Networking->Networking->Fixed Port Switches) and click the Manuals
tab in the menu bar at the top of the page.

Standard Linux

0OS10 is implemented using a standard Linux distribution (Debian Jessie). OS10 is binary-
compatible with Debian Linux packages. Compared to deploying a vendor-built Linux
distribution, the OS10 approach provides important advantages:

o You can install any Debian package from a standard Debian repository without having to
rebuild the package.

o You can develop applications using the standard Debian development environment. You
are not constrained by or locked into a hardware vendor-specific development
environment.

o You can rapidly deploy updates to Debian software packages (such as security patches)
as soon as they become available.

o You can securely upgrade OS10 using standard Linux tools (such as apt-get and dpkg)
and repositories.

Linux Kermel

0OS10 uses the unmodified Linux kernel Version 3.16. This kernel provides a robust base to
support current state-of-the-art and future networking features.

Linux IP Stack

0OS10 uses the standard Linux IP stack without vendor-specific changes. This
implementation allows customers to take advantage of the rich feature set provided by the
Linux standard IP stack.

10

http://dell.com/support

WHAT IS THE DELL OS10 OPEN EDITION? PRODUCT OVERVIEW

Linux Tools

All standard Linux system administration tools are factory-installed in the OS10 or can be
easily installed from standard Debian repositories.

Convergence of Networking, Servers, and Storage

The use of Linux as an operating system provides a solid foundation for the convergence of
networking, server, and storage solutions. OS10 allows you to easily deploy the
management and orchestration solutions that are typically available for Linux servers and
storage systems.

OS10 Programmability

OS10 provides an object-centric API for application development. OS10 allows you to
implement your own applications using a well-defined object model and set of
programmatic APIs. The object model is defined using the YANG modeling language. OS10
APIs support C/C++ and Python programming languages.

A set of standard Debian software development packages is provided to allow you to
develop applications for the OS10.

Open Platform Abstraction

0OS10 implements a new, open object-centric application-programming interface called
the Control Plane Services (CPS) API. The CPS API allows customer-developed applications
to be completely independent of any underlying hardware or software technology.

In addition, OS10 internally uses the Switch Abstraction Interface (SAl), which Dell and
partner companies contributed to the Open Compute Project. The SAI API allows the OS10
to be completely independent of any network processor/switch hardware technology. For
more information about the SAl, see
http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Int
erface.

11

http://www.opencompute.org/wiki/Networking/SpecsAndDesigns#Switch_Abstraction_Interface

WHAT IS THE DELL OS10 OPEN EDITION? PRODUCT OVERVIEW

System Hardware Integration with Standard Linux APIs

0OS10 integrates standard Linux networking APIs with the hardware functionality provided
by networking devices (systems and network processors). You can download and use open
source software (such as Quagga) off-the-shelf on any OS10 platform.

Disaggregated Hardware and Software

OS10 provides an environment in which hardware and software are fully modular. You can
select the software modules you want to install, as well as the hardware platforms you
want to use for your networking needs.

12

Architecture

Components and Services

The main OS10 components are:

o Linux infrastructure

o

Control Plane Services (CPS)

Switch Abstraction Interface (SAl)

[o]

[

Network Adaptation Service (NAS)

o

System Device Interface (SDI)

o]

Platform Adaptation Service (PAS)

[

Dell applications and tools

Figure 2 — OS10 Architecture

Customer '
Developed Linux Open

Application Source Apps
(e.g. Quagga,
Puppet)

0OS10 Open
Edition Temperature 0510 Tools
Control

Linux Native
Control Plane Services “— APIs

Linux Services
: ; Network Adaptation (NTP, DNCP,
Platform Adaptation Services Patching, etc.)

System Device Interface Switch Adapter Interface

Linux OS

Vendor SDK
Drivers

Each OS10 component implements a set of well-defined APIs, resulting in full software
modularity with hardware and software platform abstraction.

ARCHITECTURE

14

COMPONENTS AND SERVICES ARCHITECTURE

The OS10 architecture implements:

o Software partitioning — OS10 software is partitioned into sub-components that are
organized as Linux packages. Each Linux package contains only related functionality.

o Software layering — System components depend only on the components that logically
support them.

o Hardware and software platform abstraction — The SDI, SAl modules and the platform
startup scripts are the only hardware-specific components in OS10. All the other modules
are hardware-independent.

Hardware-specific variations (such as the number and names of physical ports, and the
number of power supplies) are defined using platform definition files.

0OS10 uses POSIX APIs. When necessary, implementation-specific details are abstracted
using the OS10 run-time libraries (common utilities and logging).

o Open Application Programming Interface — User applications interact with the OS10
software modules using the CPS API. OS10 provides an object-centric APl in the CPS
component.

Linux Infrastructure

The Linux infrastructure consists of a collection of Linux services, libraries, and utilities pre-
installed in an OS10 image. Together with the Linux kernel, these Linux components
provide the foundation for the implementation of OS10-specific software components.

Control Plane Services

Control Plane Services (CPS) are at the core of the OS10 architecture. CPS provides an
object-centric framework that mediates interactions between OS10 applications and allows
customer applications to interact with OS10 software components.

CPS defines two types of application roles: clients and servers.

The CPS framework allows CPS client applications to execute create, set, get, and delete
operations on individual objects or lists of objects. CPS server applications execute
operations requested by CPS client applications. Because client applications operate on
objects, they do not need to be aware of the location or name of the CPS server
application that executes a requested operation.

15

COMPONENTS AND SERVICES ARCHITECTURE

In addition, the CPS framework supports a publisher/subscriber model. CPS server
applications publish relevant events; client applications can subscribe (register) for specific
events and objects. CPS client applications can register for events generated when objects
are created, modified, or deleted.

The publisher/subscriber approach and object-centric operations allow for the completely
independent operation of client and server applications.

Custom-written applications use the CPS API to communicate with the OS10 components.

CPS APl and the OS10 Object Model

The object model provided by the CPS layer is defined using YANG files. The YANG models
are used to generate C header files, which provide a programmatic representation of
objects and their attributes. The header files are shared between client and server
applications. The OS10 C/C++ representation of objects and their attributes is designed to
ensure compatibility between multiple versions of the object model.

OS10 provides both C/C++ and Python programming interfaces for CPS.

Switch Abstraction Interface

The OS10 Switch Abstraction Interface (SAl) implements an API for NPUs supported on Dell
systems. The SAI APl is an open interface that abstracts vendor-specific NPU behavior. The
SAI APl is the result of a joint effort of multiple NPU vendors and user companies, who
contributed the SAIl to the Open Compute Platform.

0OS10 is, therefore, NPU-independent and not locked to specific NPU hardware. If a new
NPU is used in an OS10 platform, the only OS10 component that you need to replace is the
SAI

Network Adaptation Service

The Network Adaptation Service (NAS) manages the high-level network processor (NPU)
abstraction and adaptation. The NAS abstracts and aggregates the core functionality
required for networking access at Layer 1 (physical layer), Layer 2 (VLAN, link aggregation),
Layer 3 (routing), ACL, QoS and network monitoring (mirroring and sFlow).

The NAS enables adaptation of the low-level switch abstraction provided by the Switch
Abstraction Interface to:

16

COMPONENTS AND SERVICES ARCHITECTURE

o Standard Linux networking APIs and Linux Interfaces
o OS10-specific CPS API functionality.
The NAS manages the middleware that associates physical ports to Linux interfaces. In

addition, the NAS is responsible for providing packet I/O services, using the Linux kernel IP
stack.

System Device Interface

In OS10 a system device refers to a hardware component, such as:

o Fans/cooling devices

o Power supplies

o Temperature sensors

o LEDs

o EEPROM

o Programmable devices.

o Transceivers
All hardware components except for NPUs are abstracted as system devices.

The SDI API defines a low-level platform-independent abstraction for all types of system
devices. Therefore, only system device drivers which implement the SDI API are hardware-
specific, while the APl itself is hardware-independent.

Platform Adaptation Service

The Platform Adaptation Service (PAS) provides a higher-level abstraction and aggregation
of the functionality provided by the SDI component. In addition, the PAS implements the
CPS object models associated with system devices. For example, the PAS CPS API allows
user applications to:

o Read current temperature values reported by temperature sensors.

o Get and set fan speed values.

o Set a LED state.

o Read power levels reported by PSUs.

17

COMPONENTS AND SERVICES ARCHITECTURE

o Get system inventory and EEPROM information.

o Set transceiver module state (for example, Tx laser on/off) and get module information.
The PAS implements the following functionality:

o Detection of common equipment FRU (PSUs, fans) insertion and removal events
o Detection of over-temperature events for pre-defined temperature thresholds

o Detection of media insertion on physical ports.
In summary, PAS is responsible for:

o Monitoring the status of system devices.
o Reporting status changes or faults as CPS events.
o Allowing applications to retrieve current status information.

o Allowing applications to set the control variables of system devices.

Platform Description Infrastructure

The platform description infrastructure provides a means to describe specific per-platform
configuration parameters, such as the number of ports per system, supported transceiver
modules, mapping of Linux interfaces to physical ports, and number of fans and power
supply units.

In addition, this component contains the platform-specific system startup configuration
and scripts.

Dell Applications and Tools

0OS10 provides a set of tools and commands that allow system administrators to access
Dell-specific software and hardware functionality, such as software upgrades, physical port,
media information, and system inventory. These OS10 tools are described in the following
sections.

In addition, OS10 provides a Dell-implemented thermal control application which prevents
damage of hardware components in case of overheating and/or fan failure.

18

Run-Time Overview

A brief overview of the structure of OS10 software and run-time behavior is shown here:

Figure 3 — OS10 Run-Time

Linux

Customer
oSl Developed
Tools s

Applications

Standard
Commands
I Linux Standard Libraries
CPS Framework Netlink I
events

e DRE Packet i/o
Daemon Daemon

Linux
Run Time]]
Libraries SDI libraries SAl

Libraries

API
Integration

Linux

Kernel

0s10

ARCHITECTURE

7 7
z Hardware Platform é Hardware API
g Description and v
Hardware API % Configuration Files

%
% NPU

System

Devices

OS10 Processes
The OS10 platform uses the following processes:
cps_api_svc Executes the CPS broker which mediates all

CPS operations and events.

base_pas_svc PAS daemon, which executes PAS functionality

base_nas_svc NAS daemon, which executes NAS functionality

19

RUN-TIME OVERVIEW ARCHITECTURE

The following applications manage components of the OS10 system:

base_env_tmpctl_svc Manages environment temperature control;
executes the thermal control algorithm.

base_nas_front_panel_ports_svc Manages physical port mapping to Linux
interfaces.

base_nas_phy_media_config_svc Manages the configuration of physical media.

base_nas_monitor_phy_media_svc Monitors physical media (SFP) events generated

by PAS when you insert a pluggable module;
automatically configures port parameters.

base_ip_svc Gets/sets IP address parameters via the CPS API.
base_interface_svc Gets/sets interface parameters via the CPS API.
base_nas_shell_svc Executes NPU shell commands.

NAS Linux Adaptation Functionality

Integration with Standard Linux APIs

The OS10 NAS daemon seamlessly integrates standard Linux network APIs with NPU
hardware functionality. The NAS daemon registers and listens to networking (netlink)
events. When it receives an event, the NAS daemon processes the event contents and
programs the NPU with relevant information, such as enabling/disabling an interface,
adding/removing a route, or adding/deleting a VLAN.

Linux Interfaces Associated with Physical Ports

0OS10 uses internal Linux tap devices to associate physical ports with Linux interfaces. When
the NAS detects a change in physical port status (up/down), the daemon propagates the
new port status to the associated tap device.

Packet 1/O

In OS10, packet I/O describes control-plane packet forwarding between physical ports and
associated Linux interfaces.

20

RUN-TIME OVERVIEW ARCHITECTURE

In the current OS10 version, packet I/O is implemented as a standalone thread of the NAS
daemon. A packet received by the NPU is forwarded to the CPU. Packet I/O thread receives
the packet via the SAl API callback. Each received packet contains the identity of the source
physical port. Packet I/O module then injects the packet to the tap device associated with
the source physical port. Applications receive packets from the Linux IP stack using the
standard sockets.

Conversely, applications use tap devices to transmit packets. The packet I/O receives the
transmitted packet from Linux IP stack. Based on source tap device of the packet, the
transmitted packet is forwarded to the associated physical port.

CPS Services

The NAS daemon registers with CPS as a server application to provide CPS programmability
of the packet NPU. The NAS performs create, delete, set, and get operations for objects
which model the networking functionality defined by OS10.

Similarly, the PAS daemon also registers with CPS as a server application in order to provide
CPS programmability for system devices.

File System Organization

The current version of OS10 uses a standard Linux ext4 file system. The Linux packages
required for OS10 are pre-installed on the file system as per standard Linux package
locations.

0OS10 specific files are installed in the /opt/dell/0s10 and /etc/opt/dell/0s10
directories:

/opt/dell/0s10@ contains binaries, libraries, and YANG models
/etc/opt/dell/os10 contains platform description files and default configuration files

Platform Description Files

The platform description files contain a description of the hardware modules that apply to
the current platform; for example, the number of physical ports, fans, and power supplies.

21

RUN-TIME OVERVIEW

Default Configuration Files

The default configuration files contain initialization information applicable to the current
platform; for example, initial SAl configuration or system ACL rules to be applied at
initialization

System Startup

OS10 uses the systemd framework to define the system startup sequence. OS10 unit
definitions are stored in:

/etc/systemd/system/dn-base-group.target.wants

ARCHITECTURE

22

Installation

INSTALLATION

Overview

Install OS10 using an industry-standard Open Network Install Environment (ONIE)
procedure. For detailed information about ONIE installation, see
http://www.opencompute.org/wiki/Networking/ONIE.

ONIE supports two types of installation:

o Automatic (zero-touch) installation, in which the system automatically configures
Ethernet interfaces, connects to an image server, and downloads and installs an OS10
image

o Manual installation, which requires manual configuration of an Ethernet port and manual
specification of an OS10 image file.

The section describes step-by-step procedures to install OS10.

24

http://www.opencompute.org/wiki/Networking/ONIE

INSTALLATION

System Setup

Before you install OS10, ensure that the system is connected as follows:

o Connect a serial cable and terminal emulator to the console serial port. The required
serial port settings are 115200, 8 data bits, and no parity.
o |f you prefer downloading an image over an Ethernet network, connect the management

Ethernet port to the network.

To locate the console port and management Ethernet port, refer to the Getting Started
Guide shipped with your switch.

Figure 4 — Using the Serial and Management Port to Install OS10

Mass
Storage

A 4
Serial Ethernet
Console Mgmt Port

Management Interfaces

25

Install OS10

When you power-up the switch, Dell Diagnostics (Diag) and ONIE software are pre-loaded.
The boot menu screen is displayed on the console.

ONIE:
ONIE:

ONIE modes are listed on the screen:

: Install 0S
| ONIE:
| ONIE:
| ONIE:
|
|

Rescue
Uninstall 0S
Update ONIE
Embed ONIE
Diag ONIE

o |nstall OS - Installs an OS10 image.

[o]

o

o

[o]

o Diag ONIE - Runs the system vendor's diagnostics.

You can install an OS10 image automatically using the ONIE image discovery process, or
manually if no DHCP server is available. Download a platform-specific OS10 image from

Uninstall OS - Deletes the contents of all disk partitions except ONIE.
Update ONIE - Installs a new ONIE version.
Embed ONIE - Formats an empty disk and install ONIE.

the Dell-recommended location.

Rescue - Reboots the system into ONIE for repair, debugging, and forensics.

é CAUTION: During an automatic or manual OS10 installation, if an error condition
occurs that results in an unsuccessful installation, DO NOT power cycle or reboot

the system. Loss of data can occur.

Automatic Installation

You can automatically (zero-touch) install an OS10 image using the ONIE image discovery
process by following the procedure in the ONIE specification at
https://github.com/opencomputeproject/onie/wiki/Design-Spec-SW-Image-Discovery.

INSTALLATION

26

https://github.com/opencomputeproject/onie/wiki/Design-Spec-SW-Image-Discovery

INSTALL OS10

Manual Installation

If a DHCP server is not available, you can manually install an OS10 image.

1. Power up the system; it automatically boots up with the ONIE: Install 0S option on
the boot menu.

2. Stop the ONIE discovery process by entering the onie-discovery-stop command.
3. Assign a unique IP address to the management port by using the ifconfig command.

4. Locate the platform-specific Dell OS10 image that you want to download from a
network server. Enter the onie-nos-install image-url command to download and
install the image from an HTTP, FTP, or TFTP server; for example:

INSTALLATION

ONIE:/ # onie-nos-install http://192.168.0.1/0510_s6000.bin

The Dell OS10 image is installed on the system. The system automatically reboots and
loads OS10.

Figure 5 — Installing OS10 over a Network — Figure 6 — Booting OS10

Boot Loader Boot Loader
(Dell HW)) (Dell HW)

ONIE

(Dell HW))

Fetches

Installer
(0s10)

™~
Installs

A4

Network OS Network OS
(0s10) (0s10)

27

A

INSTALL OS10

You can also install OS10 using USB media as follows:

1. Power up the system. It will automatically boot up with the ONIE Install 0S option.
2. Stop the ONIE discovery process by entering onie-discovery-stop.
3. Create a USB mount location on the system by entering mkdir /mnt/media.

4. Enter the mount command to mount the USB media plugged in the USB port on the
switch.

5. Enter the onie-nos-install command to install the OS10 image file from a specified
USB path; for example:

ONIE:/ # onie-nos-install /mnt/media/0s10_s6000.bin

In the example, /mnt/media specifies where the USB partition is mounted.

NOTE: An OS10 Installer image creates two partitions on the system: OS10-A
(active) and OS10-B (standby). After OS10 installation, the system boots up by
default from OS10-A.

INSTALLATION

28

INSTALLATION

OS10 Boot Sequence

After you install an OS10 image, the system boots up in the following sequence:

First time
login?

No I
ONIE default q .
st Linux kernel 0S10 services . Change q
Ye
Power on partlﬂggt(A/B) [e Login prompt esP password Linux shell

1. After the switch powers up or reboots, the boot menu is displayed. The system
autoboots by loading the OS10 image in the OS10-A partition. To change the default
partition, use the arrow keys to select another partition, such as OS10-B or ONIE, before
the autoboot starts.

0OS10 Boot Menu

B e it e +
| x0510-A |
| 0510-B |
| ONIE |
B e it e +

2. Linux boots from the OS10-A partition on the disk and starts the systemd daemon in the
root file system as part of the initial setup before the Linux login displays.

The following OS10 custom services are started by the systemd daemon during system
initialization:

o The PAS service initializes the platform and devices on the system.

o The NAS service initializes the NPU and system interfaces.

o Other OS10 services create Linux interfaces that map to physical, front-panel ports on
the switch.

29

0OS10 BOOT SEQUENCE

After OS10 custom services run successfully and the system boots up, the Linux prompt is
displayed on the console. Log in using the default Linuxadmin username and
linuxadmin password.

During the first login, you are prompted to change the password. This password reset is
mandatory. See the next section, Default Login and Password Management, for information
on how to set a new password.

NOTE: If the OS10 service that creates internal Linux interfaces is unsuccessful, the
system bootup waits 300 seconds before timing out and displaying the Linux login
prompt.

3. At the OS10 Linux shell prompt, enter Linux administration commands, OS10 NPU or
system-related scripts.

INSTALLATION

30

INSTALLATION

Default Login and Password Management

The first time OS10 boots up on a switch, use the default username linuxadmin and
password linuxadmin to log in.

The default Tinuxadmin username is created for OS10 administration activities on the
system. Linuxadmin is part of the Linux sudo group which can execute privilege
commands.

During the first OS10 login, you must change the default Tinuxadmin password for
security reasons. The new password is saved on the system for future logins. To set a new
0OS10 user password, follow the command prompts below.

1inuxadmin/linuxadmin

Dell Networking Operating System (0S10)

0S10 login: linuxadmin

Password:linuxadmin >> only for first-time login

You are required to change your password immediately (root enforced)
Changing password for linuxadmin.

(current) UNIX password: >>> linuxadmin

Enter new UNIX password: >>> user preferred password

Retype new UNIX password: >>> re-enter user preferred password
Linux 0S10 3.16.7-cktll #1 SMP Wed Feb 3 17:43:04 PST 2016 x86_64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

D JE JHD QUL UL UL L JUD QU QUL QUL UL JUP QUL QD QUL QUL JUL LS UL QUL QUL QD QUL JUL QUL UD JEL JEL JE LU U
-* Dell Networking Operating System (0S10) *-

-k k-

-* Copyright (c) 1999-2016 by Dell Inc. All Rights Reserved. *-
-k k-

D JE JHD QUL UL JEL QL QUL QU QUL QUL UL JUP QUL QD QUL QUL JUL LS UL QUL QUL QUL QUL JUL UL UL JEL JEL JEL S UG S

This product is protected by U.S. and international copyright and
intellectual property laws. Dell and the Dell logo are trademarks
of Dell Inc. in the United States and/or other jurisdictions. All
other marks and names mentioned herein may be trademarks of their
respective companies.

1inuxadmin@0S10:~$

31

DEFAULT LOGIN AND PASSWORD MANAGEMENT

INSTALLATION

32

System Administration

Overview

This section covers tasks needed to properly maintain and upgrade the system running
0OS10. This section includes system defaults, configuring interfaces, installing Linux
packages, logging and upgrades.

SYSTEM ADMINISTRATION

34

SYSTEM ADMINISTRATION

System Defaults

When the system boots up, the following default system configuration is applied:

o All Linux interfaces are created and mapped to physical ports.
o All Linux interfaces are in Administratively Down state.

o The Management interface is eth0, and the management IP address is dynamically
assigned using DHCP.

o OS10 processes are activated after system boot up. Refer to Run-Time Overview for the

list of processes.

o ACL entries are installed to direct control-plane packets for protocols, such as LLDP and
OSPF, to the Linux interfaces associated with physical ports. Refer to Default XML
Configuration Files for the list of ACL entries.

o QoS initialization sets up the default scheduler hierarchy and map all packets to Queue 0.

Remote Access

Access the system remotely via SSH. You must configure the management IP address for
remote access.

Using SSH

By default, SSH service is enabled. The username and password are both Linuxadmin.

$ ssh linuxadmin@<managementipaddress>

System Utility Commands

0s10-ethtool - Displays the interface statistics and the transceiver information (see
Monitoring).

0s10-show-stats - Displays the detailed statistics of a physical port (see Monitoring).

0s10-config-fanout - Fans out native 40G ports to 4x10G interfaces (see Physical Ports
in Networking Features).

35

SYSTEM DEFAULTS

0s10-switch-shell - Executes NPU commands (see Debugging Interfaces in
Troubleshooting).

0s10-config-switch - Sets and gets values of different switching entities.

Example: 0s10-config-switch retrieves switch values

$ 0s1l0-config-switch show

Key: 1.30.1966121.

base-switch/switching-entities/switch-count = 1

Key: 1.30.1966121.1966082.1966085.
base-switch/switching-entities/switching-entity/bridge-table-size = 163840
base-switch/switching-entities/switching-entity/acl-table-max-priority = 11
base-switch/switching-entities/switching-entity/acl-entry-min-priority = 0
base-switch/switching-entities/switching-entity/acl-table-min-priority = 0
base-switch/switching-entities/switching-entity/ecmp-hash-fields = 8,9,5,3,10,4,2,1,7,6
base-switch/switching-entities/switching-entity/npu-identifiers = 0
base-switch/switching-entities/switching-entity/mac-age-timer = 1800
base-switch/switching-entities/switching-entity/lag-hash-algorithm = 2
base-switch/switching-entities/switching-entity/switch-id = 0
base-switch/switching-entities/switching-entity/temperature = 45
base-switch/switching-entities/switching-entity/switch-mode = 2
base-switch/switching-entities/switching-entity/lag-hash-fields = 8,9,5,3,10,4,2,1,7,6
base-switch/switching-entities/switching-entity/max-ecmp-entry-per-group = 64
base-switch/switching-entities/switching-entity/ecmp-hash-algorithm = 2
base-switch/switching-entities/switching-entity/acl-entry-max-priority = 2147483647
base-switch/switching-entities/switching-entity/default-mac-address = 90:bl:1c:f4:aa:81
base-switch/switching-entities/switching-entity/max-mtu = 9216

Example: 0s10-config-switch reconfigures the mac-age-timer value

$ 0s1l@-config-switch set switch-1d=0 mac-age-timer=1900

Success

$ 0s1l0-config-switch show

Key: 1.30.1966121.

base-switch/switching-entities/switch-count =1

Key: 1.30.1966121.1966082.1966085.
base-switch/switching-entities/switching-entity/bridge-table-size = 163840
base-switch/switching-entities/switching-entity/acl-table-max-priority = 11
base-switch/switching-entities/switching-entity/acl-entry-min-priority = 0
base-switch/switching-entities/switching-entity/acl-table-min-priority = 0
base-switch/switching-entities/switching-entity/ecmp-hash-fields = 8,9,5,3,10,4,2,1,7,6
base-switch/switching-entities/switching-entity/npu-identifiers = 0
base-switch/switching-entities/switching-entity/mac-age-timer = 1900
base-switch/switching-entities/switching-entity/lag-hash-algorithm = 2

SYSTEM ADMINISTRATION

36

SYSTEM DEFAULTS SYSTEM ADMINISTRATION

base-switch/switching-entities/switching-entity/switch-id = 0

base-switch/switching-entities/switching-entity/temperature = 54
base-switch/switching-entities/switching-entity/switch-mode = 2
base-switch/switching-entities/switching-entity/lag-hash-fields = 8,9,5,3,10,4,2,1,7,6

base-switch/switching-entities/switching-entity/max-ecmp-entry-per-group = 64
base-switch/switching-entities/switching-entity/ecmp-hash-algorithm = 2
base-switch/switching-entities/switching-entity/acl-entry-max-priority = 2147483647
base-switch/switching-entities/switching-entity/default-mac-address = 90:bl:1c:f4:a5:23
base-switch/switching-entities/switching-entity/max-mtu = 9216

0s10-show-transceivers Get the information about the transceiver type present.

Example : 0s10-show-transceivers summary displays the installed
transceivers

$ 0s10-show-transceivers summary

Front Panel Port Media Type Part Number Serial Number DellQualified
1 QSFP 40GBASE SR4 AFBR-79E4Z-D-FT1 7503832L005V Yes
2 QSFP 40GBASE SR4 AFBR-79EQDZ-FT1 482943B200GW Yes
3 QSFP 40GBASE CR4 3M 616750003 CNOFC6KV35D6864 Yes
4 Not Present
5 Not Present

32 Not Present

Default XML Configuration Files

é CAUTION: Modifying configuration files may affect the default system behaviour
and can have adverse effects on how the system behaves.

The following XML configuration files are stored in the /etc/opt/dell/0s10 directory.

base_qos_init.xml - Specifies the default QoS entries which are applied to the NPU
during system boot up as part of the systemd service.

base_port_physical_mapping_table.xml - Creates a mapping between physical
ports to the Linux interfaces. All the interfaces are created during system boot up.

37

SYSTEM DEFAULTS SYSTEM ADMINISTRATION

core_rotate_config.xml - Contains the core rotation configuration and is required by
the script that performs the core rotation as part of the CRON Daemon service.

dn_nas_default_init_config.xml - Contains default configuration of objects such as
Mirror, sFlow, VLAN created during system boot up as part of systemd service.

dn_nas_fanout_init_config.xml - Specifies the interfaces that are fanned out during
system boot up.

phy_media_default_npu_setting.xml - Specifies the transceiver information such as
transceiver type, speed etc.

mgmt-intf.xml - Specifies the management interface properties.

env_tmpctl_config.xml - Specifies parameters such as sensor names and temperature
control algorithm to the temperature control module.

init.xml - Specifies the NPU-related settings during system boot up such as physical
port properties, hashing alogorithms etc.

nas_master_list.xml - Lists all the ACL entries that are installed during boot up.

nas_detail_l1ist.xml - Specifies all the fields for the ACL entries present in the
nas_master_list.xml file.

38

Operations

Configure the Management Interface IP address

Configure the management interface IP address by editing the
/etc/network/interfaces file.

$ cat /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)
Include files from /etc/network/interfaces.d:
source-directory /etc/network/interfaces.d
auto etho
iface eth0 inet static
address 10.11.133.40
netmask 255.255.0.0
gateway 10.11.133.254
$ service networking restart

Secure the Management Interface

If you need to secure the management interface outside of SSH, use the iptables
command or rate limiting to limit access to the management interface.

Configure a Physical Port

Refer to Configure an Interface using Linux Commands in Networking Features for
information about how to configure physical port attributes.

Create User Accounts

Use standard Linux commands to manipulate user accounts. Examples of these commands
are: useradd, userdel, usermod and passwd. Configure access privileges with the

usermod command.

SYSTEM ADMINISTRATION

39

OPERATIONS SYSTEM ADMINISTRATION

Configure Time and Date

Use the date command or NTP to configure the time and date.

$ date -s "16 FEB 2016 13:12:00"
Tue Feb 16 13:12:00 UTC 2016

OS10 User Commands

o 0s10-show-version — Displays software and system information.

$ 0s10-show-version
DELL_Networking_0S10_Software_Version=10.0.0B.1368
NAME="0S10-Base"

LONGNAME="Dell Networking 0S10-Base"
VERSION="10.0.0B.1368"

PLATFORM="5S6000"

ARCHITECTURE="x86_64"

BUILT_FROM="S6000 Base only Blue Print 0.1.0"
BUILD_DATE="2016-02-11T12:00:00.912-08:00"
COPYRIGHT="Copyright (c) 1999-2016 by Dell Inc. All Rights Reserved."
SYSTEM_UPTIME="4 days, 18 hours, 3 minutes"

o 0510-1ogging — Enables logging. Log information appears in the syslog file
var/log/syslog file.

$ 0s10-logging

[show-1d] - displays ids of modules, log-levels and sub-
levels
[show] [all] | [module-id] {log-level} {log-sub-level} - displays current logging status for all/given

sub-system/given module and log-level/given
module, log-level and sub-log-level

[enable] [all] | [module-id] {log-level } {log-sub-level} - Enables logging status for all/given
sub-system/given module and log-level/given
module, log-level and sub-log-level

[disable] [all] | [module-id] {log-level } {log-sub-level} - Disables logging status for all/given
sub-system/given module and log-level/given
module, log-level and sub-log-level

NOTE : 1. For enable and disable log-level and log-sub-level is optional when using module-1id.
If only module-id is given it will enable/disable all log-levels and log-sub-levels for that

40

module-id, similarly if module-id and log-level is given, it will enable all log-sublevel for
the module-id and log-level

2. Instead of Module Ids now you can use the module name as a string as well, for eg.
0s10-logging enable L3_SERVICES

$ 0s10-logging enable all

o 0510-show-env - Displays system hardware information.

$ 0s10-show-env

Node
Vendor name:
Service tag:
PPID:
Platform name:
Product name:
Hardware version:
Number of MAC addresses:
Base MAC address:
Operating status:
Power supplies
Slot 1
Present:
Vendor name:
Service tag:
PPID:
Platform name:
Product name:

Hardware version:

Operating status:

Input:

Fan atirflow:
Slot 2

Present:

Vendor name:

Service tag:

PPID:

Platform name:

Product name:

Hardware version:

Operating status:

Input:
Fan airflow:

Fan trays

CN-08YWFG-28298-3AR-0087-A00

S6000

129

90:b1l:1c:f4:a8:30
Fail

Yes

CNOT9FNW282983AR020
CNOT9FNW282983AR020
Up
AC

Normal

Yes

Up
Invalid
Invalid

SYSTEM ADMINISTRATION

41

Fans

Slot 1

Slot 2

Slot 3

Fan

Fan

Fan

Fan

Fan

Present:

Vendor name:
Service tag: &310;
Platform name:
Product name:
Hardware version:
Operating status:
Fan airflow:

Present:

Vendor name:
Service tag:
PPID:

Platform name:
Product name:
Hardware version:
Operating status:
Fan airflow:

Present:

Vendor name:
Service tag:
PPID:

Platform name:
Product name:
Hardware version:
Operating status:
Fan airflow:

PSU slot 1
Operating status:
Speed (RPM):
Speed (%):

Fan tray slot 1
Operating status:
Speed (RPM):
Speed (%):

Fan tray slot 1
Operating status:
Speed (RPM):
Speed (%):

Fan tray slot 2
Operating status:
Speed (RPM):
Speed (%):

Fan tray slot 2
Operating status:
Speed (RPM):

OPERATIONS

Yes
PPID: CNOMGDH8282983AR028

CNOMGDH8282983AR028

Up
Reverse

Yes

CNOMGDH8282983AR028

CNOMGDH8282983AR028

Up
Reverse

Yes

CNOMGDH8282983AR028

CNOMGDH8282983AR028

Up
Reverse

Up
6720
37

Up
6916
38

Up
6803
37

Up
7188
39

Up
7175

SYSTEM ADMINISTRATION

42

Speed (%): 39
Fan 1, Fan tray slot 3

Operating status: Up

Speed (RPM): 7201

Speed (%): 40
Fan 2, Fan tray slot 3

Operating status: Up

Speed (RPM): 6698

Speed (%): 37

Temperature sensors

Sensor T2 temp sensor, Card slot 1
Operating status: Up
Temperature (degrees C): 33

Sensor system-NIC temp sensor, Card slot 1
Operating status: Up
Temperature (degrees C): 25

Sensor Ambient temp sensor, Card slot 1
Operating status: Up
Temperature (degrees C): 27

Sensor NPU temp sensor, Card slot 1
Operating status: Up
Temperature (degrees C): 46

LED Control

Use the 0s10-env-set-1led utility to set the state of a logical LED, as represented by PAS.

0 $ oslO@-env-set-led [--entity-type [psu | fantray | card]] [--slot slot] led-name [on | off]

OPERATIONS

SYSTEM ADMINISTRATION

43

SYSTEM ADMINISTRATION

Maintenance

Manage Linux Packages

Use the standard Linux utilities apt-get and dpkg to manage Linux packages. These
utilities provide a simple way to retrieve and install packages from multiple sources using
the Linux command line. Before installing a package, you must first configure the IP
address of the management port.

D NOTE: Ensure that the URL in the sources list (/etc/apt/sources.list) points to the
linux.dell.com repositories before installing a Linux package.

Dell recommends using the apt-get update command before installing a package.

Use the dpkg -s <packagename> command to check the installation status of a
particular package.

O ¢ dpkg -s <packagename>

Manage System Services

Check a Service Status

Use the service <servicename> status command to check the status of a service.
The command output indicates whether the service is up and running, or inactive. You can
also use the systemctl command to check the status of a service.

$ service snmpd status
snmpd.service - LSB: SNMP agents
Loaded: loaded (/etc/init.d/snmpd)
Active: active (running) since Wed 2016-02-17 02:16:06 UTC; 2h 39min ago
CGroup: /system.slice/snmpd.service
L-930 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux ...

44

MAINTENANCE SYSTEM ADMINISTRATION

Start, Stop, or Restart a Service

Use the service <servicename> {start|stop|restart} command to start, stop, or
restart a service.

$ service
$ service

snmpd stop
snmpd status

snmpd.service - LSB: SNMP agents

Loaded:
Active:
Process:

$ service
$ service

loaded (/etc/init.d/snmpd)
inactive (dead) since Wed 2016-02-17 05:00:27 UTC; 3s ago
3370 ExecStop=/etc/init.d/snmpd stop (code=exited, status=0/SUCCESS)

snmpd start
snmpd status

snmpd.service - LSB: SNMP agents

Loaded:
Active:
Process:
Process:
CGroup:

$ service
$ service

loaded (/etc/init.d/snmpd)

active (running) since Wed 2016-02-17 05:00:39 UTC; 1s ago

3370 ExecStop=/etc/init.d/snmpd stop (code=exited, status=0/SUCCESS)
3395 ExecStart=/etc/init.d/snmpd start (code=exited, status=0/SUCCESS)
/system.slice/snmpd.service

L3399 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux...

snmpd restart
snmpd status

snmpd.service - LSB: SNMP agents

Loaded:
Active:
Process:
Process:
CGroup:

loaded (/etc/init.d/snmpd)

active (running) since Wed 2016-02-17 05:00:46 UTC; 1s ago

3407 ExecStop=/etc/init.d/snmpd stop (code=exited, status=0/SUCCESS)
3412 ExecStart=/etc/init.d/snmpd start (code=exited, status=0/SUCCESS)
/system.slice/snmpd.service

L3416 /usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -g snmp -I -smux...

45

SYSTEM ADMINISTRATION

Upgrade OS10

Release images are ONIE installers that contain OS10. You can install an OS10 image by
using the 0s10-image script. The script validates the image and extracts it into the standby
partition.

0OS10 supports active and standby partitions. You can switch between these partitions.

é CAUTION: When you upgrade to a new OS10 version, existing files are erased or
overwritten in the standby partition. You must manually move configuration files
(such as interfaces and hostname) to a persistent location before you upgrade.

Upgrade the OS10 Image

1. Back up the active configuration.

o Copy active files to a persistent location.

$ cp /etc/snmp/snmpd.conf /config/

o Verify that all necessary files have been successfully copied.

$ /config# 1ls

etc lost+found snmpd.conf

2. Download the new OS10 image.

D NOTE: You must configure the IP address of the [l UCCHREHaEg0cfore you

download an image. The image files are in .bin format. Ensure there is enough disk
space before downloading the image. Refer to the OS10 Release Notes for
information regarding disk space.

o Download the software image from the location provided by Dell using the wget
command.

$ wget <http://URL/........ /0510.bin>

46

UPGRADE OS10 SYSTEM ADMINISTRATION

o Verify that the image has downloaded successfully.

$ s
0S10.bin

3. Install the new OS10 image.

o Install the image in the standby partition using the 0s10-1image script with the -1
option, followed by the image path.

D [NOTE: The new image is always installed in the standby partition.]

$ 0s1l0-image -1 0S10.bin

o Once the installation is complete, check the new image version by using the 0510-
image script with the -g option. The system displays the software image version in the
active and standby partitions, and indicates the partition to be used during the next reboot.
In this example, the new image (10.0.0.1B) is installed in the standby partition.

$ 0s1l0-image -g
Active image version 10.0.0B

Standby image version 10.0.1B

Active image will be loaded for next reboot $

4. Configure the next-boot partition and reboot.

NOTE: You can change the next-boot partition from active to standby or from
standby to active at any time. To cancel the change, use the 0s10-1image script
with the =C option.

o Configure the next-boot image to the image in the standby partition by using the 0510-
image script with the -s option and including the partition name. When the system
reboots, the old standby partition becomes the new active partition.

47

UPGRADE OS10 SYSTEM ADMINISTRATION

$ 0sl0-image -s standby

Success setting boot image to standby

o You must reboot the system for the new OS10 version to take effect.

$ reboot

5. Restore the saved configuration files.

o Copy the saved files from the persistent location into the active partition.

$ cp /config/snmpd.conf /etc/snmp/snmpd.conf

o Verify that all files have been copied successfully.

$ 1s

snmp.conf snmpd.conf

Boot to different ONIE Modes using os10-image

Use the 0510-1mage script with the -0 option to boot into ONIE install, uninstall or
rescue modes.

o To change the next boot to ONIE install mode and verify the change:

$ 0sl0-image -o install

WARNING: 0S install requested

WARNING: This will erase all data

Are you sure (y/N)? y

Success setting boot mode to 0S install

Reboot required to take effect

$ 0s1l0-image -g

Active image version 10.0.0B.1400

48

Standby image version 10.0.0B.1401

0S install mode will be loaded on next reboot

o To change the next boot to ONIE uninstall mode and verify the change:

$ 0sl@-image -0 uninstall

WARNING: 0S uninstall requested

WARNING: This will erase all data

Are you sure (y/N)? vy

Success setting boot mode to 0S uninstall

Reboot required to take effect

$ 0s10-image -g
Active image version 10.0.0B.1400
Standby image version 1.0.0.1401

0S uninstall mode will be loaded on next reboot.

o To change the next boot to be ONIE rescue mode and verify the change:

$ 0sl0-image -0 rescue

WARNING: Rescue boot requested

Are you sure (y/N)? vy

Success setting boot mode to Rescue boot

Reboot required to take effect

$ 0s1l0-image -g
Active image version 10.0.0B.1400
Standby image version 10.0.0B.1401

0S rescue mode will be loaded on next reboot

UPGRADE OS10

SYSTEM ADMINISTRATION

49

o To cancel the next boot to ONIE mode and verify the change:

$ 0sl0-image -c

Cancelled pending uninstall mode at next reboot

$ 0sl0-image -g
Active image version 10.0.0B.1400
Standby image version 10.0.0B.1401

Active image will be loaded on next reboot

UPGRADE OS10

SYSTEM ADMINISTRATION

50

SYSTEM ADMINISTRATION

Use Case: Orchestration Using Puppet

This use case describes how to use Puppet to configure OS10 systems. In this example,
each system is connected to a server.

Figure 8 — Puppet Use Case

Puppet
ENET
Management
Network
eth -~ T~ L etho
Rl el101-019-0 el101-019
1 19.0.0.0/24 2
1| el01-020-0 .1]el101-020-0
20.0.0.0/24 21.0.0.0/24
2| ethl 2] ethl

Prerequisites

1. Install the Puppet master on an external server and configure it to manage systems
running OS10 by following the instructions at www.puppetlabs.com.

2. Install and configure the Puppet agent on both OS10 systems by following the
instructions on www.puppetlabs.com.

51

http://www.puppetlabs.com/
http://www.puppetlabs.com/

USE CASE: ORCHESTRATION USING PUPPET SYSTEM ADMINISTRATION

3. Verify if the Puppet master can communicate with the Puppet agents through the
management network.

Example: Puppet Configuration

The following code shows a sample Puppet manifest used to manage the two OS10
systems in the example.

node 'Rl.dell.com' {
$int_enabled = true
$int_loopback = '2.2.2.2'
$int_layer3 = {
el01-019-0 => {'int'=>'el01-019-0', 'address' => '19.0.0.1', 'netmask' => '255.255.255.0',
‘cidr_netmask' => 24},
el01-020-0 => {'int'=>'el01-020-0', 'address' => '20.0.0.1', 'netmask' => '255.255.255.0',
‘cidr_netmask' => 24},

}
$bgp = {

myasn => 65000,

peergroupv4 => [{ name => 'R2', asn => 65000, peers => ['19.0.0.2','20.0.0.2"'] }]
}

include 1ibgp::switch

node 'R2.dell.com' {
$int_enabled = true
$int_loopback = '3.3.3.3'
$int_layer3 = {
€l01-019-0 => { 'int'=> 'el01-019-0', 'address' => '19.0.0.2', 'netmask' => '255.255.255.0',
‘cidr_netmask' => 24 },
el01-020-0 => { 'int'=> ' el01-020-0','address' => '21.0.0.1', 'netmask' => '255.255.255.0',
‘cidr_netmask' => 24 },
}

$bgp = {

myasn => 65000,

peergroupv4 => [{ name => 'R1', asn => 65000, peers => ['19.0.0.1','20.0.0.1"'] }]
}
include 1ibgp::switch

52

USE CASE: ORCHESTRATION USING PUPPET

The following code shows the ibgp::switch and ibgp::quagga class definitions.

class 1ibgp::switc
include ibgp::

class 1ibgp::quagg

service { 'qua
ensure
hasstatus
enable

}

file { '/etc/q
owner =>
group =>
source =>

notify =>

file { '/etc/q

owner =>
group =>
mode =>
content =>

notify =>

h {
quagga

a {

gga':

=> running,
=> false,
=> true,

uagga/daemons ' :

quagga,

quagga,
'puppet:///modules/ibgp/quagga_daemons',
Service['quagga’l

uagga/Quagga.conf':

root,

quaggavty,

'0644 ",

template('ibgp/Quagga.conf.erb'),
Service['quagga'l

SYSTEM ADMINISTRATION

53

USE CASE: ORCHESTRATION USING PUPPET

The Quagga.conf.erb file is shown here:

! This file is managed by Puppet

hostname zebra

log file /var/log/quagga/zebra.log

hostname ospfd

log file /var/log/quagga/ospfd.log

log timestamp precision 6

hostname bgpd

log file /var/log/quagga/bgpd.log

!

password cn321

enable password cn321

!

<% @int_layer3.each_pair do |layer3, options| -%>
interface <%= options["int"] %>

ip address <%=options["address"]%>/<%=options["cidr_netmask"] %>
no shutdown

<% end -%>

route-id <%= @int_loopback %>
<% if @bgp -%>

router bgp <%= @bgp["myasn"] %>

maximum-paths ibgp 4

bgp router-id <%= int_loopback %>

bgp log-neighbor-changes

network <%= @int_loopback %>/32
<% @int_bridges.each_pair do |bridge, options| -%> network <%= options["address"] %>/<%=
options["cidr_netmask"] %>
<% end -%>
<% @bgp["peergroupv4"].each do |peergroup| -%>

neighbor <%= peergroup["name"] %> peer-group

neighbor <%= peergroup["name"] %> remote-as <%= peergroup["asn"] %>

<

o0

if peergroup["name"]["routereflectorclient"] -%>
neighbor <% peergroup["name"] %> route-reflector-client

<

o0

end -%>

A
o0

peergroup["peers"].each do |peer| -%>
neighbor <%= peer %> peer-group <%= peergroup["name"] %>
end -%>

A
o0

end -%>

A
o0

end -%>

- A
A

A
o0

if @int_unnumbered -%>

<

o0

@int_unnumbbers.each do |interface| -%>
no passive-interface <%= interface %>
<% end -%>

network <%= @int_loopback %>/32 area 0.0.0.0

SYSTEM ADMINISTRATION

54

<% if @hostnetranges and @is_leaf -%>

<% @hostnetranges.each do |hostnetrange| -%>
network <%= hostnetrange %> area 0.0.0.0

<% end -%>

<% end

-%> <% end -%>

The quagga_daemons file is shown here:

zebra=yes
bgpd=yes
ospfd=no
ospf6d=no
ripd=no
ripngd=no
isisd=no
babeld=no

USE CASE: ORCHESTRATION USING PUPPET

SYSTEM ADMINISTRATION

55

Use Case: Monitoring Using Nagios

[

Nagios is an open source monitoring system which is used to monitor network services,
applications. and processes. Nagios sends notifications about critical errors or failures on
an OS10 system.

Nagios provides remote monitoring using the Nagios Remote Plugin Executor (NRPE),
which communicates with the check_nrpe plugin in the Nagios server.

This use case describes how to set up a system running OS10 as a Nagios client.

NOTE: The use case assumes that you have already installed the Nagios server and
it is running in an external host. For more information about Nagios, go to
WWW.Nagios.org.

Configure an OS10 System as a Nagios Client

To set up a system running OS10 as a Nagios client, you must install the Nagios NRPE
server and Nagios plugins. The Nagios NRPE server is the agent which allows remote
system monitoring.

1. Install the Nagios NRPE server on an OS10 system.

$ apt-get install nagios-nrpe-serve

2. Edit the allowed hosts to include the Nagios server IP address.

Once the Nagios NRPE server is successfully installed, edit the allowed hosts field in the
/etc/nagios/nrpe.cfg file and include the Nagios server IP address.

cat nrpe.cfg

ALLOWED HOST ADDRESSES

This is an optional comma-delimited list of IP address or hostnames

that are allowed to talk to the NRPE daemon. Network addresses with a bit mask

(i.e. 192.168.1.0/24) are also supported. Hostname wildcards are not currently supported.
Note: The daemon only does rudimentary checking of the client's IP

address. I would highly recommend adding entries in your /etc/hosts.allow

O H O H O ¥ B

file to allow only the specified host to connect to the port

SYSTEM ADMINISTRATION

56

http://www.nagios.org/

USE CASE: MONITORING USING NAGIOS SYSTEM ADMINISTRATION

you are running this daemon on.

#

NOTE: This option is ignored if NRPE is running under either inetd or xinetd

3. Restart the Nagios NRPE server on the OS10 system. You must restart the Nagios NRPE
server on the system for the allowed host changes to take effect.

$ service nagios-nrpe-server restart
$ service nagios-nrpe-server status

nagios-nrpe-server.service - LSB: Start/Stop the Nagios remote plugin execution daemon

Loaded: loaded (/etc/init.d/nagios-nrpe-server)

Active: active (running) since Wed 2016-02-17 22:27:57 UTC; 4s ago

Process: 8340 ExecStop=/etc/init.d/nagios-nrpe-server stop (code=exited, status=0/SUCCESS)

Process: 8345 ExecStart=/etc/init.d/nagios-nrpe-server start (code=exited, status=0/SUCCESS)

CGroup: /system.slice/nagios-nrpe-server.service

L8348 /usr/sbin/nrpe -c /etc/nagios/nrpe.cfg -d

4. Install Nagios plugins.
Nagios plugins are extensions to the Nagios Core (Nagios Core is the
daemon running on the Nagios server). A plugin monitors the services
and resources on an OS10 system and returns the results to the Nagios
server. For more information about Nagios plugins, go to
www.nagios.org. To install the required Nagios plugins:

$ apt-get install nagios-plugin

Configure a Nagios Server to Monitor an OS10 System

On a Nagios server, you must configure the OS10 system and the services which you want

to be monitored.

57

http://www.nagios.org/

USE CASE: MONITORING USING NAGIOS

1. Add the OS10 system for Nagios server monitoring.

Update the clients.cfg file on the Nagios server with the OS10 system IP address to
enable monitoring:

define host{

use linux-server
host_name Dell_0S10
alias client
address 10.x.x.X

2. Enter the commands to be used by Nagios services to monitor an OS10 system.

Enter check commands in the commands. cfg file on the Nagios server that you can
reference in host, service, and contact definitions:

define command{

command_name check_nrpe
command_1line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

define command{

command_name check_remote_disk
command_1line $USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$
}

define command{

command_name check_remote_procs
command_1line $USER1$/check_procs -w $ARG1l$ -c $ARG2$ -s $ARG3$
}

SYSTEM ADMINISTRATION

58

USE CASE: MONITORING USING NAGIOS

3. Configure the services to be monitored on an OS10 system.

Edit the clients.cfg file on the Nagios server to configure the Nagios services to be

monitored on an OS10 system with the commands specified in Step 2. The monitoring

results of the Nagios services are returned to the Nagios core.

define service{
use
host_name
service_description
check_command

I

define service{
use
host_name
service_description
check_command

}

generic-service
Dell_0S10
Current Processes

check_nrpe!check_total_procs

generic-service
Dell_0S10
Current Disk Space

check_nrpe!check_remote_disk

SYSTEM ADMINISTRATION

59

Networking Features

NETWORKING FEATURES

Overview

OS10 supports the ability to model and configure various networking features in the
Network Processing Unit (NPU) through two methods: Linux commands and CPS APIs. This
section describes how to program networking features using Linux commands. Refer to
Introduction to CPS for a description of the CPS framework.

Networking functionality in OS10 is handled by the Network Adaptation Service, which
listens to netlink events for Layer 2 and Layer 3 configurations, and programs the NPU.

61

OVERVIEW | NETWORKING FEATURES

Supported Networking Features

Networking Feature Configure with Linux Configure
Commands/Open Source with CPS API
Application

Interfaces

Physical Yes Yes

Link Aggregation (LAG) Yes (Bond) Yes

VLAN Yes Yes

Fanout (4x10QG) No Yes (script)

Layer 2 Bridging

LLDP Yes No
MAC address table No Yes
STP Yes Yes
VLAN Yes Yes

Layer 3 Routing

ECMPv4 Yes Yes
ECMPv6 Yes Yes
IPv4 Yes Yes
IPv6 Yes Yes
Unicast routing Yes Yes
QoS No Yes
ACLs No Yes
Monitoring

Mirroring No Yes
sFlow No Yes
Port and VLAN statistics No Yes

62

NETWORKING FEATURES

Interfaces
This section describes how to create and manage physical and virtual interfaces. Physical
port interfaces refer to ports on the NPU and do not include the management port.

To manage OS10 interfaces, applications access physical and virtual ports using the Linux
interfaces to which they are mapped. OS10 allocates an ifindex for each Linux interface.
This is used in the CPS APIs to refer to the interface.

Mapping Physical Ports to Linux Interfaces

In OS10, each physical port is mapped to an internal Linux interface in the format eNSS-
PPP-F.vvvv, where:

o e means that it is an Ethernet port.

[o]

N is the node ID and is always set to 1.

o

SS is the slot number and is always set to 01.

o

PPP is the port number (1-999).

[o]

F is the number of a 4x10G fanout port (0-9).
o vvwv is the VLAN ID number (0-4095).
For example, the e101-031-0 interface refers to physical port 31without a fanout; e101-

005-4 identifies fanout port 4 on physical port 5; €101-001-2 identifies fanout port 2 on
physical port 1.

Linux interfaces are created during OS10 bootup and represent the physical ports on the

NPU in a one-to-one mapping. The mapping of Linux interfaces to physical port is shown
here:

63

INTERFACES NETWORKING FEATURES

Linux OS

Linux “tap” , \ 4
Interfaces e101:001—0 . el01-K-0

e101-032-0

Physical Ports

The internal Linux interfaces allow applications to configure physical port parameters, such
as MTU, port state, and link state. Linux interfaces also provide packet /O functionality and
support applications in control plane transmission (sending and receiving).

Mapping the CPU Port to a Linux Interface

OS10 creates a dedicated Linux interface (npu@) that maps to the CPU port. You can use
this to configure CoPP queue rates by specifying npu® as port in the QoS CPS API.

Physical Ports

By default, the status of a physical port is administratively down. Each interface has its own
MAC address that is reserved and derived from the system MAC address.

Fanout (4x10Q) Interfaces

Using a breakout cable, you can split a 40GbE physical port into four (quad) 10SFP+ ports
(if supported by the NPU). Each 4x10G port is represented by a Linux interface with a fanout
field in the interface name that identifies a 4x10G port.

64

INTERFACES NETWORKING FEATURES

In OS10, fanout interfaces are configured by using the 0s10-config-fanout script. This
script allows you to fanout a 40GbE port or disable the fanned-out 4x10G configuration
and return the physical port to 40G operation.

Script syntax: 0s10-config-fanout [linux-interface] [true|false]

o true enables 4x10G fanout on a 40GbE port.

o false disables 4x10G fanout on a 40GbE port.

$0s10-config-fanout el01-005-0 true

Key: 1.20.1310766.1310754.1310755.1310756.1310757.
base-port/physical/unit-id = 0
base-port/physical/phy-media = 1
base-port/physical/front-panel-number = 0
base-port/physical/loopback = 0
base-port/physical/hardware-port-id = 45
base-port/physical/npu-id = 0
base-port/physical/fanout-mode = 4

base-port/physical/breakout-capabilities = 4,2
base-port/physical/port-id = 45
base-port/physical/slot-id = 0

Deleting.. €101-005-0
Completed...

Creating interface el01-005-1
Creating interface el01-005-2
Creating interface el01-005-3
Creating interface el01-005-4
Successfully created interfaces...

Configure an Interface using Linux commands

Use standard Linux commands (eg: ip route) to configure physical interface parameters.

Set the MTU

$ip link set dev el01-002-0 mtu 1400
$ip link show el01-002-0
17: el01-002-0: <BROADCAST,MULTICAST> mtu 1400 qdisc noop state DOWN mode DEFAULT group default gqlen 500

link/ether 90:bl:1c:f4:ab:f2 brd ff:ff:ff:ff:ff:ff
alias NAS## 0 29

65

INTERFACES NETWORKING FEATURES

Configure Layer 3 IPv4 and IPv6 addresses

$ip -6 addr add 2000::1/64 dev el01-001-0
$ip addr add 10.1.1.1/24 dev e1l01-001-0
$ip addr show el01-001-0

16: e101-001-0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 500
link/ether 90:bl:1c:f4:ab:ee brd ff:ff:ff:ff:ff:ff
inet 10.1.1.1/24 scope global el01-001-0
valid_1ft forever preferred_lft forever
inet6 2000::1/64 scope global tentative
valid_1ft forever preferred_lft forever

Refer to CPS Application Examples for information about programming using the CPS API.

LAG Ports (Port Channel)/Bond Interfaces

A port channel/link aggregation group (LAGs - IEEE 802.3ad) corresponds to a Linux bond
interface, which aggregates multiple physical interfaces into one virtual interface for load-
balancing and link fail-overs.

A LAG and a bond interface both refer to a link aggregation group. The term LAG is used to
refer to an NPU configuration; the term bond interface refers to a Linux configuration.

D (NOTE: A Linux bond interface must be up before you add member ports.]

Create a Bond Interface (LAG)

$ip link add bondl type bond mode balance-rr miimon 50

Bring up a Bond Interface

$ip link set dev bondl up

$ip link show|grep bondl

50: bondl: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 gdisc noqueue state UNKNOWN mode DEFAULT group
default

66

INTERFACES NETWORKING FEATURES

Add a Port to a Bond Interface

$ip link set el01-010-0 master bondl

$ip link show | grep bondl

12: el01-010-0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bondl state UP mode DEFAULT
group default gqlen 500

50: bondl: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 gqdisc noqueue state UP mode DEFAULT group default
$

Configure an IP address on a bond interface

$ip addr add 20.1.1.1/24 dev bondl

$ifconfig bondl

bond1l Link encap:Ethernet HWaddr 90:bl:1c:f4:9d:60
inet addr:20.1.1.1 Bcast:0.0.0.0 Mask:255.255.255.0
inet6 addr: fe80::8480:fcff:fe2f:d93b/64 Scope:Link
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
RX packets:66 errors:0 dropped:1 overruns:0 frame:0
TX packets:77 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:4224 (4.1 KiB) TX bytes:15648 (15.2 KiB)

Delete a port from a bond interface

$ip link set el01-010-0 nomaster

$ip link show | grep bondl

49: bondl: <NO-CARRIER,BROADCAST,MULTICAST,MASTER,UP> mtu 1500 qdisc noqueue state DOWN mode DEFAULT group
default

Delete a bond interface

$ip link delete bondl
$ip link show | grep bondl

For more information about how to use Linux bond interfaces, go to
https://www.kernel.org/doc/Documentation/networking/bonding.txt.

Refer to CPS Application Examples for information about programming using the CPS API.

67

https://www.kernel.org/doc/Documentation/networking/bonding.txt

INTERFACES NETWORKING FEATURES

Virtual LAN (VLAN)/Bridge Interfaces

VLANs define broadcast domains in a Layer 2 network. In Linux, each VLAN is modeled as a
separate Linux bridge instance. Refer to VLAN Bridging for information on creating the
bridge instance and how to add/delete member ports.

Each Bridge instance is exposed as a Linux interface. A Linux bridge interface uses the MAC
address from the first port added as its member port. The bridge interface is operationally
up when at least one of its member interfaces is operationally up. You can assign IP
addresses to multiple Bridge interfaces create an inter-VLAN routing domain.

Configure an IP address on a Bridge Interface

$brctl show

bridge name bridge id STP enabled interfaces
br100 8000.90b11cf49d3c no €101-001-0.100

$ip addr add 100.1.1.1 dev brl00
$ifconfig bri00
br100 Link encap:Ethernet HWaddr 90:b1l:1c:f4:9d:3c
inet addr:100.1.1.1 Bcast:0.0.0.0 Mask:255.255.255.255
inet6 addr: fe80::92bl:1cff:fef4:9d3c/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:7 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:738 (738.0 B)

68

Layer 2 Features

This section describes OS10 support for configuring Layer 2 features using Linux
commands, including VLAN Bridging, Spanning Tree and LLDP. You can also write
applications that access CPS APIs to configure Layer 2 features.

VLAN Bridging

0OS10 supports Layer 2 VLAN Bridging by modeling each VLAN as a separate Linux Bridge
instance. Each physical or LAG port that is a VLAN member is modeled by adding its
corresponding Linux interface to the Bridge Instance.

This section describes how to configure Layer 2 bridging features using Linux bridging
commands. Refer to the CPS Application Examples for examples of how to create a VLAN
and assign members using the CPS API.

Create a VLAN and Add a Tagged Member

Linux OS

br100
VLAN 100

I €101-001-0.100
I (tagged)
1

.
v
! €101-001-0

! (Linux Interface)

NPU

T Physical Port tagged
member of VLAN 100

Creating a VLAN using the Linux Bridge command is a two-step process: create the bridge
instance, then add a tagged member to the new bridge instance. OS10 determines the
VLAN ID associated with each bridge instance using the VLAN ID of the first tagged

NETWORKING FEATURES

69

LAYER 2 FEATURES NETWORKING FEATURES

member port assigned to the bridge instance. The VLAN is created only after you add the
first tagged member to the bridge.

1. Create a Bridge Instance for the VLAN.

$brctl addbr brl00

In the example, br100 is the name of the Bridge Instance used to model a VLAN. Note that
0OS10 does not derive the VLAN ID from the name.

2. Add a tagged port to the VLAN.

Ensure that the Linux interface mapped to the port being added to the Vlan does not have
an IP address.

$ifconfig e101-001-0

el01-001-0 Link encap:Ethernet HWaddr 90:bl:1c:f4:9d:3c
inet addr:1.1.1.1 Bcast:1.1.1.255 Mask:255.255.255.0
BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:2221 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:0 (0.0 B) TX bytes:523446 (511.1 KiB)

If the interface already has an IP address, remove the IP address before continuing to the
next step.

$ip addr flush dev el01-001-0

3. Create a tagged virtual link

A Linux interface can only belong to a single bridge instance. To add the same interface to
multiple VLAN domains, create a separate Linux virtual link for each VLAN in which the port
is a member.

Enter the ip link add command to create a virtual tagged link for the €101-001-0
Linux interface in VLAN 100. The . 100 suffix used in the Linux interface name indicates
that the interface is VLAN tagged.

$ip link add link e101-001-0 name el01-001-0.100 type vlan id 100

70

LAYER 2 FEATURES

4. Add the tagged virtual link to the VLAN.

Enter the brctl addif command to add the newly created virtual link to the Linux bridge
instance created in Step 1. OS10 creates the VLAN and adds the physical port mapped to
the e101-001-0 Linux interface as a tagged member of the VLAN.

$brctl addif br100 el01-001-0.100

5. Verify the VLAN configuration.

$brctl show
bridge name bridge id STP enabled interfaces
br100 8000.90b11cf49d3c no el01-001-0.100

Add an Untagged Member to a VLAN

You can add a Linux interface directly to a Linux bridge without creating a separate VLAN-
specific virtual link. Note that in this example the interface does not have the . 100 suffix,
which means the interface is VLAN untagged.

$brctl addif br100 el01-002-0

A physical port can be an untagged member of only a single VLAN. However, a physical
port can be added as a tagged member of multiple VLANSs.

$brctl show

bridge name bridge id STP enabled interfaces
br100 8000.90b11cf49d3c no €101-001-0.100
€101-002-0

NETWORKING FEATURES

71

LAYER 2 FEATURES NETWORKING FEATURES

Add a Port to Multiple VLAN Domains

To add the same port to a second VLAN, create another VLAN tagged virtual link on the
€101-001-0 interface and add the new virtual link to the Linux bridge instance.

$brctl addbr br200

$ip link add link e1l01-001-0 name el01-001-0.200 type vlan id 200

$brctl addif br200 e101-001-0.200

NOTE: All the interfaces in a bridging instance must be either untagged or have the

same tagged VLAN ID. For example, e101-001-0.100 and €101-002-0.200 should
not be placed in the same Linux bridge instance.

$brctl show

bridge name bridge id STP enabled interfaces

br1o0 8000.90b11cf49d3c no €101-001-0.100
€101-002-0

br200 8000.90b11cf49d3c no €101-001-0.200

Add a Linux Bond Interface to a VLAN Domain

In the following command, bond1 is a Linux interface that maps to a LAG port in the NPU.

Use this command to add the LAG port to the VLAN associated with the Bridge instance in
the NPU.

$ip link add link bondl name bondl.200 type vlan id 200

$brctl addif br200 bondl.200

The following illustration shows the result of these commands.

72

Figure 11 — Result of all VLAN Configurations

LAYER 2 FEATURES |

br100

VLAN 100

| (tagged)

€101-001-0.200

€101-001-0.100

Linux OS

(tagged)

br200

VLAN 200

€101-002-0 | N L | bond1.200
(untagged) | ‘\ ,/ ; (tagged)
. 4 1
. 4
~ 1
¢
e101-002-0 e101-001-0 bond1l 1

(Linux interface) (Linux interface)

(Linux interface) I

NPU

RN I T G-

’
1
|
1
L]
1
1
1
1
|

Physical
Port 2

Remove a VLAN Member from a VLAN

Physical

Port 1

LAG Port

To remove a port member from a VLAN, remove the member from the bridging instance.

NETWORKING FEATURES

$brctl delif br200 e101-001-0.100

Delete a VLAN

Delete a VLAN by deleting the bridging instance.

$brctl delbr br200

73

LAYER 2 FEATURES NETWORKING FEATURES

Spanning Tree
0OS10 supports Spanning Tree provisioning using the CPS API, including:

o Create a new Spanning Tree group

o Add VLANSs to a Spanning Tree group

o Remove VLANs from a Spanning Tree group

o Change the STP state of ports mapped to a Spanning Tree group
o Delete a Spanning Tree group

This enables OS10 users to run any of the Spanning Tree protocols such as STP, RSTP,
PVST, and MSTP.

Refer to the dell-base-stp.yang for the STP parameters supported in OS10. Refer to
Programmability for information on how to configure OS10 using YANG models and the
CPS API.

Linux STP does not support the concept of Spanning Tree Group. In Linux, Spanning Tree
can be enabled independently in each Bridge instance. OS10 internally treats this as a
separate Spanning Tree Group for each VLAN.

Configure Spanning Tree in a Linux Bridge

To enable a Spanning Tree protocol in a Linux bridge:

1. Create a VLAN in the Linux bridge (see VLAN Bridging).
2. Enable STP on the bridge.

$brctl stp brl00 on
$brctl show brl00
bridge name bridge id STP enabled interfaces

br100 8000.90b11cf4a918 yes €101-001-0.100

$brctl showstp brl00

br100

bridge id 8000.90b11cf4a918

designated root 8000.90b11cf4a918

root port 0 path cost 0

74

max age
hello time

forward delay

ageing time

hello timer

topology change timer

flags

el01-001-0.100 (1)
port id

designated root
designated bridge
designated port
designated cost

flags

20.00
2.00
15.00
300.00
0.00
0.00

8001
8000.90b11cf4a918
8000.90b11cf4a918
8001

0

Disable STP on a Linux Bridge

$brctl stp brl00 off
$brctl show brl00
bridge name
br100

bridge id
8000.90b11cf4a918

STP enabled

bridge max age
bridge hello time
bridge forward delay

ten timer

gc timer

state

path cost

message age timer
forward delay timer

hold timer

interfaces

€101-001-0.100

20.00
2.00
15.00

0.00
0.00

disabled
100
0.00
0.00
0.00

LAYER 2 FEATURES

In the preceding example, when STP is enabled in a Linux bridge which has tagged VLAN
Interfaces, OS10 creates a new Spanning Tree group and associates the VLAN ID of the
bridge with the newly created Spanning Tree group. When you delete a bridge from the

Linux kernel, the corresponding Spanning Tree group is deleted.

p
NOTE: If a Linux bridge contains only untagged ports, OS10 does not support the
Spanning Tree Protocol on the bridge.

-

CAUTION: OS10 does not support RSTP, MSTP, and RPVST in a Linux bridge due to
a Linux kernel limitation. STP is not supported on a bridge which has multiple
member interfaces with different VLAN IDs.

NETWORKING FEATURES

75

LAYER 2 FEATURES NETWORKING FEATURES

LLDP

0OS10 supports the operation of the Linux LLDP daemon on Linux interfaces. The following
is a sample output from the Linux LLDP daemon.

$1ldpcli show neighbors

Interface: el01-003-0, via: LLDP, RID: 3, Time: 0 day, 01:17:18
Chassis:
ChassisID: mac 90:bl:1c:f4:9d:3b
SysName: 0S10

Capability: Repeater, on
Capability: Bridge, on
Capability: Router, on

Port:

PortID: ifalias ethernetl/1/3

MAC Address Forwarding Database (FDB)

OS10 provides a CPS data model for configuring and managing the MAC forwarding
database using the CPS API. Refer to CPS Application Examples for an example of how to
access/configure the MAC Address FDB.

0OS10 does not support Linux commands to configure the MAC Address FDB.

76

NETWORKING FEATURES

Layer 3 Features

Overview

This section describes the configuration of Layer 3 unicast routing to provision the NPU.
OS10 supports unicast routing over Linux interfaces using routes configured in the Linux
kernel routing table. Applications can also use the CPS API to configure routes.

The OS10 routing subsystem manages the forwarding information base. The routing
subsystem programs routes with resolved next hops using ARP/Neighbor table entries
received from the Linux kernel.

Figure 12 — OS10 Routing Subsystem

Packet I/O

/
Netlink Module ACL/QoS

SAl

SDK

—
v

Netlink Interface
ROUting febie

Linux Kernel

NPU

77

LAYER 3 FEATURES NETWORKING FEATURES

[Pv4 Routing

Use the ip route command to create a route. A routing table entry consists of a
destination IP address prefix and at least one next-hop address or a Linux interface.

Configure a Static Route

$ip route show

default dev eth® scope link

3.3.3.0/24 dev el01-003-0 proto kernel scope link src 3.3.3.1
$ip route add 11.10.10.0/24 dev el01-003-0

$ip route show

default dev eth® scope link

3.3.3.0/24 dev el01-003-0 proto kernel scope link src 3.3.3.1
11.10.10.0/24 dev el01-003-0 scope link

Configure a Static Route with a Next Hop

$ip route add 30.30.30.0/24 via 3.3.3.3

$ip route show

default dev eth® scope link

3.3.3.0/24 dev el01-003-0 proto kernel scope link src 3.3.3.1
30.30.30.0/24 via 3.3.3.3 dev el01-003-0

Delete a Static Route

$ip route delete 11.10.10.0/24

$ip route show

default dev eth® scope link

3.3.3.0/24 dev el01-003-0 proto kernel scope link src 3.3.3.1
$

To add a persistent static route that is saved after a reboot, configure the route in the
/etc/network/interfaces configuration file.

For information about how to configure Linux routing, see http://linux-ip.net/html/tools-
ip-route.html.

78

http://linux-ip.net/html/tools-ip-route.html

LAYER 3 FEATURES NETWORKING FEATURES

IPv6 Routing

Use the ip -6 option to add, delete, or modify the IPv6 routes and nexthops in the IPv6
routing table.

$ip -6 route add 5::5/64 via 3::3

$ip -6 route show

3::/64 dev el01-003-0 proto kernel metric 256
5::/64 via 3::3 dev el01-003-0 metric 1024

Use the ip monitor command to debug and troubleshoot IPv6 routing.

$ip monitor

30.30.30.0/24 via 3.3.3.3 dev e00-3

3::/64 via 3::3 dev el01-003-0 metric 1024
5::/64 via 3::3 dev el01-003-0 metric 1024

ARP and Neighbor Tables

The ARP and Neighbor tables entries are used to resolve the adjacencies using the host IP
address-to-MAC address binding. In Linux, the ARP table is used for IPv4 routing; the
Neighbor table is used for IPv6 routing.

Use the arp or the ip neighbor command to configure and display kernel ARP table

entries.
$arp -n
Address HwWtype HWaddress Flags Mask Iface
3.3.3.4 ether 90:bl:1c:f4:9d:44 C e101-003-0

Use the ip -6 neighbor command to configure and display the IPv6 neighbor table.

79

LAYER 3 FEATURES | NETWORKING FEATURES

Figure 13 — Simple IPv6 Routing Topology

el101-003-0 e101-003-0
3::1/64 3::3/64

R1 R2

Configure an IPv6 Address

$ifconfig e101-003-0 inet6 add 3::1/64

$ifconfig e101-003-0

el01-003-0 Link encap:Ethernet HWaddr 90:bl:1c:f4:a8:ea
inet addr:3.3.3.1 Bcast:3.3.3.255 Mask:255.255.255.0
inet6 addr: 3::1/64 Scope:Global
inet6 addr: fe80::92bl:1cff:fefd4:a8ea/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:532 errors:0 dropped:0 overruns:0 frame:0
TX packets:173 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:500
RX bytes:46451 (45.3 KiB) TX bytes:25650 (25.0 KiB)

Display the Neighbor Table

$ip -6 neighbor show
3::3 dev el01-003-0 1laddr 90:bl:1c:f4:9d:44 router REACHABLE

Ping an IPv6 Neighbor and Verify Using tcpdump

$ping6 3::3

PING 3::3(3::3) 56 data bytes

64 bytes from 3::3: icmp_seq=1 ttl=64 time=1.74 ms

$tcpdump -1 e101-003-0

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on el1l01-003-0, link-type EN1OMB (Ethernet), capture size 262144 bytes
04:30:17.053115 IP6 3::1 > 3::3: ICMP6, echo request, seq 8, length 64

80

LAYER 3 FEATURES | NETWORKING FEATURES

Equal Cost Multipath (ECMP)

The Linux networking stack supports Equal Cost Multipath by adding multiple nexthops to
the route.

Configure an ECMP Route

$ip route add 40.40.40.0/24 nexthop via 3.3.3.6 nexthop via 4.4.4.7
$ip route show
default dev eth® scope link
3.3.3.0/24 dev el01-003-0 proto kernel scope link src 3.3.3.1
40.40.40.0/24

nexthop via 3.3.3.6 dev el01-003-0 weight 1

nexthop via 4.4.4.7 dev el01-004-0 weight 1

D (NOTE: In OS10, Linux kernel provides limited support for IPv6 multipath routing. J

Example: L3 Routing Topology
IPV4 Topology

Figure 14 — Sample IPv4 Routing Topology

el01-007-0 el101-007-0
R1 A 10.1.1.0/24 2 R2
11| e101-001-0 1| el101-001-0
11.1.1.0/24 12.1.1.0/24
2| ethl 2| ethl

81

LAYER 3 FEATURES NETWORKING FEATURES

When you configure an IP address, you can use any Linux utility command, such as ip
addr add or ifconfig to configure an interface.

Configure an IP Address on R1

$ip addr add 10.1.1.1/24 dev el01-007-0
$ip addr add 11.1.1.1/24 dev el01-001-0

Configure an IP Address on R2

$ip addr add 10.1.1.2/24 dev e1l01-007-0
$ip addr add 12.1.1.1/24 dev e1l01-001-0

Verify the IP Address Configuration on R1

$ip addr show el01-007-0
16: el01-007-0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 500
link/ether 74:e6:e2:f6:af:87 brd ff:ff:ff:ff:ff:ff
inet 10.1.1.1/24 scope global el01-007-0
valid_1ft forever preferred_lft forever
inet6 fe80::76e6:e2ff:fef6:af87/64 scope link
valid_1ft forever preferred_lft forever
$ip addr show el01-001-0
10: el01-001-0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 500
link/ether 74:e6:e2:f6:af:81 brd ff:ff:ff:ff:ff:ff
inet 11.1.1.1/24 scope global el01-001-0
valid_1ft forever preferred_lft forever
inet6 fe80::76e6:e2ff:fef6:af81/64 scope link
valid_1ft forever preferred_lft forever

Verify the IP Address Configuration on R2

$ip addr show el01-007-0
16: el101-007-0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gqdisc mq state UP group default qlen 500
link/ether 74:e6:e2:f6:ba:87 brd ff:ff:ff:ff:ff:ff
inet 10.1.1.2/24 scope global el01-007-0
valid_1ft forever preferred_1lft forever
inet6 fe80::76e6:e2ff:fef6:ba87/64 scope link
valid_1ft forever preferred_1lft forever
$ip addr show el01-001-0

82

10: el01-001-0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default gqlen 500

link/ether 74:e6:e2:f6:ba:81 brd ff:ff:ff:ff:ff:ff
inet 12.1.1.1/24 scope global el01-001-0
valid_1ft forever preferred_1ft forever
inet6 fe80::76e6:e2ff:fef6:ba8l/64 scope link
valid_1ft forever preferred_1ft forever

Enable the Interfaces on R1 and R2

$ip link set dev el01-007-0 up $ip link set dev el01-001-0 up

Configure Static Route to a Server
On R1L:

$ip route add 12.1.1.0/24 via 10.1.1.2

On R2:

$ip route add 11.1.1.0/24 via 10.1.1.1

Ping a Neighbor Route and Server (Server 2) from R1

$ping 11.1.1.2

PING 11.1.1.2 (11.1.1.2) 56(84) bytes of data.

64 bytes from 11.1.1.2: icmp_seq=1 tt1=64 time=0.922 ms

~C

--- 11.1.1.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.922/0.922/0.922/0.000 ms

$ping 10.1.1.2

PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.

64 bytes from 10.1.1.2: icmp_seq=1 tt1=64 time=0.709 ms

~C

--- 10.1.1.2 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.709/0.709/0.709/0.000 ms

LAYER 3 FEATURES

NETWORKING FEATURES

83

Display the ARP table on R1 and R2

On R1:
$arp -n
Address HWtype HWaddress
11.1.1.2 ether 00:00:00:1d:9a:bd
10.1.1.2 ether 74:e6:e2:f6:ba:87
On R2:
$arp -n
Address HWtype HWaddress
10.1.1.1 ether 74:e6:e2:f6:af:87
12.1.1.2 ether 00:00:00:1d:9a:be

CPS Support

Flags Mask
C
C

Flags Mask
C
C

LAYER 3 FEATURES

Iface
€101-001-0
€101-007-0

Iface
€l01-007-0
€l01-001-0

Refer to CPS Application Examples for programming routes using the CPS API.

Dynamic Routing

In OS10, configure BGP and OSPF using open source routing stacks such as Quagga, Bird,

and other third-party applications.

Quagga Routing

Quagga is an open source routing application that provides OSPFv2,OSPFv3,RIPv1 and v2,

RIPng and BGP-4 functionality.

The Quagga architecture consists of a core daemon zebra, which acts as an abstraction

layer to the underlying Linux kernel and presents a Zserv APl over a Unix or TCP stream to

Quagga clients. The Zserv clients implement a routing protocol and communicate routing

updates to the zebra daemon.

NETWORKING FEATURES

84

LAYER 3 FEATURES

ospfé6d bgpd

/ Zserv API

Kernel Routing Table

Install Quagga

To install Quagga on OS10, configure an IP address on the management port (eth0) and
verify that the switch can reach the package server using the ping command.

Install Quagga by entering the apt-get command.

$apt-get install -y quagga
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
quagga
0 upgraded, 1 newly installed, @ to remove and O not upgraded.
Need to get 1217 kB of archives.
After this operation, 6323 kB of additional disk space will be used.
Get:1 http://10.11.56.31/debian/ jessie/main quagga amd64 0.99.23.1-1 [1217 kB]
Fetched 1217 kB in 0s (12.2 MB/s)
Preconfiguring packages ...

NETWORKING FEATURES

85

LAYER 3 FEATURES NETWORKING FEATURES

Selecting previously unselected package quagga.

(Reading database ... 46597 files and directories currently installed.)
Preparing to unpack .../quagga_0.99.23.1-1_amd64.deb ...

Unpacking quagga (0.99.23.1-1) ...

Processing triggers for systemd (215-17) ...

Processing triggers for man-db (2.7.0.2-5) ...

Setting up quagga (0.99.23.1-1) ...

Processing triggers for systemd (215-17) ...

Processing triggers for libc-bin (2.19-18) ...

When you install Quagga on OS10, it is stored in the /etc/quagga directory. By default,
Quagga daemons and the debian.conf file are stored in the same directory.

Configure Quagga

By default, all routing protocol daemons installed with Quagga are disabled. You must
enable the zebra daemon to install the routes in kernel routing table.

To configure Quagga:

1. Enter the vim command to open the daemons file for editing and change the daemon
status to yes.

$vim /etc/quagga/daemons

zebra=yes
bgpd=yes
ospfd=no
ospf6d=no
ripd=no
ripngd=no
isisd=no

babeld=no

2. Create the vtysh.conf and Quagga.conf configuration files.

$cp /usr/share/doc/quagga/examples/vtysh.conf.sample /etc/quagga/vtysh.conf $touch /etc/quagga/Quagga.conf

86

LAYER 3 FEATURES

3. Restart the Quagga service using the service quagga restart Linux utility.

$/etc/quagga# service quagga restart

4. Enter the service quagga status command to display the status of Quagga

protocol daemons.

$/etc/quagga# service quagga status

? quagga.service - LSB: start and stop the Quagga routing suite

Loaded:

Active:

Process:

Process:

CGroup:

Feb
Feb
Feb
Feb
Feb
Feb
Feb

16
16
16
16
16
16
16

17:
17:
17:
17:
17:
17:
17:

loaded (/etc/init.d/quagga)

active (running) since Tue 2016-02-16 17:47:25 UTC; 4s ago

5078 ExecStop=/etc/init.d/quagga stop (code=exited, status=0/SUCCESS)

5097 ExecStart=/etc/init.d/quagga start (code=exited, status=0/SUCCESS)

/system.slice/quagga.service

7?5111 /usr/lib/quagga/zebra --daemon -A 127.0.0.1

7?5115 /usr/lib/quagga/bgpd --daemon -A 127.0.0.1

7?5121 /usr/lib/quagga/watchquagga --daemon zebra bgpd

47:
47:
47:
47:
47:
47:
47:

25
25
25
25
25
25
25

0S10
0s10
0S10
0s10
0S10
0s10
0S10

quaggal[5097]: Loading capability module if not yet done.
quaggal[5097]: Starting Quagga daemons (prio:10): zebra...d.
quagga[5097]: Starting Quagga monitor daemon: watchquagga.
watchquagga[5121]: watchquagga 0.99.23.1 watching [zebr...]
systemd[1]: Started LSB: start and stop the Quagga rou...e.
watchquagga[5121]: bgpd state -> up : connect succeeded

watchquagga[5121]: zebra state -> up : connect succeeded

Hint: Some lines were ellipsized, use -1 to show in full

5. Enable the service integrated-vtysh-config optioninthe vtysh.conf file by
deleting the I.

$/etc/quagga/vtysh.conf

! Sample

service integrated-vtysh-config

hostname quagga-router

NETWORKING FEATURES

87

LAYER 3 FEATURES

username root nopasswo rd

6. Add the#echo VTYSH_PAGER=more statement in the /etc/environment file to
enable paging.

$echo VTYSH_PAGER=more > /etc/environment

7. Source the environment file before you access the Quagga shell.

$source /etc/environment

8. Access the Quagga shell.

$vtysh

Hello, this is Quagga (version 0.99.23.1)
Copyright 1996-2005 Kunihiro Ishiguro, et al.
0S10#

9. Save the configuration changes to the Quagga. conffile by entering the write
memory command in the Quagga shell.

0S10# write memory

Building Configuration...
Integrated configuration saved to /etc/quagga/Quagga.conf
[0K]

10. Refer to Use Case: BGP Routing using Quagga for information about how to configure
Quagga.

NETWORKING FEATURES

88

Monitoring

0OS10 supports network monitoring features, such as sFlow and mirroring, to monitor and
capture network traffic in the system. It also provides tools to collect port and VLAN
statistics and port media information.

Mirroring

Mirroring enables the copying of packets from a mirroring source port to a mirroring
destination port. OS10 supports the following types of mirroring:

o Local port mirroring - Packets are forwarded from a source port to a destination port on
the same system.

Figure 16 — Local Port Mirroring

el01-001-0 el01-002-0
Source Port Destination Port

Local Port Mirroring

o Remote port mirroring - mirrored packets are forwarded using a dedicated L2 VLAN.

NETWORKING FEATURES

89

MONITORING | NETWORKING FEATURES

Figure 17 — Remote Port Mirroring

e101-001-0 e101-002-0
Source Port Destination Port

Switch 1 Switch 2

Remote Port Mirroring

0OS10 provisions the following mirroring capabilities using the CPS API:

o Create a mirroring session
o Update a mirroring session

o Delete a mirroring session

See CPS Application Examples for programming using the CPS API.

D (NOTE: OS10 does not support Linux modeling of port mirroring. J

sFlow

sFlow enables the sampling of incoming and outgoing packets on physical ports to monitor
network traffic.

OS10 supports sFlow provisioning using the CPS API, including:

o Enable packet sampling on a physical port
o Disable packet sampling on a physical port
o Set the sampling interval rate

o Forward the sampled packet to an IP address/port.

90

MONITORING NETWORKING FEATURES

See CPS Application Examples for programming using the CPS API.

D (NOTE: OS10 does not support Linux modeling of sFlow.]

Statistics

0s10-stat-show

0OS10 provides the os10-stat-show script to display port statistics from Linux interfaces
which map to the physical ports, and VLAN statistics.

0s10-stat-show syntax

$0s10-show-stats

0s10-stat-show
if_stat {iface_name} {filter_list} - Get stats for all interfaces if no input provided
- Get the statistics of given interface
- filter_1list is the filters if user wants
only specific statistics

vlan_stat [vlan_ifname] {filter_list} - Get the statistics of given vlan interface name
- filter_1list is the filters if user wants
only specific statistics

clear [iface_name] - Clear the interface statistics

Display Port Statistics

In the example, e101-001-0 is the Linux interface which maps to a physical port.

$0s10-show-stats if_stat el01-001-0

Key:

base-stats/interface/ip/in-discards = 0
base-stats/interface/ether-octets = 13442942147
base-stats/interface/ether-out/pkts-64-octets = 0
base-stats/interface/ether-collisions = 0
base-stats/interface/ether-in/pkts-4096-to-9216-octets
base-stats/interface/ether-in/pkts-1024-to-1518-octets
base-stats/interface/ipv6-out-mcast-pkts = 0

1] 1]
o o

base-stats/interface/if/in-octets = 0
base-stats/interface/ether-jabbers = 0
base-stats/interface/if-out-multicast-pkts = 36295
base-stats/interface/ether-out/pkts-256-to-511-octets = 0

91

MONITORING

base-stats/interface/if-out-errors = 0
base-stats/interface/ether-rx-no-errors = 0
base-stats/interface/ether/pkts-512-to-1023-octets = 0
base-stats/interface/ether/pkts-64-octets = 0
base-stats/interface/ether/pkts-1024-to-1518-octets = 13125220
base-stats/interface/ipv6/out-discards = 0
base-stats/interface/if/out-octets = 13442942147
base-stats/interface/ether-in/pkts-256-to-511-octets = 0
base-stats/interface/if/out-ucast-pkts = 13125220
base-stats/interface/ether-fragments = 0

base-stats/interface/ether-crc-align-errors = 0
base-stats/interface/ipv6-in-mcast-pkts = 0
base-stats/interface/ether-out/pkts-65-to-127-octets = 34014
base-stats/interface/if-out-broadcast-pkts = 0

base-stats/interface/ether-drop-events = 0
base-stats/interface/if/in-ucast-pkts = 0
base-stats/interface/ether-out/pkts-128-to-255-octets = 2281
base-stats/interface/ether-in/pkts-2048-t0-4095-octets = 0
base-stats/interface/ether-tx-oversize-pkts = 0
base-stats/interface/ether/pkts-256-to-511-octets = 0
base-stats/interface/ether-multicast-pkts = 36295
base-stats/interface/ether-out/pkts-4096-to-9216-octets = 0
base-stats/interface/ether/pkts-128-to-255-octets = 2281
base-stats/interface/ether-in/pkts-128-to-255-octets = 0
base-stats/interface/time-stamp = 1455586392
base-stats/interface/ip-in-receives = 0
base-stats/interface/ether-rx-oversize-pkts = 0
base-stats/interface/ether-oversize-pkts = 0
base-stats/interface/ether-out/pkts-1024-to-1518-octets = 13125220
base-stats/interface/if-in-errors = 0
base-stats/interface/ether-out/pkts-512-to-1023-octets = 0
base-stats/interface/if/in-non-ucast-pkts = 0
base-stats/interface/ether-in/pkts-65-to-127-octets = 0
base-stats/interface/ether/pkts-65-to-127-octets = 34014
base-stats/interface/if/in-discards = 0
base-stats/interface/ipv6-in-receives = 0
base-stats/interface/if/out-non-ucast-pkts = 36295
base-stats/interface/ipv6/in-discards = 0
base-stats/interface/ether-tx-no-errors = 13161515
base-stats/interface/ether-broadcast-pkts = 0
base-stats/interface/if-in-broadcast-pkts = 0
base-stats/interface/if/out-discards = 0
base-stats/interface/ether-out/pkts-1519-to-2047-octets = 0
base-stats/interface/ether-out/pkts-2048-to0-4095-octets
base-stats/interface/ether-pkts = 13161515
base-stats/interface/ether-in/pkts-1519-to0-2047-octets = 0
base-stats/interface/ether/pkts-4096-to-9216-octets = 0
base-stats/interface/ether-undersize-pkts = 0

base-stats/interface/if-in-unknown-protos = 0

NETWORKING FEATURES

92

MONITORING NETWORKING FEATURES

base-stats/interface/if-out-qlen = 0
base-stats/interface/if-in-multicast-pkts = 0
base-stats/interface/ether-in/pkts-64-octets = 0
base-stats/interface/ether-in/pkts-512-to-1023-octets = 0

Display VLAN Statistics

In the example, brl is the Linux bridge interface that maps to a VLAN.

$0s10-show-stats vlan_stat brl

Key:

base-stats/vlan/time-stamp: 1455586573
base-stats/vlan/in-octets: 16381983058
base-stats/vlan/in-pkts: 16101053
base-stats/vlan/out-octets: 55146334258
base-stats/vlan/out-pkts: 67419926

Clear Interface Statistics

$ 0s10-show-stats clear el01-001-0
Success

D [NOTE: 0s10-show-stats does not support clearing VLAN statistics. J

0s10-ethtool

OS10 provides 0s10-ethtool to gather statistics and media information from a Linux
interface which maps to a physical port.

0s10-ethtool Syntax

$0s10-ethtool -h

0sl0-ethtool -h|--help

0sl0-ethtool -v|--version

0sl0-ethtool -e|--eeprom-dump devname

0s10-ethtool -s| --speed devname speed N [duplex half|full] [autoneg on]|off]
0sl0-ethtool -S|--statistics devname

93

MONITORING NETWORKING FEATURES

Display Port Statistics using 0s10-ethtool

In the example, os10-ethtool output is a subset of 0s10-stats-show for the same
physical port interface.

$0s10-ethtool -S el01-001-0
Statistics for interface el01-001-0
Ether statistics:

rx_bytes: 9185614848
rx_no_errors: 0
tx_no_errors: 9003181
tx_total_collision: 0
rx_undersize_packets: 0
rx_jabbers: 0
rx_fragments: 0
rx_align_errors: 0
rx_discards: 0
rx_mcast_packets: 35445
rx_bcast_packets: 0
rx_oversize_packets: 0
tx_oversize_packets: 0
rx_64_byte_packets: 0
rx_65_to_127_byte_packets: 0
rx_128_to_255_byte_packets: 0
rx_256_to_511_byte_packets: 0
rx_512_to_1023_byte_packets: 0
rx_1024_to_1518_byte_packets:
rx_1519_to_2047_byte_packets:
rx_2048_to_4095_byte_packets:
rx_4096_to_9216_byte_packets:
tx_64_byte_packets: 0
tx_65_to_127_byte_packets: 33217
tx_128_to_255_byte_packets: 2228
tx_256_to_511_byte_packets: 0
tx_512_to_1023_byte_packets: 0
tx_1024_to_1518_byte_packets: 8967736
tx_1519_to_2047_byte_packets: 0
tx_2048_to_4095_byte_packets: 0
tx_4096_to_9216_byte_packets: 0

e o @ @

Display Transceiver Information using 0s10-ethtool

$0s10-ethtool -e el01-001-0

Show media info for el01-001-0

if_index is 17

Key: 2.19.1245389.1245248.1245249.1245250.
base-pas/media/rate-identifier = 0

94

MONITORING NETWORKING FEATURES

base-pas/media/oper-status = 0
base-pas/media/category = 3
base-pas/media/voltage-state = 1
base-pas/media/bias-low-warning-threshold =
base-pas/media/vendor-pn = 568400002
base-pas/media/current-temperature = ??
base-pas/media/insertion-cnt = 0
base-pas/media/voltage-low-warning-threshold =
base-pas/media/cc_ext = 162
base-pas/media/length-om2 = 0
base-pas/media/length-om3 = 0
base-pas/media/rx-power-low-alarm-threshold =
base-pas/media/length-oml = 0
base-pas/media/vendor-id = AP
base-pas/media/media-category/sfp-plus/br-max = 0
base-pas/media/connector = 33
base-pas/media/ext-transceiver = 0
base-pas/media/vendor-Specific = ffffffffffffff 000
base-pas/media/media-category/sfp-plus/br-min = 0

base-pas/media/encoding = 0
base-pas/media/tx-power-high-warning-threshold =
base-pas/media/vendor-name = Amphenol
base-pas/media/rx-power-low-warning-threshold =
base-pas/media/slot = 1

base-pas/media/port = 1
base-pas/media/vendor-rev = 4700
base-pas/media/slot = 1

base-pas/media/port = 1
base-pas/media/tx-power-low-alarm-threshold =
base-pas/media/bias-low-alarm-threshold =
base-pas/media/capability = 6
base-pas/media/media-category/sfp-plus/sff-8472-compliance = 0
base-pas/media/diag-mon-type = 0
base-pas/media/temp-state = 1
base-pas/media/type = 43
base-pas/media/media-category/qsfp-plus/wavelength-tolerance = 0
base-pas/media/ext-identifier = 0
base-pas/media/temp-low-warning-threshold =
base-pas/media/voltage-high-warning-threshold =
base-pas/media/temp-high-alarm-threshold =
base-pas/media/length-sfm = 0
base-pas/media/rate-select-state = 0

|
(=]

base-pas/media/rx-power-measurement-type =
base-pas/media/wavelength = 0
base-pas/media/cc_base = 54
base-pas/media/temp-low-alarm-threshold =
base-pas/media/tx-power-low-warning-threshold =
base-pas/media/insertion-timestamp = 0
base-pas/media/current-voltage =

95

base-pas/media/bias-high-alarm-threshold =
base-pas/media/high-power-mode = 1
base-pas/media/br-nominal = 0
base-pas/media/options = 0
base-pas/media/rx-power-high-warning-threshold =
base-pas/media/date-code = 3131303632322000
base-pas/media/present = 1
base-pas/media/transceiver = 0000000000000000205¢
base-pas/media/length-cable = 2
base-pas/media/voltage-high-alarm-threshold =
base-pas/media/identifier = 12
base-pas/media/voltage-low-alarm-threshold =
base-pas/media/dell-qualified = 0
base-pas/media/length-sfm-km = 0
base-pas/media/rx-power-high-alarm-threshold =
base-pas/media/admin-status = 0
base-pas/media/serial-number = APF11240020140
base-pas/media/tx-power-high-alarm-threshold =

base-pas/media/temp-high-warning-threshold =

base-pas/media/bias-high-warning-threshold
base-pas/media/enhanced-options = 0

base-pas/media/media-category/qsfp-plus/max-case-temp

70

MONITORING

NETWORKING FEATURES

96

NETWORKING FEATURES

Access Control Lists (ACLs)

Access Control Lists (ACLs) are flexible, hardware-accelerated sets of rules used to match
packets using packet header criteria and perform actions on the selected packets.

In OS10, you can configure an ACL on a physical port (NPU) only by using the CPS API; you
cannot configure ACLs using Linux commands or an open source application.

Refer to the YANG model dell-base-acl.yang for the ACL parameters supported in
0OS10. Refer to CPS Application Examples for an example of how to configure ACLs using a
YANG model and the CPS API.

0OS10 supports following ACL features:

o Ingress and egress ACL rules

o Match packet header fields, including MAC address, Ethertype, IP address, IP protocol,
TCP/ UDP port numbers, and In Port.

o Packet actions, including drop, trap/forward to CPU, redirect to port, change packet
fields, and meter.

o Grouping ACL rules to enable multiple rule match for a single packet.

D NOTE : OS10 does not support configuration of Access Control Lists using Linux
commands.

97

NETWORKING FEATURES

Quiality of Service (QoS)

0OS10 supports QoS provisioning, including:

o

Assigning packet to traffic classes using packet 802.1p, DSCP or more advanced ACL

rules

o

o

Marking

Ingress rate policing using ACLs
Mapping traffic classes to queues
Egress Queue rate shaping
WRED

Hierarchical scheduling

Egress Port-level shaping

CoPP support for configuring CPU rate-limits

In OS10, you can configure QoS settings only by using the CPS API; you cannot configure
QoS using Linux commands or an open source application. Refer to the YANG model
dell-base-qos.yang for the QoS parameters supported in OS10. Refer to
Programmability for information on how to configure OS10 using YANG models and the
CPS API.

A

NOTE : OS10 does not support configuration of QoS parameters using Linux
commands.

98

NETWORKING FEATURES

Use Case: BGP Routing Using Quagga

This use case describes how to configure BGP using Quagga in a CLOS (spine/leaf)
network.

Figure 18 — Quagga BGP CLOS Network

el01-027-1
el01-027-1 e101-018-1

10.1.1.0/24 30.1.1.0/24

e101-049-0 e101-032-0

e101-020-0

.1|el01-001-0
11.1.1.0/24

1] el101-001-0
12.1.1.0/24

Serverl

The BGP topology used in this example (links, networks, nodes and their AS numbers) is
described below.

99

USE CASE: BGP ROUTING USING QUAGGA NETWORKING FEATURES

‘ Link Network Nodes in the Link BGP AS number
Leafl-to-Spinel 10.1.1.0/24 Leafl 64501
Spinel 64555
Leafl-to-Spine2 20.1.1.0/24 Leafl 64501
Spine2 64555
Leaf2-to-Spinel 40.1.1.0/24 Leaf2 64502
Spinel 64555
Leaf2-to-Spine2 30.1.1.0/24 Leaf2 64502
Spine2 64555
Leafl-to-Serverl 11.1.1.0/24 Leafl 64501
Leaf2-to-Server2 12.1.1.0/24 Leaf2 64502

Leafl: Configure IP Addresses to Spinel, Spine2, and Serverl

leafl# conf t

leafl(config)# int el01-049-0
leafl(config-if)# ip address 10.1.1.1/24
leafl(config-if)# no shutdown
leafl(config-if)# exit

leafl(config)# int el01-051-0
leafl(config-if)# ip address 20.1.1.1/24
leafl(config-if)# no shutdown
leafl(config-if)# exit

leafl(config)# int el01-001-0
leafl(config-if)# ip address 11.1.1.1/24
leafl(config-if)# no shut

Leaf2: Configure IP Addresses to Spinel, Spine2, and Server2

leaf2# configure t

leaf2(config)# int el01-032-0
leaf2(config-if)# ip address 30.1.1.1/24
leaf2(config-if)# no shut
leaf2(config-if)# exit

leaf2(config)# int el01-020-0

100

leaf2(config-if)# ip address 40.1.1.1/24
leaf2(config-if)# no shut
leaf2(config-if)# exit

leaf2(config)# int el01-001-0
leaf2(config-if)# ip address 12.1.1.1/24
leaf2(config-if)# no shut

Spinel: Configure IP Addresses to Leafl and Leaf?2

spinel(config)# int el01-027-1
spinel(config-if)# ip address 10.1.1.2/24
spinel(config-if)# no shut

(

spinel(config-if)# exit

spinel(config)# int el01-010-1
spinel(config-if)# ip address 40.1.1.2/24
spinel(config-if)# no shut

Spine2: Configure IP Addresses to Leafl and Leaf2

spine2(config)# int el01-027-1
spine2(config-if)# ip address 20.1.1.2/24
spine2(config-if)# no shut
spine2(config-if)# exit

spine2(config)# int el01-018-1
spine2(config-if)# ip address 30.1.1.2/24
spine2(config-if)# no shutdown

spine2(config-if)# exit

Leafl: Configure BGP to Spinel and Spine2

leafl(config)# router bgp 64501

leafl(config-router)# neighbor 10.1.1.2 remote-as 64555
leafl(config-router)# neighbor 20.1.1.2 remote-as 64555
leafl(config-router)#network 10.1.1.0/24
leafl(config-router)#network 20.1.1.0/24
leafl(config-router)#network 11.1.1.0/24

USE CASE: BGP ROUTING USING QUAGGA

NETWORKING FEATURES

101

Leaf2: Configure BGP to Spinel and Spine2

leaf2(config)# router bgp 64502

leaf2(config-router)# neighbor 30.1.1.2 remote-as 64555
leaf2(config-router)# neighbor 40.1.1.2 remote-as 64555

leaf2(config-router)#network 12.1.1.0/24
leaf2(config-router)#network 30.1.1.0/24
leaf2(config-router)#network 40.1.1.0/24

Spinel: Configure BGP to Leafl and Leaf2

spinel# configure t
spinel(config)# router bgp 64555

spinel(config-router)# neighbor 10.1.1.1 remote-as 64501
neighbor 40.1.1.1 remote-as 64502

spinel(config-router)#
spinel(config-router)# network 10.1.1.0/24
V#

spinel(config-router)# network 40.1.1.0/24

Spine2: Configure BGP to Leafl and Leaf2

spine2# configure t
spine2(config)# router bgp 64555

spine2(config-router)# neighbor 30.1.1.1 remote-as 64502
spine2(config-router)# neighbor 20.1.1.1 remote-as 64501

spine2(config-router)# network 30.1.1.0/24
spine2(config-router)# network 20.1.1.0/24

Leafl and Leaf2: Configure ECMP

leafl# configure t
leafl(config)# router bgp 64501
leafl(config)# maximum-paths 16

leaf2# configure t
leaf2(config)# router bgp 64502
leaf2(config)# maximum-paths 16

USE CASE: BGP ROUTING USING QUAGGA

NETWORKING FEATURES

102

USE CASE: BGP ROUTING USING QUAGGA NETWORKING FEATURES

Leafl and Leaf2: Display BGP Neighbors

leafl# show ip bgp sum

BGP router identifier 20.1.1.1, local AS number 64501
RIB entries 11, using 1232 bytes of memory

Peers 2, using 9136 bytes of memory

Neighbor Vv AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.1.1.2 4 64555 196 201 0 0 0 02:39:02 4
20.1.1.2 4 64555 195 206 0 0 0 02:38:57 4

Total number of neighbors 2

leaf2# show ip bgp sum

BGP router identifier 40.1.1.1, local AS number 64502
RIB entries 11, using 1232 bytes of memory

Peers 2, using 9136 bytes of memory

Neighbor Vv AS MsgRcvd MsgSent TbhlVer InQ OutQ Up/Down State/PfxRcd
30.1.1.2 4 64555 196 197 0 0 0 02:39:45 4
40.1.1.2 4 64555 192 204 0 0 0 02:39:42 4

Total number of neighbors 2

Spinel and Spine2: Display BGP Neighbors

spinel# show ip bgp sum

BGP router identifier 40.1.1.2, local AS number 64555
RIB entries 11, using 1232 bytes of memory

Peers 2, using 9136 bytes of memory

Neighbor \ AS MsgRcvd MsgSent TblVer 1InQ OutQ Up/Down State/PfxRcd
10.1.1.1 4 64501 199 201 0 0 0 02:40:55 3
40.1.1.1 4 64502 202 198 0 0 0 02:41:01 3

Total number of neighbors 2

spine2# show ip bgp sum

BGP router identifier 30.1.1.2, local AS number 64555
RIB entries 11, using 1232 bytes of memory

Peers 2, using 9136 bytes of memory

Neighbor \ AS MsgRcvd MsgSent TblVer 1InQ OutQ Up/Down State/PfxRcd
20.1.1.1 4 64501 206 206 0 0 0 02:43:06 3
30.1.1.1 4 64502 197 203 0 0 0 02:43:20 3

Total number of neighbors 2

103

Leafl and Leaf2: Display Server Route as ECMP in Routing Table

leafl#
Codes:

C>*
C>*

B>*

C>*
C>*
B>*
B>*

C>*

10.
11.
12.

13.
20.
30.
40.

show ip route

K
0

>

1
1.
1.
1

=

1
1
1
1

kernel route, C - connected, S - static,
OSPF, I - IS-IS, B - BGP, A - Babel,
selected route, * - FIB route

.0/24 is directly connected, el01-049-0
.0/24 is directly connected, el01-001-0
.0/24 [20/0] via 10.1.1.2, el01-049-0, 02:
via 20.1.1.2, el01-051-0, 02:
.0/24 is directly connected, el01-002-0
.0/24 is directly connected, el01-051-0
.0/24 [20/0] via 20.1.1.2, el01-051-0, 02:
.0/24 [20/0] via 10.1.1.2, el01-049-0, 02:

127.0.0.0/8 is directly connected, lo

leaf2#
Codes:

B>*

B>*

C>*
B>*
C>*
C>*

C>*

10.
11.

12.
20.
30.
40.

show ip route

K
0

>

1
1.
1.
1

i

1
1
1
1

kernel route, C - connected, S - static,
0SPF, I - IS-IS, B - BGP, A - Babel,
selected route, * - FIB route

.0/24 [20/0] via 40.1.1.2, el01-020-0, 02:
.0/24 [20/0] via 30.1.1.2, el01-032-0, 02:
via 40.1.1.2, el101-020-0, 02:
.0/24 is directly connected, el01-001-0
.0/24 [20/0] via 30.1.1.2, el01-032-0, 02:
.0/24 is directly connected, el01-032-0
.0/24 is directly connected, el01-020-0

127.0.0.0/8 is directly connected, lo

R - RIP,

44:45
44:45

09:44
11:50

R - RIP,

12:43
45:14
45:14

10:16

USE CASE: BGP ROUTING USING QUAGGA

NETWORKING FEATURES

104

Leafl and Leaf2: Display Server Route as ECMP in Linux Routing Table

$ip route show

10.1.1.0/24 dev el01-049-0 proto kernel scope link
11.1.1.0/24 dev el01-001-0 proto kernel scope link
.0/24 proto zebra

12.1.

13.
20.
30.
40.

e e

1

e i

nexthop via 10.1.1.2 dev el01-049-0 weight 1
nexthop via 20.1.1.2 dev el01-051-0 weight 1

.0/24 dev el01-002-0 proto kernel scope link
.0/24 dev el01-051-0 proto kernel scope link
.0/24 via 20.1.1.2 dev el01-051-0 proto zebra
.0/24 via 10.1.1.2 dev el01-049-0 proto zebra

$ip route show
10.1.1.0/24 via 40.1.1.2 dev el01-020-0 proto zebra
11.1.1.

12.1.1.
20.1.1.
30.1.1.
40.1.1.

Leafl and Leaf2: Display Server Route as ECMP in NPU Routing Table

0/24 proto zebra

nexthop via 30.1.1.2 dev el01-032-0 weight 1
nexthop via 40.1.1.2 dev el01-020-0 weight 1
0/24 dev el01-001-0 proto kernel scope link
0/24 via 30.1.1.2 dev el01-032-0 proto zebra
0/24 dev el01-032-0 proto kernel scope link
0/24 dev el01-020-0 proto kernel scope link

$hshell -c '13 defip show'
Unit @, Total Number of DEFIP entries: 16384

#

4096
4096
4097
4097
4098
4098
4099

Vv

e 0 © o e e @

RF Net addr Next Hop Mac
10.1.1.0/24 00:00:00:00:00:00
20.1.1.0/24 00:00:00:00:00:00
11.1.1.0/24 00:00:00:00:00:00
13.1.1.0/24 00:00:00:00:00:00
12.1.1.0/24 00:00:00:00:00:00
40.1.1.0/24 00:00:00:00:00:00
30.1.1.0/24 00:00:00:00:00:00

$hshell -c '13 multipath show'

Multipath Egress Object 200000
Interfaces: 100004 100005
Reference count: 1

$hshell -c '13 defip show'

Unit @, Total Number of DEFIP entries: 16384

src 10.1.1.1
src 11.1.1.1

src 13.1.1.1
src 20.1.1.1

src 12.1.1.1

src 30.1.1.1
src 40.1.1.1

USE CASE: BGP ROUTING USING QUAGGA

INTF MODID PORT PRIO CLASS HIT VLAN

100002
100002
100002
100002
200000
100004
100005

o & ©@ @ @ @

@ & ©@ @ ©@ @ &

o & ©@ @ @ @

o & ©@ @ @ @ &

(ECMP)

NETWORKING FEATURES

105

VRF
4096
4096
4097
4097
4098
4098

e 0 © o e

$hshell -c '13 multipath show'

Multipath Egress Object 200000
100004 100005

Interfaces:

Net
30.
40.
12.
11.
10.
20.

Reference count:

addr

.0/24
.0/24
.0/24
.0/24
.0/24
.0/24

L = I =T
e e

00:
00:
00:
00:
00:
00:

00

00:
00:

00:
00:
00:
:00:
00:
00:

Next Hop Mac
00:
00:
00:

00:
00:
00:

00

00:
00:

00:
00:
00:
:00:
00:
00:

00
00
00
00
00
00

USE CASE: BGP ROUTING USING QUAGGA

INTF MODID PORT PRIO CLASS HIT VLAN

100002
100002
100002
200000
100004
100005

0

@ 0 @ &

@ e ©@ @ @ @

0

@ o @ &

o 0 ©@ @ @ @

S5 S

(ECMP)

NETWORKING FEATURES

106

NETWORKING FEATURES

Use Case: CAM Optimization using CPS APIs

This use case describes how to optimize system resources, such as Content Addressable
Memory (CAM), using the CPS APIs in OS10.

Top-of-the-rack (TOR) switches have a smaller CAM size and are usually installed in a data
center network where the CAM resource requirement is not critical.

Without CAM optimization, all routes in the Forwarding Information Base (FIB) are
sequentially installed into CAM, which may result in suboptimal utilization of CAM table
space. Routes which are not active may be installed in the CAM table, whereas routes that
are active and used by traffic flows may not be installed in the table and are software-
routed instead.

Because only 2-3% of internet routes are active at a given time on a switch, by using CPS
APIs, you can selectively add, delete, and update desired routes in CAM. This optimization
allows you to use TOR switches at a WAN network edge.

The CAM optimization solution consists of an sFlow monitoring tool, a routing protocol
such as BGP, CAM optimization application, and CPS APIs available in OS10.

V' N
v

Native Linux App 3rd Party App OS10 App

Selective Route
Quagga =

Optimized flow

CPS APIs sFlow Monitoring

Application using CPS API
only installs top N active flows
into CAM table

sFlow monitoring of
active traffic flows

CAM table optimally used.
Lower flow-rate traffic soft
routed.

BGP peer pushing routes
beyond table capacity
Default

CAM table Flow BGP Peer

107

USE CASE: CAM OPTIMIZATION USING CPS APIS

To optimize CAM using CPS APIs:
1. Use sFlow to determine the latest N active flows

Custom sFlow agent is configured using YANG model and CPS API to determine the latest
N active routes on the system. See Monitoring for information about how to configure the
sFlow agent on the system.

Use an Open Source sFlow collector, such as sflowRT, to capture the latest N flows. You
can use a REST interface to communicate between the agent and the collector.

2. Configure a routing protocol

Existing routing stacks, such as Quagga and Bird, provide BGP, OSPF, and other routing
protocols that can be configured on OS10. These stacks also provide the capability to block
routes from getting installed in the CAM table. For CAM optimization, you must enable the
feature that blocks routes.

You can also use CPS APlIs to disable automatic route installation in the CAM table. See
Programmability for programming using the CPS API.

Quagga BGP running on the switch provides routes with next hop information. Refer to
Use Case: BGP Routing using Quagga for more information about how to configure
Quagga. The Quagga routing stack peers with the neighboring router to obtain next-hop
routing information.

3. Implement the route_collator

The route_collator is an application which you can write in any scripting language, such as
Python. It combines the latest N flows (from Step 1) with routes with next-hop information
(from Step 2) to determine the desired routes to be programmed on the switch. You can
configure the route_collator to run at any frequency to determine the routes to include in
CAM. A sample implementation of the route_collator is shown below:

NETWORKING FEATURES

if __name__ == "__main__"
while True :
getBgpRiBRoute = getBgpRouteFromDevice() #RIB contents
getTopFlowFromsFlow = top_Flows (topFlowCnt) #Traffic Flow
contents
getCollateRouteInfo = generatSflowOptimalPrefixes (getTopFlowFromsFlow, getBgpRiBRoute) #TopN Prefix
Generator
getCurrentCAMContent = getActualCamFromDevice() #Current CAM

content using CPS

108

USE CASE: CAM OPTIMIZATION USING CPS APIS NETWORKING FEATURES

routeDetail = routeFilter(getCollateRouteInfo, getCurrentCAMContent) #TopN Prefix

installation using CPS
getNextCAMContent = getActualCamFromDevice()

The getBgpRouteFromDevice() function uses REST to get the next-hop routing
information from the routing stack (such as Quagga and Bird).

The top_Flows() function also uses REST to get the latest N flows from the sFlow

collector.

The generateSflowOptimalPrefixes() uses the latest N flows from top_Flows() to
determine the best IP prefixes to serve hosts in the flows. A sample implementation of
generateSflowOptimalPrefixes() using Python is shown below:

def generateSflowOptimalPrefixes(topSflowHosts, camPrefixiDict):
###HHHH#E Test Data ########HHH#H

#topSflowHosts = ['1.1.1.1','2.2.2.2','3.3.3.3"]

#camPrefixiDict = {'1.1.1.0/24"' : '10.1.1.1', '2.2.0.0/16' : '3.3.3.3'}

sFlowOptimalPrefixes = { }

for dest_ip in topSflowHosts :
dest_ip = ipaddress.ip_address(dest_ip)
for prefix, nhi in camPrefixiDict.items() :
prefix = ipaddress.ip_network(prefix,strict=False)
if dest_ip in prefix :
sFlowOptimalPrefixes.update({str(prefix):nhi})

return (sFlowOptimalPrefixes)

The getActualCamFromDevice() function uses a REST call to obtain the CAM contents with
a CPS API. Refer to <Step 4. Install routes using CPS APIs on OS10 > for the CPS API to use.

The routeFilter() function requires two arguments:

o Desired CAM contents (output from the generateSflowOptimalPrefixes() call)

o Current CAM contents (output from the getActualCamFromDevice() call)

109

USE CASE: CAM OPTIMIZATION USING CPS APIS NETWORKING FEATURES

The routeFilter() function programs the switch with the desired routes using a REST call.

def

and

routeFilter(desiredCAM, currentCAM):
routeDelete={}

routeUpdate={}

routeAdd={}

returnDictForDB ={}

delete = set(currentCAM.keys()).difference(set(desiredCAM.keys())) #Routes not Present in desiredCAM
in currentCAM
update = set(desiredCAM.keys()).1intersection(set(currentCAM.keys())) #Route Present in desiredCAM and

currentCAM

add = set(desiredCAM.keys()).difference(set(currentCAM.keys())) #Route Present in desiredCAM and not

in currentCAM

#---Delete---:
for 1 in delete:
routeDelete[1] = currentCAM[1]

#Calling REST API, to update route into actual device
deletePtr = requests.post(url, json.dumps(routeDelete), headers=headers)
if deletePtr.ok :
returnDeletePtrContent = ast.literal_eval(deletePtr.text)
returnDictForDB.update({'routeDelete':returnDeletePtrContent})
else :
print ('Route Delete In CAM Failed')

#---Update---:
for i1 in update:
routeUpdate[i] = desiredCAM[1]

#Calling REST API, to update route into actual device
updatePtr = requests.post(url, json.dumps(routeUpdate), headers=headers)
if updatePtr.ok :
returnUpdatePtrContent = ast.literal_eval(updatePtr.text)
returnDictForDB.update({'routeUpdate':returnUpdatePtrContent})
else :
print ('Route Update In CAM Failed')

#---Add---:
for 1 in add:
routeAdd[i] = desiredCAM[1]

#Calling REST API, to update route into actual device
addPtr = requests.post(url, json.dumps(routeAdd), headers=headers)
if addPtr.ok
returnAddPtrContent = ast.literal_eval(addPtr.text)
returnDictForDB.update({'routeAdd':returnAddPtrContent}

110

USE CASE: CAM OPTIMIZATION USING CPS APIS NETWORKING FEATURES

else :
print ('Route Add In CAM Failed')

return returnDictForDB

4. Install routes using CPS APIs

The CPS API allows you to program desired routes in the CAM table. Refer to Example:
Configuring a Route using Python in CPS Application Examples for configuring the routes
using next hops or using the cps-config-route sample python script to get, add, delete,
and update routes in CAM.

$ python cps-config-route.py
< Usage >

cps-config-route can be used to add/update/delete the route to the system

-h, --help: Show the option and usage
-a, --add : add new route
-d, --del : delete existing route
-1, --i1p : IP address that needs to be configured
--ip6 : IP v6 address that needs to be configured
-n, --nh : next-hop ip adress, needs ipv6 address if --ip6 used otherwise ipv4
multiple ip address needs to supply as string separated by space
-u, --update: update existing route information
-s, --show: show existing route information
Example:
cps-config-route --add --ip 192.168.10.2 --nh "127.0.0.1 127.0.0.2"
cps-config-route --del --ip 192.168.10.2
cps-config-route --update --ip 192.168.10.2 --nh "127.0.0.1 127.0.0.3"
cps-config-route --show
cps-config-route --show --ip 192.168.10.2
$

111

Programmability

PROGRAMMABILITY

Overview

The section describes the programmability features of OS10 using the Control Plane
Services (CPS) infrastructure. In addition to an introduction to basic CPS concepts, this
section describes YANG data modeling used for OS10 programming, and the structure of
CPS applications, through template applications and examples.

113

PROGRAMMABILITY

Introduction to Control Plane Services

The Control Plane Services (CPS) infrastructure is at the core of OS10 programmability. The
CPS infrastructure supports the definition of a well-defined data-centric API (CPS API) that
allows customer applications to interact with OS10 services. OS10 applications also use the
CPS APl infrastructure for communication with one another.

The CPS infrastructure provides the following features:

o A distributed framework for application interaction

[

DB-like APl semantics, for create, delete, set, commit, and get operations

o

Publish/subscribe semantics

o]

Object addressability based on object keys

o

Introspection

CPS Concepts

CPS server applications register for ownership of CPS objects and implement CPS
operations, such as object create, set, get, and delete. CPS client applications operate upon
objects and can subscribe to events published by CPS server applications.

Example: Temperature Control Application

To understand how the CPS infrastructure operates, consider the example of a
Temperature Control (TC) application. This example illustrates a simple OS10
implementation.

The TC application increases the speed of a system fan when the value reported by a
temperature sensor exceeds a pre-defined threshold; it decreases the fan speed when the
temperature falls below the threshold. To perform these operations, the TC application
needs to subscribe to temperature threshold crossing events published by the OS10
Platform Adaptation Service (PAS), and invoke a set request to change the speed of the fan
object. Note that neither the TC application nor the OS10 PAS are part of the CPS
infrastructure; they function as user applications of the CPS infrastructure.

This use case illustrates several important CPS concepts:

o Entities handled by the CPS infrastructure are called CPS objects (referred to as objects in
this document); the temperature sensor and the fan are both modeled as objects.

114

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

o Objects have attributes; for example, temperature value and fan speed.

o CPS applications can publish events; when and how events are generated is controlled by
the application implementation. For example, an application can publish an event when the
value of an attribute changes or when the value of an attribute crosses a threshold.

o CPS applications can subscribe to (listen for) events.

o CPS applications can request operations to be performed on objects; for example, a set
operation. The operation is performed by the CPS service that registers for the ownership
of the specific object category.

o The CPS API provides database-like semantics. However, services that implement CPS
operations (object owners) do not need to persistently store attribute values.

In the example, the PAS registers for ownership of both the temperature sensor and fan
object types. During its execution, the PAS application periodically reads the value of a
temperature sensor. When the temperature is greater than a pre-defined threshold, the PAS
creates a CPS over-temperature event. The event contains the identity of the temperature
sensor object and possibly the new temperature value. The PAS then publishes the event
using one of the CPS API functions. The CPS infrastructure service determines the
applications that have subscribed for the event and object type, and provides the
applications (in this case, the TC application) with the contents of the event.

The publisher of the event (PAS) does not need to have any knowledge of the applications
that have subscribed for an event. Conversely, the subscriber application (TC application)
has no knowledge of the application that has published the event.

When the TC application receives the temperature event, it needs to increase the fan
speed. To do so, it creates a simple CPS transaction in which a set operation requests a
change in the speed attribute value of the fan object. The transaction is performed using
the functions provided by the CPS API. When the transaction is committed, the CPS
infrastructure finds the owner of the fan object category; namely, the application that has
registered to execute operations requested for fan objects (in this case, PAS). The CPS
infrastructure then invokes the function registered by PAS to execute the set operation for
fans. In this case, PAS will simply invoke the set operation for low-level fan speed provided
by the System Device Interface (SDI), which acts on the fan hardware device and changes
its speed.

115

CPS Keys

INTRODUCTION TO CONTROL PLANE SERVICES

PROGRAMMABILITY

The concept of a CPS key is central to the CPS infrastructure, as all CPS objects require a

key. An application needs a key to:

o Register for object events.
o Perform get requests.

o Perform transactions.

A CPS key has two components:

o A fixed key component represented as a sequence (array) of numeric values

o An optional (dynamic) key component

Fixed Component of a CPS Key
The fixed part of a CPS key consists of:

o Qualifier (target, observed, real-time)

o Attribute identifiers that describe the object name and hierarchy

The qualifier can be any of the following values:

Qualifier

C enum Symbol

Applicability

Description

Target cps_api_qualifier
_TARGET

Observed cps_api_qualifier
_OBSERVED

Real-Time cps_api_qualifier

_REALTIME

Registrations cps_api_qualifier

_REGISTRATION

Proposed cps_api_qualifier

_PROPOSED

target

observed

realtime

objreg

proposed

Configurable
attributes

Configurable
attributes
Hardware status
attributes

hardware status
attributes
hardware counters

Internal to CPS
Infrastructure

n/a

Currently running
configuration

Configuration applied to
hardware components or
current hardware status
(provided by a HW
monitoring service; it can be
cached)

Requests values that are
immediately

queried from the hardware
(no caching)

Qualifier used when
publishing events associated
to object registrations

Reserved for future use

116

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

In addition, you can use another string form - a name alias - to represent a key in scripting
and other high-level languages. For example, a numerical representation (entered as a
string) of a key is 1.34.2228241.2228246.2228236. The corresponding name alias is
target/base-ip/ipv4/vrf-id/ifindex.

Optional Key Component

The optional (dynamic) component of a CPS key consists of a series of attribute values
stored within the CPS object itself. This key component is created by adding the relevant
attributes to the object.

Build a CPS Key

Build a CPS key using the cps_api_key_from_attr_with_qual function. Using this
API, you creates a key by specifying the object name and CPS qualifier; for example:

cps_api_key_from_attr_with_qual(cps_api_object_key(the_object), object_name,cps_api_qualifier_TARGET);

The cps_api_key_from_attr_with_qual function looks up the dynamic portion of
the key and copies it into the key using the qualifier target. To add the dynamic portion fo
the key, you must add attributes using the standard object attribute function.

CPS Qualifiers

A CPS qualifier provides the type of object data to be retrieved or acted upon. As shown in
the preceding temperature control example, a client application specifies the target
qualifier in the CPS key of the fan object used to set the fan speed. This qualifier tells the
PAS application to apply the specified speed to the fan (hardware) device. Applications can
only use the target qualifier for create or set operations.

In a get operation, an application can use any supported qualifier: target, observed, or real-time.
o The target qualifier indicates that the server application (object owner) should return the

values of attributes previously specified in a set operation.

o The observed qualifier indicates that the server application (object owner) should return
the values of the attributes already successfully applied to hardware entities (for user
configurable attributes), or the last retrieved hardware status information values.

o The real-time qualifier indicates that the server application (object owner) should read
the current status of the hardware entity in order to return the value of a requested
attribute.

117

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

Observed versus Real-Time Qualifiers

In the temperature control example, when an application uses the observed qualifier to
perform a get operation on the temperature sensor object, the PAS returns the last value
read from the sensor (cached value). However, when the real-time qualifier is used, the PAS
reads the current value of the sensor and returns the current, instead of the cached, value.
Note that using real-time instead of observed qualifiers only produces different results
when the server application maintains cached values. If the application always reads the
current hardware status when it performs a get operation, the results are identical.

Target versus Observed Qualifiers

When an application gets an attribute value after a set operation, target and observed
qualifiers may produce different results. In the temperature control example (CPS Concepts
section), the set operation to change fan speed should use the target qualifier. However,
because it takes a few seconds for fan speed to reach the specified value, an immediate get
operation using an observed qualifier may return a fan speed value different from a get
operation that uses a target qualifier for the fan object key.

CPS Objects

CPS objects and CPS object lists are the primitives used in the CPS infrastructure. A CPS
object consists of a key (which uniquely identifies the object) and zero or more object
attributes.

A CPS object has the following properties:

o Contains a variable number of attributes
o Can embed other objects

o Can be easily serialized (can be written to, and read from, a persistent or temporary
storage device)

o Support the following attribute types:
e uint8_t

e uUintl6_t

uint32_t

uint64_t
e char]

attributes that contain other attributes.

118

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

CPS Object Attributes

CPS object attributes are identified by a 64-bit ID tag (attribute identifier) and represented
using a tag, length, value (TLV) format. The value consists of a sequence of octets.

When an attribute contains a zero-terminated string, the terminating octet must be
included in the length field. For example, the total length of the string "Dell" must be set
to 5 in order to include the zero terminating octet. Note that while the Python
implementation automatically adds a zero octet to all string values, the C/C++
implementation does not. Therefore, you must take into account the zero-terminating
octet when you use a C/C++ application to set the length of an attribute.

CPS Publish/Subscribe Features

The CPS infrastructure provides a subscription mechanism for receiving and publishing
object events. An application can register to receive objects using an object key. The CPS
key identifies a set of objects in an object category.

An application can register for:

o All events for a given object category

o All events for an object name

When an application publishes an event, subscriber applications receive the event if they
have registered a key which has a prefix match with the key associated to the published
object. For example, if you publish a target IPv4 address object that has the following
hierarchy:

base-ip/ipv4/address

The object key for the object is: {target, base-ip, ipv4, address}
Note that the CPS qualifier (in this case, target) is always a mandatory part of the key.

Any application that subscribes for objects that match any of the following keys receives
the event:

o Key 1: {Target, base-1ip} - Receive all events for objects under base-ip.

o Key 2: {Target, base-1ip,ipv4} - Receive all events for objects under IPv4.

119

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

o Key 3: {Target, base-ip,ipv4,adddress} - Receive all IPv4, address objects.

Multiple applications can subscribe for events that match a specified key.

CPS Generated Events

The CPS infrastructure can generate events for CPS-specific conditions. Currently, the CPS
infrastructure generates events when new object owners (server applications) are
registered with CPS or objects are de-registered from CPS.

The object key contains the registration qualifier cps_api_qualifier_REGISTRATION
and the key of the object to which the registration or de-registration event refers. The key
also indicates whether the event represents a new object registration or de-registration.

CPS Operations

The CPS infrastructure supports database-like requests for creating, updating, deleting, and
retrieving of one or more objects in a single operation. The CPS API defines get and
transaction functionality. The CPS API also defines an action operation to allow
applications to perform certain functions without affecting object states.

Get Requests
CPS get operations operate on lists of keys or an object filter, which is used to specify the

keys of objects to be retrieved. An object filter can specify an instance or a range of objects.

Get requests are blocking. When a get operation completes, the client application receives
the list of retrieved objects or an error code in case of failure.

Transactions

CPS transactions are required for create, delete, and set operations. The CPS API provides
functions to start, commit, and abort transactions.

In order to perform a transaction, a CPS application must start a transaction, and then add
operations (create, delete, set, or action) and their associated objects to the transaction. A
transaction must be committed in order to complete.

Operations on the different objects added to a transaction are not necessarily executed in
the order in which they are specified in the transaction code. However, the transactions
requested by an application thread are always executed in order.

120

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

When a transaction is committed, the CPS infrastructure sends all transaction operations to
their appropriate handlers, and the result of the request is returned. In order for a result to
be returned, the transaction must be valid and all operations must be received by the
registered applications. The semantics of a transaction allows any create/set/delete
operation associated with the transaction to be completed in a way that allows future CPS
calls to use the object data updated as a result of committing the transaction.

Note that although it is not necessary that all functions in the transaction are completed, it
is necessary that all operations in the transaction are accepted by the registered
applications and scheduled for processing. For example, if you add one hundred thousand
routes in a transaction, the result of the commit request is:

o All one hundred thousand route objects are valid to be created.

o The application that creates the route objects completes the request.

Transaction Commit Result

The transaction commit function returns a success or a failure code. If a transaction
commit fails, the entire transaction fails. In this case, the CPS infrastructure automatically
calls the rollback functions provided by the CPS server applications. It is the responsibility
of the server applications (object owner applications) to roll back any incremental changes
that have already been performed as part of the transaction.

Blocking

The CPS infrastructure is middleware that facilitates communication between components.
Therefore, the blocking nature of any CPS transaction or duration is not determined by the
CPS infrastructure, but by the implementation of applications registered to perform the
requested operations (object owners).

121

INTRODUCTION TO CONTROL PLANE SERVICES PROGRAMMABILITY

CPS API Functions
The CPS API provides functions for:

o |nitialization of the CPS services in the context of the calling process

o Key management

o

Object handling

o

Object attribute handling

[o]

CPS event handling

o

CPS operations

CPS Object Model Representation

0OS10 uses YANG to represent the OS10 object model. YANG object-model files are
converted to C object-model header files, which you use to develop CPS applications.

CPS API Language Support

CPS provides C/C++ and Python application programming interfaces.

122

PROGRAMMABILITY

YANG Modeling of CPS Objects

0OS10 uses YANG data models to define the content of CPS objects used to configure and
retrieve information from the system using CPS APlIs.

A YANG model consists of types (typedef, groupings, and enums), containers (container,
list, choice, and case), and properties (leaf and leaf-list). For more information on YANG
models, see the RFC: YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF).

Each property in the YANG container is a CPS object attribute. List containers nested in a
YANG model can be treated as multiple instances of embedded attributes. CPS also
supports defining a separate CPS object from each nested container.

Using YANG-modeled data, the CPS YANG parser generates:
o A C/C++ header file containing:
¢ YANG model name
¢ typedefs extracted from the model
e enumerations found in the model
e enumeration of any YANG container or properties (leaf, leaf-list,

container, list, etc) found in the model

o A Python C extension library containing CPS object meta-data and YANG name-to-CPS
ID mapping information.

In a C/C++ application, include the generated C header to use the CPS object name and
attribute identiers to create/delete CPS objects and set values for each attribute.

In Python applications, use the YANG module, object and attribute names directly. The CPS
Python engine automatically uses the extension library to derive the corresponding
identifiers for these names.

The following Python values are present in the top-level dictionary:

o data - A Python dictionary containing the actual values of an object. Each element in the
dictionary is a key-value pair, where the key is an attribute name and the value can be a
byte array or another dictionary. Depending on the object, the data dictionary may contain
other dictionaries and a CPS key_data attribute that contains the instance keys for the
object.

123

YANG MODELING OF CPS OBJECTS PROGRAMMABILITY

o key - A string that indicates the CPS key as a string or an alias

o operation - Indicates whether an object is related to a set, delete, create, or action
transaction (used when events are received).

CPS Object Dictionary Support

The CPS object dictionary APIs can access the meta-data for each YANG model. The
dictionary contains the following items for each YANG class or attribute:

o

static key of the element (including the elements hierarchy)

o

type of element

o documentation associated with the element

[

model type (attribute, attribute-list, object)

o

unique attribute identifier

You can access the CPS object dictionary in both C/C++ and Python. Refer to CPS API
Reference for more information.

Example: C Header Generated from YANG Model

This section shows an example of C header file generation from a YANG model and an
example of how to use the YANG attributes to configure OS10 using the CPS APl in a
Python script.

module dell-base-sflow {
namespace "http://www.dell.com/networking/dell-ops/dell-base-sflow";
prefix "base-sflow";

import dell-base-common {
prefix "base-cmn";
organization

"Dell Inc";

contact
"http://www.dell.com/support/softwarecontacts";

description
"This module contains a collection of YANG definitions provided

124

YANG MODELING OF CPS OBJECTS

by platfrom to manage sflow objects";

revision 2014-02-11 {
description
"Initial revision";

typedef traffic-path {
type enumeration {
enum "ingress" {
value 1;
description
"Enable sampling on Ingress packets";
}
enum "egress" {
value 2;
description
"Enable sampling of Egress packets";
}
enum "ingress-egress" {
value 3;
description
"Enable sampling of Ingress and Egress packets";

}
default "ingress-egress";

list entry {

key "id";

description
"sflow session attributes";

leaf id{
type uint32;
description
"Session id to uniquely identify a sflow session";

leaf ifindex {
type base-cmn:logical-ifindex;
mandatory true;
description
"Interface index which uniquely identifies physical
interface in the switch where packet sampling needs to
to be enabled";

PROGRAMMABILITY

125

YANG MODELING OF CPS OBJECTS

leaf direction {
type base-sflow:traffic-path;
mandatory true;
description
"Direction of packets in which sampling needs to be enabled";

leaf sampling-rate{
type uint32;
mandatory true;
description "Rate at which packets sampling needs to be enabled";

container socket-address {
description
"Address that sFlow Applications need to open UDP socket on
to receive sampled packets. Sampled packets from all sFlow
sessions are sent to a single UDP socket.";

leaf ip {
type base-cmn:1ipv4-address;
default 127.0.0.1;
}
leaf udp-port {
type uintl6;
default 20001;

In this example, the YANG model has two top-level containers:

o a YANG list named entry

o a YANG container named socket-address

The CPS YANG parser generates the following C header for this YANG model. The header
includes the following C definitions for the YANG entities:

o Category for the YANG model:
e cps_api_obj_CAT_BASE_SFLOW

o Subcategory for each YANG container:
e BASE_SFLOW_ENTRY_OBJ

PROGRAMMABILITY

126

YANG MODELING OF CPS OBJECTS PROGRAMMABILITY

e BASE_SFLOW_SOCKET_ADDRESS_OBJ

o Attribute IDs for each property in each YANG container; for example:
e BASE_SFLOW_ENTRY_IFINDEX
e BASE_SFLOW_ENTRY_DIRECTION

/*

* source file : dell-base-sflow.h
*/

/*

*

Copyright (c) 2015 Dell Inc.

*

Licensed under the Apache License, Version 2.0 (the "License"); you may

*

not use this file except in compliance with the License. You may obtain
* a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

*

THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION ANY IMPLIED WARRANTIES OR CONDITIONS OF TITLE, FITNESS

* FOR A PARTICULAR PURPOSE, MERCHANTABLITY OR NON-INFRINGEMENT.
*

*

*

* See the Apache Version 2.0 License for specific language governing
* permissions and limitations under the License.

*/

#ifndef DELL_BASE_SFLOW_H

#define DELL_BASE_SFLOW_H

#include "cps_api_operation.h"
#include "dell-base-common.h"
#include <stdint.h>
#include <stdbool.h>

#define cps_api_obj_CAT_BASE_SFLOW (27)

#define DELL_BASE_SFLOW_MODEL_STR "dell-base-sflow"

/*Enumeration base-sflow:traffic-path */

typedef enum {
BASE_SFLOW_TRAFFIC_PATH_INGRESS = 1, /*Enable sampling on Ingress packets*/
BASE_SFLOW_TRAFFIC_PATH_EGRESS = 2, /*Enable sampling of Egress packets*/
BASE_SFLOW_TRAFFIC_PATH_INGRESS_EGRESS = 3, /*Enable sampling of Ingress and Egress packetsx/

} BASE_SFLOW_TRAFFIC_PATH_t;

127

/*0bject base-sflow/entry */

typedef enum {

/*type=uint32*x/

/*Session id to uniquely identify a sflow session*/
BASE_SFLOW_ENTRY_ID = 1769474,

/*type=base-cmn:logical-ifindex*/
/*Interface index which uniquely identifies physical
interface in the switch where packet sampling needs to
to be enabled*/

BASE_SFLOW_ENTRY_IFINDEX = 1769475,

/*type=base-cmn:traffic-path*/
/*Direction of packets in which sampling needs to be enabledx/
BASE_SFLOW_ENTRY_DIRECTION = 1769476,

/*type=uint32*x/
/*Rate at which packets sampling needs to be enabled*/
BASE_SFLOW_ENTRY_SAMPLING_RATE = 1769477,

} BASE_SFLOW_ENTRY_t;

/*0bject base-sflow/socket-address */

typedef enum {

/*type=base-cmn:ipv4-address*/
BASE_SFLOW_SOCKET_ADDRESS_IP = 1769479,

/*type=uintl6x/
BASE_SFLOW_SOCKET_ADDRESS_UDP_PORT = 1769480,

} BASE_SFLOW_SOCKET_ADDRESS_t;

/* Object subcategories */

typedef enum{

/*sflow session attributes*/
BASE_SFLOW_ENTRY = 1769478,
BASE_SFLOW_ENTRY_OBJ = 1769478,

/*Address that sFlow Applications need to open UDP socket on

to receive sampled packets. Sampled packets from all sFlow

sessions are sent to a single UDP socket.*/
BASE_SFLOW_SOCKET_ADDRESS = 1769481,
BASE_SFLOW_SOCKET_ADDRESS_0BJ = 1769481,

} BASE_SFLOW_OBJECTS_t;

#endif

YANG MODELING OF CPS OBJECTS

PROGRAMMABILITY

128

YANG MODELING OF CPS OBJECTS PROGRAMMABILITY

Example: Configure sFlow using YANG and Python

The following Python example shows how to use a YANG model to configure a new sFlow
entry in OS10. The process of writing an application to configure OS10 is explained in more
detail in CPS Application Templates.

This example uses an OS10 Python utility named cps_utils to create CPS objects and CPS
Transactions.

import cps_utils
import nas_os_utils

Create a CPS object for the YANG container named 'entry'
cps_obj = cps_utils.CPSObject(module="'base-sflow/entry')

Add each property in the YANG container as an attribute to the CPS Object
cps_obj.add_attr ("ifindex", nas_os_utils.if_nametoindex('el01-003-0'))
cps_obj.add_attr ("direction", 1)

cps_obj.add_attr ("sampling-rate", 5000)

Pair the CPS object with a CPS Operation - in this case it is a Create operation.

cps_update = ('create',cps_obj.get())

Add the pair to the list of updates in a CPS transaction
cps_trans = cps_utils.CPSTransaction ([cps_update])

Commit the transaction

r = cps_trans.commit()

if not r:

print "Error"
else:

print "Success"

The cps_get_oid is a Python utility that executes an OS10 CPS Get APl on a YANG
container. The result displays the values configured in OS10 for all the attributes in the
YANG container.

$ cps_get_oid.py 'base-sflow/entry' Key: 1.27.1769478.1769474. base-sflow/entry/ifindex = 16 base-
sflow/entry/direction = 1 base-sflow/entry/sampling-rate = 5000 base-sflow/entry/id =1

129

PROGRAMMABILITY

YANG Model Reference

0OS10 provides the following YANG models to configure networking- and platform-related
functions.These YANG models are defined by the Network Adaptation and Platform
Adaptation Services.

YANG Models for Networking Features

‘ YANG Model Networking Feature

dell-base-acl.yang Access control lists (ACLs)
dell-base-common.yang Common definitions
dell-base-interface-common.yang Interfaces

dell-base-12-mac.yang Layer 2 MAC address

dell-base-lag.yang Port channels/ link aggregation groups (LAGs)
dell-base-mirror.yang Port mirroring
dell-base-phy-interface.yang Layer 1/physical layer (PHY) interfaces
dell-base-port-security.yang Port security protocols
dell-base-qgos.yang Quality of Service (QoS)
dell-base-routing.yang Routing protocols

dell-base-sflow.yang sFlow

dell-base-statistics.yang Diagnostic/statistical information
dell-base-stg.yang STP protocols
dell-base-switch-element.yang Global configuration parameters for NPU
dell-base-vlan.yang VLAN

130

YANG MODEL REFERENCE | PROGRAMMABILITY

YANG Models for Platform Functionality

Platform Function YANG Model

Platform Adaptation Service dell-base-pas.yang

Temperature Control dell-base-env-tempctl.yang
Common platform definitions dell-base-platform-common.yang

131

PROGRAMMABILITY

CPS Application Templates

This section provides templates for developing applications in C/C++ and Python,
including:

o Server applications
o Client applications
o Event publishers

o Event subscribers

Client applications subscribe to events; server applications publish events. However,
applications can act as both servers and clients, and can publish and subscribe to events.

C Template: CPS Server Application

This section describes the structure of a CPS server (object owner) implemented in C. It
illustrates the implementation of functions for:

o get operations (read function, xyz_read)
o set, create, delete, action operations (xyz_write)

o rollback of failed transactions (xyz_rollback)

VAR R TR R R R S R R T R S R R R S R S R SR R R R R SRR T R SR S R R R R R R R S e R S]

Template CPS API object server read handler function
This function is invoked by the CPS API service when a GET request

is placed for a registered CPS API object. The binding of CPS
API object key to the read handler function is done below.

KAAKKKKRKKRKR AR KAR R AR KARKAR KRR AR R AR R AR KA R AR R AR R ARk ko kA hhhhkxkhxkhkkkkk/

cps_api_return_code_t xyz_read(
void *context,
cps_api_get_params_t *param,
size_t key_idx

)

/* Allocate a response object, and add to response */

132

CPS APPLICATION TEMPLATES

cps_api_object_t response_obj;

response_obj = cps_api_object_list_create_obj_and_append(
param->list
)3
if (response_obj == CPS_API_OBJECT_NULL) {
/* Failed to allocate response object
=> Indicate an error
*/

return (cps_api_ret_code_ERR);

/* F1ll in response object */

cps_api_key_from_attr_with_qual(cps_api_object_key(response_obj),

cps_api_set_key_data(response_obj, ...);
cps_api_set_key_data(response_obj, ...);
cps_api_object_attr_add_...(response_obj, ...);
cps_api_object_attr_add_...(response_obj, ...);

/* Indicate GET response successful */

return (cps_api_ret_code_OK);}

[KKK IR F KA KK KA KA KKK KA A A K I A K hd Ak kA ok ok dohdokkok ok dkokdokkok ok kkkokkokkkkkkkokkkxk

Template CPS API object server write handler function

This function is invoked by the CPS API service when a SET request
is placed for a registered CPS API object. The binding of CPS
API object key to the write handler function is done below.

KA kK dhF A KR A KA KA KA AR A KA d A KR Ak dhkhkkkkhdokdkkkkhkhkkkkkkhkkhkkkxkkkkkkxk /

cps_api_return_code_t xyz_write(
void *context,
cps_api_transaction_params_t *param,
size_t index_of_element_being_updated

)

/* Extract the object given in the request */

cps_api_object_t request_obj;

PROGRAMMABILITY

133

request_obj = cps_api_object_list_get(
param->change_list,

index_of_element_being_updated

)3
if (request_obj == CPS_API_OBJECT_NULL) {
/* Failed to extract request object
=> Indicate error
*/

return (cps_api_ret_code_ERR);

/* Assume error response */

cps_api_return_code_t result = cps_api_ret_code_ERR;

/* Determine the type of write operation */

switch (cps_api_object_type_operation(
cps_api_object_key(request_obj)
)
) {
case cps_api_oper_SET:
/* SET operation requested */

/* Create the rollback object, i.e. an object to return
containing the old values for any attributes set, and

add to transaction
*/

cps_api_object_t rollback_obj;

rollback_obj = cps_api_object_list_create_obj_and_append(

param->prev
)3

if (rollback_obj == CPS_API_OBJECT_NULL) {
/* Failed to create rollback object */

break;

/* Assume SET successful */

result = cps_api_ret_code_OK;

/* For each attribute given in the request, .

cps_api_object_it_t attr_iter;

*/

CPS APPLICATION TEMPLATES

PROGRAMMABILITY

134

CPS APPLICATION TEMPLATES

cps_api_object_it_begin(request_obj, &attr_iter);
while (cps_api_object_it_valid(&attr_iter)) {
/* Get the attribute id from the attribute iterator */

cps_api_attr_id_t attr_id;

attr_id = cps_api_object_attr_id(attr_iter.attr);

/* Update the rollback object with the old value
of the attribute
*/
cps_api_object_attr_add_...(rollback_obj,
attr_id,

)3

/* Extract the attribute from the request object */

cps_api_object_attr_t attr;

attr = cps_api_object_attr_get(request_obj, attr_id);
if (attr == CPS_API_ATTR_NULL)) {
/* Failed to extract attribute
=> Indicate error
*/
result = cps_api_ret_code_ERR;

continue;

/* Extract the value of the attribute in the request
object
*/

value = cps_api_object_attr_data_....(attr);

/* Validate the requested attribute value, its
consistency with other attributes and/or existing
configuration, etc.

*/

/* If the whole request has been validated, do something with
the extracted values — program hardware,
take some action, etc.

*/

break;

PROGRAMMABILITY

135

case cps_api_oper_CREATE:
/* CREATE operation requested */

break;

case cps_api_oper_DELETE:
/* DELETE operation requested */

break;

case cps_api_oper_ACTION:
/* ACTION operation requested *x/

break;
default:

/* Invalid SET request type */

return (result);

[FRF IR IR F KA KA KA KA AR A KA d A K I A Kk dhdh ok k ok dohdokdok ok dkokdokkokkkkkokkokkkkkkkokkkxk

Template CPS API object server rollback handler function

KA kK F kKA KR A KA KA KA A KA KA A A KR A K hd A d kA Kk ok dkhdhkkkkhdkhkhkkkkhkhkkxkkkkkkxk /

cps_api_return_code_t xyz_rollback(

void *context,

cps_api_transaction_params_t *param,

size_t index_of_element_being_updated

)

/* Extract object to be rolled back */

cps_api_object_t rollback_obj;

rollback_obj = cps_api_object_list_get(
param->prev,
index_of_element_being_updated
)3
if (rollback_obj == CPS_API_OBJECT_NULL) {
/* Failed to extract rollback object
=> Indicate failure
*/

CPS APPLICATION TEMPLATES

PROGRAMMABILITY

136

return (cps_api_ret_code_ERR);

/* For each attribute to be rolled back, .. */
cps_api_object_it_t attr_iter;
cps_api_object_it_begin(rollback_obj, &attr_iter);
while (cps_api_object_it_valid(&attr_iter)) {
/* Get the attribute id from the attribute iterator */
cps_api_attr_id_t attr_id;
attr_id = cps_api_object_attr_id(attr_iter.attr);
/* Extract the attribute from the rollback object */
cps_api_object_attr_t attr;
attr = cps_api_object_attr_get(rollback_obj, attr_id);
if (attr == CPS_API_ATTR_NULL)) {

/* Failed to extract attribute

=> Indicate error
*/

result = cps_api_ret_code_ERR;
continue;
/* Extract the value of the attribute in the rollback
object
*/
value = cps_api_object_attr_data_....(attr);

/* Apply attribute value */

return (result);

CPS APPLICATION TEMPLATES

PROGRAMMABILITY

137

CPS APPLICATION TEMPLATES

[FFRK IR IR F KA KK KK AR A KA KK AR KR A K *F A KA A I *dhdohdh ok dkkdokdkokkkk ok kohkkkkkkokkkxk

Template mainline function for a CPS API object server
This function registers with the CPS API service, and registers handler
functions to be invoked by the CPS API service when CPS API requests

are made for certain CPS API objects.

KA KK I A KA A KA KKK KA R KKK KA A A K h A h A KR AR * ok ko hkhhdkhkhkkkhhkhkkxhhkkkkkxk /

cps_api_return_code_t init(void)
{ /* Obtain a handle for the CPS API service */

cps_api_operation_handle_t cps_hdl;
if (cps_api_operation_subsystem_init(&cps_hdl, 1) !=
cps_api_ret_code_0K
) {
/* Failed to obtain handle for CPS API service
=> Indicate an error

*/

return (cps_api_ret_code_ERR);

/* Allocate a CPS API object registration structure */

cps_api_registration_functions_t reg;

/* Assign the key of the CPS API object to be registered */

cps_api_key_init(®.key, ..);

/* Assign the handler functions to be invoked for this object */

reg._read_function = Xxyz_read;

reg._write_function xyz_write;

reg._rollback_function = xyz_rollback;
/* Use obtained handle for CPS API service */
reg.handle = cps_hdl;
/* Perform the object registration */
if (cps_api_register(®) != cps_api_ret_code_0K) {
/* Failed to register handler function with CPS API service

=> Indicate an error
*/

PROGRAMMABILITY

138

CPS APPLICATION TEMPLATES

return (cps_api_ret_code_ERR);

/* ALl done */

return (cps_api_ret_code_0K);
}

Python Template: CPS Server Application

This section describes the structure of a CPS server (object owner) implemented in Python.
It illustrates the implementation of transaction callback handler for set, create, delete,
action operations, as well a separate handler for get operations.

import time
import cps
import cps_utils

Define the get callback handler function
ddef get_callback(methods, params):
Append an object to the response, echoing back the key

from the request, and supplying some attributes

params[‘list’].append({‘key’: params[‘filter’][‘key’],
‘data’: {‘attr_1’: ‘value_1’,

‘attr_n’: ‘value_n’

¥

return True
Define the transaction callback handler function
def transaction_callback(methods, params):
if params[‘operation’] == ‘set’:
Set operation requested

Extract the attributes from the request object

attr_1 = params[‘change’][‘data’][‘attr_1"]
attr_n = params[‘change’][‘data’][‘attr_n’]

Do something with them -- program hardware,

PROGRAMMABILITY

139

CPS APPLICATION TEMPLATES PROGRAMMABILITY

update the configuration, etc.

return True

if params|[‘operation’] == ‘create’:

return True

if params|[‘operation’] == ‘delete’:

return True

if params|[‘operation’] == ‘action’:

return True

return False

Obtain a handle to the CPS API service

handle = cps.obj_init()

Register the above handlers to be run when a request is received
for the given key

cps.obj_register(handle,
key,

{ 'get’: get_callback,
"transaction’: transaction_callback

Let the handlers run

while True:
time.sleep(1000)

140

CPS APPLICATION TEMPLATES

C Template: CPS Client Application

This section describes the structure of a CPS client application implemented in C. It
illustrates the implementation of:

o get requests, including building keys and object lists

o set requests, using a transaction

[FKFKFK KKK I A KR AR K KA KA ARk kA Kk dh ok kA dkdokkok ok dkk ok kokkkxdkkdkokkkkkkkhkkkkxkk

Template to perform a CPS API GET request.

KA KK I KKK KKK KKK A AR KKK KA A A A h A I h kA kA hkhhdkhkhkhhdhhkhkkkhhkhkkxhrkkkkkxk /

cps_api_return_code_t do_get_request()
{

/* Allocate and initialize the get request structure */
cps_api_get_params_t get_req;

if (cps_api_get_request_init(&get_req) != cps_api_ret_code_OK) {
/* Failed to initialize get request
=> Indicate error
*/

return (cps_api_ret_code_ERR);

/* Assume failure response *x/
cps_api_return_code_t result = cps_api_ret_code_ERR;

do {
/* Allocate the request object and add it to the get
request
*/

cps_api_object_t request_obj;

request_obj = cps_api_object_list_create_obj_and_append(
get_req.filters
)3
if (request_obj == CPS_API_OBJECT_NULL) {
/* Failed to allocate response object and add it to
get request
*/

PROGRAMMABILITY

141

CPS APPLICATION TEMPLATES

break;

/* Set the key and key attributes for the request object.
(The actual object key and key attribute ids, types and
values will of course depend on which object is being
requested; such dependent values are indicated by ellipses
below. Consult the data model for the desired object.)

*/

cps_api_key_from_attr_with_qual(cps_api_object_key(
request_obj

)5

)3

cps_api_set_key_data(request_obj, ...);
cps_api_set_key_data(request_obj, ...);

cps_api_object_attr_add_...(request_obj, ...);
cps_api_object_attr_add_...(request_obj, ...);

/* Do the GET request */

if (cps_api_get(&get_req) != cps_api_ret_code_OK) {
/* GET request failed */

break;

/* Extract the response object */

cps_api_object_t response_obj;

response_obj = cps_api_object_list_get(get_req.list, 0);

if (response_obj == CPS_API_OBJECT_NULL) {
/* Failed to extract the response object */

break;

/* Extract the desired object attributes from the
response object. (The actual object attributes
will depend on the nature of the response object;
such dependent values are indicated by ellipses
below. Consult the appropriate data model for
details.)

*/

PROGRAMMABILITY

142

cps_api_object_attr_t attr;
attr = cps_api_object_attr_get(response_obj, ..);
if (attr == CPS_API_ATTR_NULL) {

/* Failed to extract expected attribute */

break;

/* Get the value for the attribute */

. = Cps_api_object_attr_data_...(attr);

/* Do something with the extracted value */

/* Indicate success */

result = cps_api_ret_code_0K;
} while (0);

cps_api_get_request_close(&get_req);

return (result);

[KKK IR F KA KK KA KA KKK KA A A K I A K hd Ak kA ok ok dohdokkok ok dkokdokkok ok kkkokkokkkkkkkokkkxk

Template to perform a CPS API SET

KA KK F A KA KKK KA KA KA A KA KA A A K I A K h A KA Ak hdkhdhdkkkhdkohkhkkkkhkhkkxkrkkkkkxk /

cps_api_return_code_t do_set_request()
{
cps_api_transaction_params_t xact ;
if (cps_api_transaction_init(&xact) != cps_api_ret_code_0K) {
return (cps_api_ret_code_ERR);

cps_api_return_code_t result = cps_api_ret_code_ERR;

do {
cps_api_object_t request_obj;

request_obj = cps_api_object_create() ;

CPS APPLICATION TEMPLATES

PROGRAMMABILITY

143

CPS APPLICATION TEMPLATES

if (request_obj == CPS_API_OBJECT_NULL) {
break;
/* Set key and attributes in request object */
cps_api_key_from_attr_with_qual(cps_api_object_key(
request_obj
))
)3
cps_api_set_key_data(request_obj, ...);

cps_api_set_key_data(request_obj, ...);

cps_api_object_attr_add_...(request_obj, ...);
cps_api_object_attr_add_...(request_obj, ...);

if (cps_api_set(&xact, request_obj) != cps_api_ret_code_0K) {
cps_api_object_delete(request_obj);

break;

result = cps_api_commit(&xact);

} while (0);

cps_api_transaction_close(&xact);

return (result);

Python Template: CPS Client Application

This section describes the structure of a CPS client application implemented in Python. It

illustrates the execution of a get request.

import cps

import cps_utils

Example GET request

cps_get_response = []
cps.get([cps.key_from_name('observed', 'base-pas/chassis')],

cps_get_response

)

PROGRAMMABILITY

144

CPS APPLICATION TEMPLATES PROGRAMMABILITY

chassis_vendor_name = cps_attr_get(cps_get_response[0@]['data’'],
'base-pas/chassis/vendor-name'

)

C Template: CPS Event Publisher Application

This section describes the structure of a CPS event publisher implemented in C. It illustrates
the initialization of the event service, connection to the CPS service, and event publish
operation. Note that the object must be deallocated (deleted) after being published.

/**
Template to perform a CPS API SET

This function is a sample of how to compose a CPS API get request
object, and how to extract data from the GET response.

KA KK I A KR KKK KA KA AR KKK KA A A K I A * A KR ARk hhdh ko hhdkohkhkkkkhkhkkxhrkkkkkxk /

cps_api_return_code_t event_publish(cps_api_object_t event_obj)
{
static bool init_flag = false;

static cps_api_event_service_handle_t handle;

if (!init_flag) {
/* Not initialized

=> Connect to CPS event subsystem

*/

if (cps_api_event_service_init() != cps_api_ret_code_0K) {
return (cps_api_ret_code_ERR);

}

if (cps_api_event_client_connect(&handle) !=
cps_api_ret_code_0K
) {

return (cps_api_ret_code_ERR);

/* Mark as initialized */

init_flag = true;

cps_api_return_code_t result;

145

CPS APPLICATION TEMPLATES PROGRAMMABILITY

/* Publish the given object */

result = cps_api_event_publish(handle, event_obj);
/* Consume the given object */
cps_api_object_delete(event_obj);

return (result);

Python Template: CPS Event Publisher Application

import cps
import cps_utils

handle = cps.event_connect()

obj = cps_utils.CPSObject('base-port/interface',qual="'observed’,
data= {"ifindex":23})

cps.event_send(handle, obj.get())

C Template: Event Subscriber Application

This section describes the structure of a CPS event subscriber implemented in C. It
illustrates the initialization of the event service and event processing thread, registration of
the event handler function and event processing callback. The key list specified in the
registration is used to determine the events that are delivered to this application (in this
case, the list contains a single element).

bool event_handler(cps_api_object_t object, void *context)
{ /* Extract key and attributes of received object */

/* Do something with that information */

}
cps_api_return_code_t event_subscribe()
{ /* Connect to the CPS API event service */

if (cps_api_event_service_init() != cps_api_ret_code_0OK) {
return (cps_api_ret_code_ERR);

146

CPS APPLICATION TEMPLATES PROGRAMMABILITY

if (cps_api_event_thread_init() != cps_api_ret_code_0K) {

return (cps_api_ret_code_ERR);

/* Register the event handler function */

cps_api_key_t key;

cps_api_key_init(&key, ..);

cps_api_event_reg_t reg;

reg.objects key;

reg.number_of_objects = 1;

if (cps_api_event_thread_reg(®, event_handler, 0)
'= cps_api_ret_code_0K
) {

/* Failed to register handler *x/

return (cps_api_ret_code_ERR);

/* Indicate success */

return (cps_api_reg_code_0K);

Python Template: Event Subscriber Application

This section describes the structure of a CPS event subscriber implemented in Python. The
application registers for events, and then waits for events in a loop.

import cps
import cps_utils

handle = cps.event_connect()
cps.event_register(handle, cps_api_object_key)

while True:
ev = cps.event_wait(handle)

if ev[‘'key’'] == ...:
elif ev['key'] == ...:

147

PROGRAMMABILITY

CPS Application Examples

This section provides examples of how to write C and Python applications that use the CPS
API to:

o Configure interfaces.

[o]

Set an IP address.

o

Configure a route.

o

Configure an ACL.

[o]

Add/delete a static MAC address in the MAC address table.

[

Register events.

Example: Create a VLAN using Python

1. Refer to the YANG model dell-base-vlan.yang that defines the VLAN object and its
attributes.

2. Import the CPS utility Python library.

import cps_utils

3. Create the CPS object and populate the VLAN attributes

Create a CPS object based on the YANG container entry in the YANG module base-
vlan.

cps_obj = cps_utils.CPSObject('base-vlan/entry')

Fill the 'id" attribute of this object with the VLAN ID.

cps_obj.add_attr ("id", 100)}

148

CPS APPLICATION EXAMPLES PROGRAMMABILITY

4. Associate a CPS operation with the CPS object. Use the CREATE operation to create a
new VLAN

cps_update = ('create', cps_obj.get())

5. Add the CPS operation and object pair to a new CPS transaction

transaction = cps_utils.CPSTransaction([cps_update])

6. Commit the transaction

ret = transaction.commit()

7. Verify the return value.

if not ret: raise RuntimeError ("Error creating Vian")

Code block: Create a VLAN using Python

#import cps_utils

Create CPS Object
cps_obj = cps_utils.CPSObject('base-vlan/entry')

Populate the attributes for the CPS Object
cps_obj.add_attr ("id", 100)

Associate a CPS Operation with the CPS Object
cps_update = ('create', cps_obj.get())

Add the CPS Operation,0bj pair to a new CPS Transaction
transaction = cps_utils.CPSTransaction([cps_update])

Commit the transaction

ret = transaction.commit()

Check for failure
if not ret:

149

CPS APPLICATION EXAMPLES PROGRAMMABILITY

raise RuntimeError ("Error creating Vlan")

print "Successfully created"

Verify the VLAN creation using CPS get

$ cps_get_oid.py 'base-vlan/entry'

Key: 1.31.2031630.2031618.
base-vlan/entry/id = 100
base-vlan/entry/learning-mode = 1
base-vlan/entry/admin-status = 0
base-vlan/entry/ifindex = 42
base-vlan/entry/name = brl00
base-vlan/entry/mac-address = 000000000000

H NOTE: OS10 allocates an ifindex for each VLAN created. Further CPS set, get
operations can use this ifiIndex as the key.

Verify the VLAN creation using Linux Commands

brctl show
bridge name bridge id STP enabled interfaces
br100 8000.000000000000 no

Example: Add a VLAN Port using Python
1. Create a CPS Object and populate the VLAN attributes.

o Import nas_os_utils python library for converting interface name to index.

import nas_os_utils

150

CPS APPLICATION EXAMPLES

o Create a CPS object based on the YANG container named ‘entry’ from the YANG module
‘base-vlan'.

cps_obj = cps_utils.CPSObject('base-vlan/entry')

o Set the IfIndex that was allocated by OS10 when the VLAN is created.

vlan_ifindex=42
cps_obj.add_attr ("ifindex", vlan_ifindex)

o Add ports to the VLAN by setting the untagged-ports attribute. This is a leaf-list attribute
that can be set using a Python list.

cps_obj.add_list ("untagged-ports", [nas_os_utils.if_nametoindex('el01-001-0')])

The €101-001-0 interface is added as an untagged member of the VLAN.

2. Associate an operation with the CPS object. Use a set operation to modify the property
of an existing VLAN

cps_update = ('set', cps_obj.get()) &$10;

3. Add the CPS operation and object pair to a new CPS transaction.

transaction = cps_utils.CPSTransaction([cps_update])

4. Commit the transaction.

ret = transaction.commit()

PROGRAMMABILITY

151

CPS APPLICATION EXAMPLES PROGRAMMABILITY

5. Verify the return value.

if not ret:

Code block: Add a VLAN Port using Python

#Python code block to add port to vlan

import cps_utils

Create CPS Object

cps_obj=cps_utils.CPSObject('base-vlan/entry')

Populate the Vlan attributes

vlan_ifindex=42

cps_obj.add_attr ("ifindex", vlan_ifindex)

Add one or more ports to the untagged-ports property of the VLAN
cps_obj.add_list ("untagged-ports", [16])

Associate a CPS Set Operation with the CPS Object
cps_update = ('set', cps_obj.get())

Add the CPS operation,obj pair to a new CPS Transaction
transaction = cps_utils.CPSTransaction([cps_update])

Commit the transaction

ret = transaction.commit()

Check for failure

if not ret:

raise RuntimeError ("Error in delete port to Vlan")

Verify the VLAN port addition using CPS get

$ cps_get_oid.py 'base-vlan/entry'

Key: 1.31.2031630.2031618.
base-vlan/entry/id = 100
base-vlan/entry/learning-mode = 1
base-vlan/entry/ifindex = 42
base-vlan/entry/admin-status = 0
base-vlan/entry/untagged-ports = 16
base-vlan/entry/ifindex = 42
base-vlan/entry/name = brl00
base-vlan/entry/mac-address = 000000000000

152

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Verify the VLAN port addition using Linux Commands

$ brctl show
bridge name bridge id STP enabled interfaces
br100 8000.90bl1cf4aab3 no el01-001-0

Example: Delete a VLAN Port using Python

1. Create a CPS object and populate the VLAN attributes and the port to be deleted in the
CPS object.

o Create a CPS object based on the YANG container entry in the YANG module base-
vlan.

cps_utils.CPSObject('base-vlan/entry')

o Set the IfiIndex that was allocated by OS10 when the VLAN is created.

vlan_ifindex=42 cps_obj.add_attr ("ifindex", vlan_ifindex)

o Set an empty port list for the untagged-ports attribute to remove the previous port
configuration.

cps_obj.add_list ("untagged-ports", [])

2. Associate a CPS operation with the CPS object. Use a set operation to remove ports from
the existing VLAN.

cps_update = ('set', cps_obj.get())

3. Add the CPS operation and object pair to a new CPS transaction.

transaction = cps_utils.CPSTransaction([cps_update])

153

CPS APPLICATION EXAMPLES

4. Commit the transaction.

ret = transaction.commit()

5. Verify the return value.

if not ret: raise RuntimeError ("Error adding port to Vlan")

Code block: Delete a VLAN Port using Python

#Python code block to add port to vlan

import cps_utils

Create CPS Object

cps_obj=cps_utils.CPSObject('base-vlan/entry')

Populate the Vlan attributes

vlan_ifindex=42

cps_obj.add_attr ("ifindex", vlan_ifindex)

Add an empty port list to remove the untagged port
cps_obj.add_list ("untagged-ports", [])

Associate a CPS Operation with the CPS Object
cps_update = ('set', cps_obj.get())

Add the CPS operation,obj pair to a new CPS Transaction
transaction = cps_utils.CPSTransaction([cps_update])
Commit the transaction

ret = transaction.commit()

Check for failure

if not ret:

raise RuntimeError ("Error in delete port to Vlan")

Verify the VLAN port deletion using CPS get

$ cps_get_oid.py 'base-vlan/entry'

Key: 1.31.2031630.2031618.
base-vlan/entry/id = 100
base-vlan/entry/learning-mode = 1
base-vlan/entry/ifindex = 42
base-vlan/entry/admin-status = 0
base-vlan/entry/ifindex = 42
base-vlan/entry/name = brl00
base-vlan/entry/mac-address = 000000000000

PROGRAMMABILITY

154

CPS APPLICATION EXAMPLES

Verify the VLAN port deletion using Linux Commands

$ brctl show

bridge name bridge id STP enabled interfaces
br100 8000.000000000000 no

Example: Delete a VLAN using Python

1. Populate the VLAN attributes and delete the CPS object. Use the object entry in the
Yang module base-vlan. Enter the VLAN ID in the id attribute in the object.

vlan_ifindex = 42
vlan_attributes = {"ifindex": vlan_ifindex} cps_obj = cps_utils.CPSObject('base-vlan/entry',

data=vlan_attributes)

The CPS object is created and attributes are added in a single API call.

2. Associate a CPS operation with the CPS object. Use a delete operation to remove the
existing VLAN.

cps_update = ('delete', cps_obj.get())

3. Add the CPS operation and object pair to a new CPS transaction

transaction = cps_utils.CPSTransaction([cps_update])

4. Commit the transaction

ret = transaction.commit()

5. Verify the return value.

if not ret:
raise RuntimeError ("Error delete Vlan")

PROGRAMMABILITY

155

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Code block: Delete a VLAN using Python

#Python code block to Delete vlan

import cps_utils

Populate the attributes for the CPS Object
vlan_ifindex=42

vlan_attributes = {"ifindex": vlan_1ifindex}

Create CPS Object

cps_obj=cps_utils.CPSObject('base-vlan/entry', data=vlan_attributes)
Create the CPS Transaction and delete the CPS Object
cps_update = ('delete', cps_obj.get())

transaction = cps_utils.CPSTransaction([cps_update])

Commit the transaction

ret = transaction.commit()

Check for failure

if not ret:

raise RuntimeError ("Error Deleting Vlan")

Verify the VLAN deletion using CPS get

cps_get_oid.py 'base-vlan/entry'
,

The CPS object is empty and not listed in the get response.

Verify the VLAN deletion using Linux Commands

brctl show

brctl displays vlan 100 as deleted.

Example: Configure an IP Address using Python

1. Refer to the YANG model dell-base-1ip.yang which defines the IP address object and
its attributes.

2. Import the CPS utility Python library.

import cps_utils

156

CPS APPLICATION EXAMPLES

3. Populate base-ip attributes and create a CPS object. Enter the Ifindex and prefix length of

the interface to set the IP address.

ifindex=16
ip_addr="10.0.0.1"
pfix_len=16
ip_attributes = {"base-ip/ipv4/ifindex": ifindex,"ip":ip_addr,"prefix-length":pfix_len}
4. Enter ipv4 as the IP attribute type to convert between the string and byte-array format.
cps_utils.add_attr_type('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps_utils.CPSObject('base-ip/ipv4/address',data=ip_attributes)

5. Create the CPS transaction and add the CPS object.

cps_update = ('create', cps_obj.get())

6. Add the CPS operation and object pair to a new CPS transaction.

transaction = cps_utils.CPSTransaction([cps_update])

7. Commit the transaction.

ret = transaction.commit()

8. Verify the return value.

if not ret:
raise RuntimeError ("Error creating Vlan")

PROGRAMMABILITY

157

CPS APPLICATION EXAMPLES

Code block: Configure an IP Address using Python

#Python code block to set ip address
import cps_utils
Populate the attributes for the CPS Object
ifindex=16
ip_addr="10.0.0.1"
pfix_len=16
ip_attributes = {"base-ip/ipv4/ifindex": ifindex,"ip":1ip_addr,"prefix-length":pfix_len}
Create CPS Object
cps_utils.add_attr_type('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps_utils.CPSObject('base-ip/ipv4/address’',data=ip_attributes)
Create the CPS Transaction and delete the CPS Object
cps_update = ('create', cps_obj.get())
transaction = cps_utils.CPSTransaction([cps_update])
Commit the transaction
Check for failure
if not ret:
raise RuntimeError ("Error ")

Verify IP address configuration using CPS get

$ cps_get_oid.py 'base-ip/ipv4/address’

Key: 1.34.2228241.2228246.2228236.2228240.2228228.
base-ip/ipv4/address/prefix-length = 16
base-ip/ipv4/vrf-id = 0

base-ip/ipv4/name = el01-001-0
base-ip/ipv4/ifindex = 16

base-ip/ipv4/address/ip = 02000001

Verify IP address configuration using Linux Commands

$ ip addr show e101-001-0
16: el101-001-0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 500
link/ether 90:bl:1c:f4:aa:b3 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.1/16 scope global el01-001-0
valid_1ft forever preferred_lft forever

PROGRAMMABILITY

158

CPS APPLICATION EXAMPLES

Example: Delete an IP Address using Python

1. Import the CPS utility Python library.

import cps_utils

2. Populate base-ip attributes and delete the CPS object. Enter the Ifindex, IP address, and
rpefix length of the interface.

1dx=16

ip_addr="10.0.0.1"

pfix_len=16

ip_attributes = {"base-ip/ipv4/ifindex": idx,"ip":ip_addr,"prefix-length":pfix_len}

3. Add ipv4 as the IP attribute type to convert the IP address between string and byte-
array format.

cps_utils.add_attr_type('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps_utils.CPSObject('base-ip/ipv4/address’',data=ip_attributes)

4. Create the CPS transaction and add the CPS object.

cps_update = ('create', cps_obj.get())

5. Add the CPS operation and object pair to a new CPS transaction.

transaction = cps_utils.CPSTransaction([cps_update])

6. Commit the transaction.

ret = transaction.commit()

PROGRAMMABILITY

159

CPS APPLICATION EXAMPLES

7. Verify the return value.

if not ret:
raise RuntimeError ("Error creating Vlian")

Code block: Delete an IP Address using Python

#Python code block to Delete ip address
import cps_utils
Populate the attributes for the CPS Object
idx=16
ip_addr="10.0.0.1"
pfix_len=16
ip_attributes = {"base-ip/ipv4/ifindex": idx,"ip":ip_addr,"prefix-length":pfix_len}
Create CPS Object
cps_utils.add_attr_type('base-ip/ipv4/address/ip',"ipv4")
cps_obj=cps_utils.CPSObject('base-ip/ipv4/address’',data=ip_attributes)
Create the CPS Transaction and delete the CPS Object
cps_update = ('delete', cps_obj.get())
transaction = cps_utils.CPSTransaction([cps_update])
Commit the transaction
Check for failure
if not ret:
raise RuntimeError ("Error ")

Verify the IP address deletion using CPS get

$ cps_get_oid.py 'base-ip/ipv4/address’

The return indicates that e101-001-0 has no IP address.

Verify the IP address deletion using Linux commands

$ ip addr show el01-001-0
16: el01-001-0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 500
link/ether 90:bl:1c:f4:aa:b3 brd ff:ff:ff:ff:ff:ff

PROGRAMMABILITY

160

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Example: Configure a Route using Python

1. Refer to the YANG model dell-base-route.yang which defines a route object and its
attributes.

2. Import the CPS utility and netaddr Python library.

import cps_utils
import socket
import netaddr as net

3. Populate the route attributes and create the CPS object. Use the object entry in the
YANG module base-route. Enter the version, route prefix and prefix length.

version = 'ipv4'
route_ip = '70.5.5.0'

obj = cps_utils.CPSObject('base-route/obj/entry"')

obj.add_attr("vrf-id", 0)

if version == 'ipv4':
obj.add_attr("af", socket.AF_INET)
elif version == 'ipv6':

obj.add_attr("af", socket.AF_INET6)
ip = net.IPNetwork(route_1ip)
obj.add_attr_type("route-prefix", version)

obj.add_attr("route-prefix", str(ip.network))
obj.add_attr("prefix-len", int(ip.prefixlen))

4. Populate the next-hop attributes and create the CPS object. The next-hop attributes are
a list in the YANG model. Add multiple next hops to create ECMP routes. This example uses
one next hop.

nh_addr = '1.1.1.2°'
1 = ["nh-1ist", "0", "nh-addr"]

obj.add_embed_attr(1l, nh_addr)
obj.add_attr("nh-count", 1)

161

5. Create the CPS transaction and add the CPS object.

cps_update = ('create', obj.get())
transaction = cps_utils.CPSTransaction([cps_update])

ret = transaction.commit()

6. Verify the return code.

if not ret:
raise RuntimeError ("Error creating Route")

Code block: Configure a Route using Python

#Python block to create a route
#File name - route_create

import cps_utils

import socket

import netaddr as net
#Populate the attributes
ersion = 'ipv4'

route_ip = '70.5.5.0"'

obj = cps_utils.CPSObject('base-route/obj/entry')

obj.add_attr("vrf-id", 0)

if version == '{ipv4':
obj.add_attr("af", socket.AF_INET)
elif version == 'ipv6':

obj.add_attr("af", socket.AF_INET6)
ip = net.IPNetwork(route_ip)
obj.add_attr_type("route-prefix", version)
obj.add_attr("route-prefix", str(ip.network))

obj.add_attr("prefix-len", int(ip.prefixlen))

nh_addr = '1.1.1.2"

CPS APPLICATION EXAMPLES

PROGRAMMABILITY

162

CPS APPLICATION EXAMPLES PROGRAMMABILITY

1 = ["nh-1ist", "0", "nh-addr"]
obj.add_embed_attr(l, nh_addr)
obj.add_attr("nh-count", 1)

print obj.get()

cps_update = ('create', obj.get())
transaction = cps_utils.CPSTransaction([cps_update])

ret = transaction.commit()

if not ret:
raise RuntimeError ("Error creating Route")

Verify the route creation using Linux Commands

$ ip route
1.1.1.0/24 dev el01-001-0 proto kernel scope link src 1.1.1.1
70.5.5.0 via 1.1.1.2 dev el01-001-0 proto none

Example: Delete a Route using Python

1. Import the CPS utility and netaddr Python library.

import cps_utils
import socket
import netaddr as net

2. Populate the route attributes and create the CPS object. Use the object entry in the
YANG module base-route. Enter the version, route prefix, and prefix length.

version = 'ipv4'
route_ip = '70.5.5.0'

obj = cps_utils.CPSObject('base-route/obj/entry"')

obj.add_attr("vrf-id", 0)

if version == 'ipv4':
obj.add_attr("af", socket.AF_INET)
elif version == 'ipv6':

163

CPS APPLICATION EXAMPLES PROGRAMMABILITY

obj.add_attr("af", socket.AF_INET6)
ip = net.IPNetwork(route_1ip)
obj.add_attr_type("route-prefix", version)

obj.add_attr("route-prefix", str(ip.network))
obj.add_attr("prefix-len", int(ip.prefixlen))

3. Create the CPS transaction and add the CPS object.

cps_update = ('delete', obj.get())
transaction = cps_utils.CPSTransaction([cps_update])

ret = transaction.commit()

4. Verify the return code.

if not ret: raise RuntimeError ("Error creating Route")

Code block: Delete a Route using Python

#Python code block to delete a route
#File name - route_delete

import cps_utils
import socket

import netaddr as net

version = 'ipv4'
route_ip = '70.5.5.0"'

obj = cps_utils.CPSObject('base-route/obj/entry')

obj.add_attr("vrf-id", 0)

if version == '{pv4':
obj.add_attr("af", socket.AF_INET)
elif version == 'ipv6':

obj.add_attr("af", socket.AF_INET6)

ip = net.IPNetwork(route_ip)

164

CPS APPLICATION EXAMPLES PROGRAMMABILITY

obj.add_attr_type("route-prefix", version)
obj.add_attr("route-prefix", str(ip.network))
obj.add_attr("prefix-len", int(ip.prefixlen))

print obj.get()

cps_update = ('delete', obj.get())
transaction = cps_utils.CPSTransaction([cps_update])

ret = transaction.commit()

if not ret:

raise RuntimeError ("Error deleting Route")

Verify the route deletion using Linux commands

0S10:~# ip route
1.1.1.0/24 dev el01-001-0 proto kernel scope link src 1.1.1.1
70.5.5.0 via 1.1.1.2 dev el01-001-0 proto none

0S10:~# python route_delete

{'data': {'base-route/obj/entry/prefix-len': bytearray(b' \x00\x00\x00'), 'base-route/obj/entry/vrf-id':
bytearray(b'\x00\x00\x00\x00'), 'base-route/obj/entry/af': bytearray(b'\x02\x00\x00\x00'), 'base-
route/obj/entry/route-prefix': 'F\x05\x05\x00'}, 'key':
'1.26.1704016.1703992.1703995.1703980.1703978.1703979. '}

0S10:~# ip route
1.1.1.0/24 dev el01-001-0 proto kernel scope link src 1.1.1.1

Configure an ACL using Python - Prerequisite Steps

1. Refer to the YANG model dell-base-acl.yang which defines an ACL object and
attributes.

2. Import the CPS utility Python library.

import cps_utils

165

CPS APPLICATION EXAMPLES PROGRAMMABILITY

3. Create a YANG enum map. A CPS python application does not automatically map the
YANG model enum name to a number.

e_stg = {'INGRESS': 1, 'EGRESS': 2}

e_ftype = {'SRC_MAC': 3, 'DST_MAC': 4, 'SRC_IP': 5, 'DST_IP': 6,
"IN_PORT': 9, 'DSCP': 21}
e_atype = {'PACKET_ACTION': 3, 'SET_TC': 10}

e_ptype = {'DROP': 1}

4. Register the attribute type with the CPS utility for attributes with non-integer values.

type_map = {
'base-acl/entry/SRC_MAC_VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC_VALUE/mask': 'mac',

}

for key,val in type_map.items():

cps_utils.cps_attr_types_map.add_type(key, val)

Example: Create an ACL table using Python

An ACL table groups ACL entries and allows a packet to match one of the entries in the
group. A packet can simultaneously match ACL entries in different tables. The table priority
determines the order in which match criteria are applied.

1. Follow the procedure in Configure an ACL using Python - Prerequisite Steps.

2. Create the CPS Object and populate the attributes. Create a CPS object based on the
YANG container table in the YANG model base-acl.

cps_obj = cps_utils.CPSObject(module='base-acl/table"')

3. Set the stage and priority.

cps_obj.add_attr ('stage', e_stg['INGRESS'])
cps_obj.add_attr ('priority', 99)

166

CPS APPLICATION EXAMPLES

The allowed-match-list attribute is a YANG leaf list, which takes multiple values provided
with a Python list.

cps_obj.add_list ('allowed-match-fields', [e_ftype['SRC_MAC'],
e_ftype['DST_IP'],
e_ftype['DSCP'],
e_ftype["IN_PORT']])

4. Associate the CPS object with a CPS operation.

cps_update = ('create', cps_obj.get())

5. Add the CPS operation and object pair to a new CPS transaction. Each CPS transaction
can hold multiple CPS operation and object pairs.

cps_trans = cps_utils.CPSTransaction([cps_update])

6. Commit the transaction.

r = cps_trans.commit()
if not r:

raise RuntimeError ("Error creating ACL Table")

7. OS10 allocates an ID for each new ACL table. Retrieve this ID and use it as the key for
future get, set, and delete operations on the ACL table.

cps_get_val = cps_utils.CPSObject (module='base-acl/table', obj=r[0@]['change'])
tbl_id = cps_get_val.get_attr_data ('id')
print "Successfully created ACL Table " + str(tbl_1id)

Code Block: Create an ACL Table using Python

#1/usr/bin/python

Simple Base ACL CPS config using the generic CPS Python module and utilities.

PROGRAMMABILITY

167

Create ACL Table

CPS APPLICATION EXAMPLES

Create ACL Entry to Drop all packets received on specific port from specific Src MAC

import cps_utils
import nas_os_utils

Yang Enum name to number map

e_stg = {"INGRESS': 1, 'EGRESS': 2}

e_ftype = {'SRC_MAC': 3, 'DST_MAC': 4, 'SRC_IP': 5, 'DST_IP': 6,
"IN_PORT': 9, 'DSCP': 21}

e_atype = {'PACKET_ACTION': 3, 'SET_TC': 10}

e_ptype = {'DROP': 1}

Teach CPS utility about the type of each attribute
type_map = {
'base-acl/entry/SRC_MAC_VALUE/addr': 'mac',
'base-acl/entry/SRC_MAC_VALUE/mask': 'mac',
}
for key,val in type_map.items():

cps_utils.cps_attr_types_map.add_type(key, val)

Create ACL Table

#

Create CPS Object and fill leaf attributes

cps_obj = cps_utils.CPSObject(module="'base-acl/table')

cps_obj.add_attr ('stage', e_stg['INGRESS'])

cps_obj.add_attr ('priority', 99)

Populate the leaf-list attribute

cps_obj.add_list ('allowed-match-fields', [e_ftype['SRC_MAC'],
e_ftype['DST_IP'],
e_ftype['DSCP'],
e_ftype["IN_PORT']])

Associate the CPS Object with a CPS operation
cps_update = ('create', cps_obj.get())

Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps_update])

Commit the CPS transaction
r = cps_trans.commit()
if not r:
raise RuntimeError ("Error creating ACL Table")
ret = cps_utils.CPSObject (module='base-acl/table', obj=r[0]['change'])
tbl_id = ret.get_attr_data ('id')
print "Successfully created ACL Table " + str(tbl_1id)

PROGRAMMABILITY

168

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Verify the ACL table creation in OS10

cps_get_oid.py 'base-acl/table’

Key: 1.25.1638504.1638499.
base-acl/table/npu-id-list = 0
base-acl/table/stage = 1

base-acl/table/priority = 99
base-acl/table/allowed-match-fields = 3,6,9,21
base-acl/table/id = 2

Example: Create an ACL Entry using Python
An ACL entry is a rule that consists of:

o Set of filters that define packets to be matched.

o Set of actions to be performed on the matched packets.
1. Follow the procedure in Configure an ACL using Python - Prerequisite Steps.

Import nas_os_utils python library for converting interface name to index.

import nas_os_utils

2. Create the CPS object and enter the leaf attributes. Create a CPS object based on the
YANG container entry in the YANG model base-acl.

cps_obj = cps_utils.CPSObject(module='base-acl/entry')

3. Enter the ID of the ACL table that you created in the previous example to indicate the
group to which this ACL entry belongs. The priority value determines the sequence of ACL
rule lookup in the ACL table group.

cps_obj.add_attr ('table-id', tbl_id) cps_obj.add_attr ('priority', 512)

169

CPS APPLICATION EXAMPLES

4. Enter the filters that define the packets to be matched. The filter attribute is a YANG
nested list. The add_embed_attr() function is used to create multiple instances for nested
lists. Each filter instance is made up of 2 attributes - match-type and match-value.

NOTE: Use the correct match-value attribute name depending on the value
assigned to the match-type (eg: Use attribute name SRC_MAC_VALUE when

match-type is SRC_MAC).

o Filter 1 - Match packets with a specific source MAC address.

cps_obj.add_embed_attr (['match','0','type'], e_ftype['SRC_MAC'])
cps_obj.add_embed_attr (['match','®','SRC_MAC_VALUE','addr'],
'50:10:6€:00:00:00', 2)

o

Filter 2 - Match packets received on a specific port.

cps_obj.add_embed_attr (['match','1l','type'], e_ftype['IN_PORT'])
cps_obj.add_embed_attr (['match','1','IN_PORT_VALUE'], nas_os_utils.if_nametoindex('el01-001-0"'))

5. Specify actions to be applied on matched packets. The action attribute is a YANG nested
list. The add_embed_attr() function is used to create multiple instances for nested lists.
Each action instance is made up of 2 attributes - action-type and action-value.

NOTE: Use the correct action-value attribute name depending on the value
assigned to the action-type (eg: Use attribute name PACKET_ACTION_VALUE

when action-type is PACKET_ACTION).

o Action - Drop
cps_obj.add_embed_attr (['action','0','type'l], e_atype['PACKET_ACTION'])

cps_obj.add_embed_attr (['action','®','PACKET_ACTION_VALUE'], e_ptypel['DROP'])

6. Associate the CPS Object with a CPS operation.

cps_update = ('create', cps_obj.get())

PROGRAMMABILITY

170

CPS APPLICATION EXAMPLES

7. Add the CPS operation and object pair to a new CPS transaction. Each CPS transaction
holds multiple pairs of CPS operation and object updates.

cps_trans = cps_utils.CPSTransaction([cps_update])

8. Commit the CPS transaction.

r = cps_trans.commit()
if not r:
raise RuntimeError ("Error creating MAC ACL Entry")

9. OS10 allocates an ID for each new ACL entry. Retrieve this ID and use it as the key for
future get, set, and delete operations on this ACL entry.

cps_get_val = cps_utils.CPSObject (module='base-acl/entry', obj=r[0@]['change'])
mac_eid = cps_get_val.get_attr_data ('id')
print "Successfully created MAC ACL Entry " + str(mac_eid)

Code Block: Create an ACL Table and then an ACL Entry using Python

#!/usr/bin/python

Simple Base ACL CPS config using the generic CPS Python module and utilities.

Create ACL Table
Create ACL Entry to Drop all packets received on specific port from specific Src MAC

import cps_utils
import nas_os_utils

Yang Enum name to number map

e_stg = {"INGRESS': 1, 'EGRESS': 2}

e_ftype = {'SRC_MAC': 3, 'DST_MAC': 4, 'SRC_IP': 5, 'DST_IP': 6,
"IN_PORT': 9, 'DSCP': 21}

e_atype = {'PACKET_ACTION': 3, 'SET_TC': 10}

e_ptype = {'DROP': 1}

Teach CPS utility about the type of each attribute
type_map = {
'base-acl/entry/SRC_MAC_VALUE/addr': 'mac',

PROGRAMMABILITY

171

CPS APPLICATION EXAMPLES PROGRAMMABILITY

'base-acl/entry/SRC_MAC_VALUE/mask': 'mac',

}

for key,val in type_map.items():
cps_utils.cps_attr_types_map.add_type(key, val)

Create ACL Table

#

Create CPS Object and fill leaf attributes

cps_obj = cps_utils.CPSObject(module='base-acl/table')

cps_obj.add_attr ('stage', e_stg['INGRESS'])

cps_obj.add_attr ('priority', 99)

Populate the leaf-list attribute

cps_obj.add_list ('allowed-match-fields', [e_ftype['SRC_MAC'],
e_ftype['DST_IP'],
e_ftype['DSCP'],
e_ftype["IN_PORT']])

Associate the CPS Object with a CPS operation
cps_update = ('create', cps_obj.get())

Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps_update])

Commit the CPS transaction
r = cps_trans.commit()
if not r:
raise RuntimeError ("Error creating ACL Table")
ret = cps_utils.CPSObject (module='base-acl/table', obj=r[0]['change'])
tbl_id = ret.get_attr_data ('id')
print "Successfully created ACL Table " + str(tbl_1id)

Create ACL entry

Drop all packets received on specific port from specific range of MACs
#

Create CPS Object and fill leaf attributes

cps_obj = cps_utils.CPSObject(module='base-acl/entry"')

cps_obj.add_attr ('table-id', tbl_id)

cps_obj.add_attr ('priority', 512)

Filters # Match Filter 1 - Src MAC
cps_obj.add_embed_attr (['match','0', 'type'], e_ftype['SRC_MAC'])
The 2 at the end indicates that the type should be deducted from the last 2 attrs (SRC_MAC_VALUE,addr)
cps_obj.add_embed_attr (['match','®','SRC_MAC_VALUE','addr'],
'50:10:6€:00:00:00', 2)
Match Filter 2 - Rx Port
cps_obj.add_embed_attr (['match','1l','type'], e_ftype['IN_PORT'])
cps_obj.add_embed_attr (['match','1','IN_PORT_VALUE'], nas_os_utils.if_nametoindex('el01-001-0'))

172

CPS APPLICATION EXAMPLES

Action - Drop
cps_obj.add_embed_attr (['action','0','type']l, e_atype['PACKET_ACTION'])
cps_obj.add_embed_attr (['action','@','PACKET_ACTION_VALUE'], e_ptype['DROP'])

Associate the CPS Object with a CPS operation
cps_update = ('create', cps_obj.get())

Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps_update])

Commit the CPS transaction
r = cps_trans.commit()
if not r:
raise RuntimeError ("Error creating MAC ACL Entry")

ret = cps_utils.CPSObject (module='base-acl/entry', obj=r[0]['change'])
mac_eid = ret.get_attr_data ('id')
print "Successfully created MAC ACL Entry " + str(mac_eid)

Verify the ACL entry creation in OS10

cps_get_oid.py 'base-acl/entry'

Key: 1.25.1638505.1638428.1638429.
base-acl/entry/table-id = 2

base-acl/entry/id =1
base-acl/entry/match/IN_PORT_VALUE = 23
base-acl/entry/match/type = 9
base-acl/entry/match/SRC_MAC_VALUE/mask = ffffff000000
base-acl/entry/match/SRC_MAC_VALUE/addr = 50106000000
base-acl/entry/match/type = 3
base-acl/entry/action/PACKET_ACTION_VALUE = 1
base-acl/entry/action/type = 3
base-acl/entry/npu-id-list = 0
base-acl/entry/priority = 512

Verify the ACL entry creation in the NPU

EID 0x00000018: gid=0x2,
slice=1, slice_idx=0, part =0 prio=0x200, flags=0x10202, Installed, Enabled
tcam: color_indep=0,

Stage

StageIngress

InPort
DATA=0x 0 0 00 0 0 0 0 0000020 0
MASK=0x 0 0 00 0 0 Q001 fFfffffffffffffffffffffff

PROGRAMMABILITY

173

CPS APPLICATION EXAMPLES PROGRAMMABILITY

SrcMac
0ffset@: 241 WidthO: 48
DATA=0x00005010 6e000000
MASK=0x0000ffff ff000000
action={act=Drop, param0=0(0), paraml=0(0), param2=0(0), param3=0(0)}
policer=
statistics=NULL

Example: Delete an ACL Entry using Python

1. Follow the procedure in Configure an ACL using Python - Prerequisite Steps.

2. Create the CPS Object and enter the table-id and entry-id key values.
cps_obj = cps_utils.CPSObject(module='base-acl/entry',
tbl_1id, 'id': mac_eid})

3. Associate the CPS object with a CPS operation.

cps_update = ('delete', cps_obj.get())

4. Add the CPS operation and object pair to a new CPS transaction.

cps_trans = cps_utils.CPSTransaction([cps_update])

5. Commit the CPS transaction.

r = cps_trans.commit()
if not r:

raise RuntimeError ("Error deleting ACL Entry")

Code block: Delete an ACL Entry using Python

import cps_utils

#Create the CPS Object and fill the table-id and entry-id key values
cps_obj = cps_utils.CPSObject(module='base-acl/entry"',

data={"'table-id':

174

CPS APPLICATION EXAMPLES PROGRAMMABILITY

data={"'table-id': 2,
'id': 1})

#Associate the CPS Object with a CPS operation
cps_update = ('delete', cps_obj.get())

#Add the CPS object to a new CPS Transaction
cps_trans = cps_utils.CPSTransaction([cps_update])

#Commit the CPS transaction
r = cps_trans.commit()
if not r:

raise RuntimeError ("Error deleting ACL Entry")

Example: Configure a MAC Table entry using Python

1. Refer to the YANG model dell-base-12-mac.yang which defines the MAC object and
attributes for OS10.

2. Import the CPS Utility Python library.

import cps_utils

3. Register the mac-address attribute type as mac-address to convert between the string
and byte-array format.

cps_utils.add_attr_type("base-mac/table/mac-address", "mac")

4. Create new MAC entry by entering the MAC address, interface index and VLAN attributes.

d = {"mac-address": "00:0a:0b:cc:0d:0e","ifindex": 18,"vlan": "100"}

5. Create a CPS object.

obj = cps_utils.CPSObject('base-mac/table',data= d)

175

6. Add the operation to the object.

tr_obj = ('create', obj.get())

7. Create a transaction object.

transaction = cps_utils.CPSTransaction([tr_obj])

8. Commit the transaction

ret = transaction.commit()

9. Verify the response and handle errors

if not ret:

raise RuntimeError ("Error creating MAC Table Entry")

Code block: Configure a MAC Table Entry using Python

import cps_utils

cps_utils.add_attr_type("base-mac/table/mac-address", "mac")

d = {"mac-address": "00:0a:0b:cc:0d:0e",
"ifindex": 18,
"vlan": "100"}

obj = cps_utils.CPSObject('base-mac/table',data= d)

tr_obj = ('create', obj.get())

transaction = cps_utils.CPSTransaction([tr_obj])

ret = transaction.commit()

if not ret:

raise RuntimeError ("Error creating MAC Table Entry")

CPS APPLICATION EXAMPLES

PROGRAMMABILITY

176

CPS APPLICATION EXAMPLES

D NOTE: When you do not enter a qualifier for a key, target is used by default

when ¢

reating the object. To use a different qualifier, use the following syntax:

obj = cp

s_utils.CPSObject('base-mac/table',qual="'observed',data= d)

Example: Configure a MAC Table Entry using C/C++

#include
#include
#include
#include

#include
#include

bool cps

// Cr
cps_a

if (c

r

// Cr
cps_a
cps_a

// Cr
cps_a

if(ob
C
r

"cps_api_object.h"
"dell-base-12-mac.h"
"cps_class_map.h"
"cps_api_object_key.h"

<stdint.h>
<net/if.h>

_create_mac(){

eate and initialize the transaction object
pi_transaction_params_t tran;
ps_api_transaction_init(&tran) != cps_api_ret_code_OK){

eturn false;

eate and initialize the key
pi_key_t key;
pi_key_from_attr_with_qual(&key, BASE_MAC_TABLE_OBJ, cps_api_qualifier_TARGET);

eate the object

pi_object_t obj = cps_api_object_create();
j == NULL){
ps_api_transaction_close(&tran);

eturn false;

// Set the key for the obejct

cps_a

// Ad
uint8
uintl

pi_object_set_key(obj,&key);

d attributes mandatory to create MAC address entry
_t mac_addr[6] = {0x0,0xa,0xb,0xc,0xd,0xe};
6_t vlan_id = 100;

cps_api_object_attr_add(obj,BASE_MAC_TABLE_MAC_ADDRESS, mac_addr, sizeof(hal_mac_addr_t));
cps_api_object_attr_add_u32(obj,BASE_MAC_TABLE_IFINDEX, if_nametoindex("el01-001-0"));

PROGRAMMABILITY

177

CPS APPLICATION EXAMPLES PROGRAMMABILITY

cps_api_object_attr_add_ul6(obj,BASE_MAC_TABLE_VLAN,vlan_id);

// Add the object along with the operation to transaction
if(cps_api_create(&tran,obj) != cps_api_ret_code_0K){
cps_api_object_delete(obj);
return false;

// Commit the transaction

if(cps_api_commit(&tran) != cps_api_ret_code_OK) {
cps_api_transaction_close(&tran);
return false;

// Cleanup the Transaction
cps_api_transaction_close(&tran);

return true;

Verify MAC table entry is created in OS10.

cps_get_oid.py base-mac/query
Key: 1.16.1048594.
base-mac/query/ifindex = 18

2

base-mac/query/actions
base-mac/query/static = 1
base-mac/query/mac-address = 000a@bcc0dOe
base-mac/query/vlan = 100

Example: Get a MAC Table Entry using Python

1. Import the cps_utils and cps libraries.
import cps_utils

import cps

2. Register the mac-address attribute type as mac to convert between the string and byte-
array format.

cps_utils.add_attr_type("base-mac/query/mac-address", "mac")

178

CPS APPLICATION EXAMPLES PROGRAMMABILITY

3. Enter the MAC Address to be queried and request-type 2 to request the object based on
the MAC address.

d = {"mac-address": "00:0a:0b:cc:0d:0e","request-type":"2"}

4. Create a CPS object for a get request.

obj = cps_utils.CPSObject('base-mac/query',data= d)

5. Create a list which contains the objects with filters for a get request.

filter_list = []

6. Add the filter object to the Get list.

filter_list.append(obj.get())

7. Create a list for the Get response.

8. Perform the get operation.

if cps.get(filter_1list,1):
#Check if get returned objects in the response list
if 1:
for ret_obj in 1:
Print the returned Objects
cps_utils.print_obj(ret_obj)
else:
print "No objects found"
else:
raise RuntimeError ("Error Getting MAC Table Entries")

179

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Code block: Get a MAC Table Entry using Python

import cps_utils
import cps

cps_utils.add_attr_type("base-mac/query/mac-address", "mac")

d = {"mac-address": "00:0a:0b:cc:0d:0e","request-type":"2"}
obj = cps_utils.CPSObject('base-mac/query"',
data= d)

filter_list = []
filter_list.append(obj.get())
1=11

if cps.get(filter_list,1):
if 1:
for ret_obj in 1:
cps_utils.print_obj(ret_obj)
else:
print "No objects found"
else:

raise RuntimeError ("Error Getting MAC Table Entries")

Example: Get a MAC Table Entry using C/C++

#include "cps_api_object.h"
#include "dell-base-12-mac.h"
#include "cps_class_map.h"
#include "cps_api_object_key.h"

#include <stdio.h>
bool cps_get_mac(){

// Create and initialize the Get object
cps_api_get_params_t gp;
cps_api_get_request_init(&gp);

// Create a new object and append it to get request's filter object list
cps_api_object_t obj = cps_api_object_list_create_obj_and_append(gp.filters);
if(obj == NULL){

cps_api_get_request_close(&gp);

return false;

180

CPS APPLICATION EXAMPLES PROGRAMMABILITY

// Create, initialize and set the key for object

cps_api_key_t key;

cps_api_key_from_attr_with_qual(&key, BASE_MAC_QUERY_O0BJ, cps_api_qualifier_TARGET);
cps_api_object_set_key(obj,&key);

//Perform a get request
bool rc=false;
if (cps_api_get(&gp)==cps_api_ret_code_OK) {
rc = true;
size_t mx = cps_api_object_list_size(gp.list);
for (size_t ix = 0 ; ix < mx ; ++ix) {
cps_api_object_t obj = cps_api_object_list_get(gp.list,ix);
cps_api_object_attr_t vlan_id = cps_api_object_attr_get(obj,BASE_MAC_QUERY_VLAN);
cps_api_object_attr_t ifindex = cps_api_object_attr_get(obj,BASE_MAC_QUERY_IFINDEX);
cps_api_object_attr_t mac_addr = cps_api_object_attr_get(obj,BASE_MAC_QUERY_MAC_ADDRESS);

printf("VLAN ID %d\n",cps_api_object_attr_data_ul6(vlan_id));

printf("Ifindex %d\n",cps_api_object_attr_data_u32(ifindex));

char mt[6];

char mac_string[20];

memcpy(mt, cps_api_object_attr_data_bin(mac_addr), 6);

X:%X:%x", mt[0], mt[1], mt[2], mt[3], mt[4], mt[5]);
printf("MAC Address %s\n",mac_string);

o

sprintf(mac_string, "%x:%x:%x:

// Close the get the request
cps_api_get_request_close(&gp);
return rc;

Example: Delete a MAC Table Entry using Python

1. Import CPS Utility Python Library

import cps_utils

2. Register the attribute type as mac-address to convert between the string and byte-array
format.

cps_utils.add_attr_type("base-mac/table/mac-address", "mac")

181

CPS APPLICATION EXAMPLES PROGRAMMABILITY

3. Delete the static MAC address entry; specify a MAC address, interface index and VLAN.

d = {"mac-address": "00:0a:0b:cc:0d:0e",

"ifindex": 18,
"vlan": "100"}

4. Create a CPS object.

obj = cps_utils.CPSObject('base-mac/table',data= d)

5. Add the operation to the object.

tr_obj = ('delete', obj.get())

6. Create a transaction object.

transaction = cps_utils.CPSTransaction([tr_obj])

7. Commit the transaction.

ret = transaction.commit()

8. Check the response and print appropriate message.

if not ret:
raise RuntimeError("Error deleting entry from MAC Table")

Code Block: Delete a MAC Table Entry using Python

import cps_utils

cps_utils.add_attr_type("base-mac/table/mac-address", "mac")

d = {"mac-address": "00:0a:0b:cc:0d:0e",

182

CPS APPLICATION EXAMPLES PROGRAMMABILITY

"{findex": 18,
uV-Lanu . "100"}

obj = cps_utils.CPSObject('base-mac/table',data= d)
tr_obj = ('delete', obj.get())

transaction = cps_utils.CPSTransaction([tr_obj])
ret = transaction.commit()

if not ret:
raise RuntimeError("Error deleting entry from MAC Table")

Example: Delete a MAC Table Entry using C/C++

#include "cps_api_object.h"
#include "dell-base-12-mac.h"
#include "cps_class_map.h"
#include "cps_api_object_key.h"

#include <stdint.h>
#include <net/if.h>

bool cps_delete_mac(){
// Create and initialize the transaction object
cps_api_transaction_params_t tran;
if (cps_api_transaction_init(&tran) != cps_api_ret_code_0K){

return false;

// Create and initialize the key
cps_api_key_t key;
cps_api_key_from_attr_with_qual(&key, BASE_MAC_TABLE_O0BJ, cps_api_qualifier_TARGET);

// Create the object
cps_api_object_t obj = cps_api_object_create();

if(obj == NULL){

cps_api_transaction_close(&tran);
return false;

// Set the key for the obejct
cps_api_object_set_key(obj,&key);

// Add attributes mandatory to create MAC address entry
uint8_t mac_addr[6] = {0x0,0xa,0xb,0xc,0xd,0xe};

183

CPS APPLICATION EXAMPLES PROGRAMMABILITY

uintl6_t vlan_id = 131;

cps_api_object_attr_add(obj,BASE_MAC_TABLE_MAC_ADDRESS, mac_addr, sizeof(hal_mac_addr_t));
cps_api_object_attr_add_u32(obj,BASE_MAC_TABLE_IFINDEX, if_nametoindex("el01-001-0"));
cps_api_object_attr_add_ul6(obj,BASE_MAC_TABLE_VLAN,vlan_id);

// Add the object along with the operation to transaction
if(cps_api_delete(&tran,obj) != cps_api_ret_code_0K){
cps_api_delete_object(obj);
return false;

// Commit the transaction

if(cps_api_commit(&tran) != cps_api_ret_code_OK) {
cps_api_transaction_close(&tran);
return false;

// Cleanup the Transaction
cps_api_transaction_close(&tran);

return true;

D NOTE: To delete the MAC address from all VLANSs, specify the vlan attribute and
its value in the object. To delete all MAC entries from an interface, specify the
ifindex attribute and its value in the object. To delete MAC entries from both a

VLAN and member interface, specify the vlan and ifindex attributes and their
values in the object.

H NOTE: Deletion of static entries based only on VLAN, interface or a VLAN/Interface
combination is not supported. To delete a static entry, you must add the mac-

address,vlan and ifindex attributes and their values to the object.

Example: Remove MAC Table Entries
from Multiple VLANSs using Python

To remove MAC entries from multiple VLANs (and/or interfaces) in a single CPS call:

1. Import the cps_utils python library.

import cps_utils

184

CPS APPLICATION EXAMPLES PROGRAMMABILITY

2. Enter the VLANs from which you want to remove MAC entries.

vlan_list =[1,2,3,4,5]

3. Create a CPS object.

obj = cps_utils.CPSObject('base-mac/flush')

4. Add the list of VLANSs to the object.

count = 0

el = ["input/filter","0","vlan"]

for vlan in vlan_list:
obj.add_embed_attr(el, vlan)
count = count + 1
el[1l] = str(count)

5. Add the operation to the object.

tr_obj = ('rpc', obj.get())

6. Create a transaction object.

transaction = cps_utils.CPSTransaction([tr_obj])

7. Commit the transaction.

ret = transaction.commit()

8. Verify the return code and print appropriate message.

if not ret:

raise RuntimeError("Error Flushing entries from MAC Table")

185

Code Block: Remove MAC Table Entries

from Multiple VLANs using Python

import cps_utils

vlan_list =[1,2,3,4,5]

obj = cps_utils.CPSObject('base-mac/flush')

count = 0

el = ["input/filter","0","vlan"]

for vlan in vlan_list:
obj.add_embed_attr(el, vlan)
count = count + 1
el[1] = str(count)

tr_obj = ('rpc', obj.get())

transaction = cps_utils.CPSTransaction([tr_objl)

ret = transaction.commit()

if not ret:

raise RuntimeError("Error Flushing entries from MAC Table")

Example: Remove MAC Table Entries

from Multiple VLANSs using C/C++

#include "cps_api_object.h"
#include "dell-base-12-mac.h"
#include "cps_class_map.h"
#include "cps_api_object_key.h"

#include <stdint.h>
#include <net/if.h>

bool cps_flush_mac(){

// Create and initialize the transaction object

cps_api_transaction_params_t tran;

if (cps_api_transaction_init(&tran) != cps_api_ret_code_0K){

return false;

// Create and initialize the key
cps_api_key_t key;

CPS APPLICATION EXAMPLES

cps_api_key_from_attr_with_qual(&key, BASE_MAC_FLUSH_O0BJ, cps_api_qualifier_TARGET);

// Create the object

cps_api_object_t obj = cps_api_object_create();

PROGRAMMABILITY

186

CPS APPLICATION EXAMPLES PROGRAMMABILITY

if(obj == NULL){
cps_api_transaction_close(&tran);
return false;

// Set the key for the obejct
cps_api_object_set_key(obj,&key);

// Add attributes to Flush MAC entries
cps_api_attr_id_t ids[3] = {BASE_MAC_FLUSH_INPUT_FILTER,®, BASE_MAC_FLUSH_INPUT_FILTER_VLAN };
const int ids_len = sizeof(1ids)/sizeof(ids[0]);

uintl6_t vlan_list[3]1={1,2,3};

for(unsigned int ix=0; ix<sizeof(vlan_list)/sizeof(vlan_list[0]); ++ix){
ids[1]=1x;
cps_api_object_e_add(obj,ids,ids_len,cps_api_object_ATTR_T_U16,&(vlan_list[ix]),sizeof(vlan_list[ix]));

unsigned int ifindex_list[] = { if_nametoindex("el01-001-0"),if_nametoindex("el01-002-0"),
if_nametoindex("el01-003-0")};
1ds[2]=BASE_MAC_FLUSH_INPUT_FILTER_IFINDEX;
for(unsigned int ix=0; ix<sizeof(ifindex_list)/sizeof(ifindex_list[0]); ++ix){
ids[1]=1x;

cps_api_object_e_add(obj,ids,ids_len,cps_api_object_ATTR_T_U16,&ifindex_list[ix],sizeof(ifindex_list[ix]));

}

// Add the object along with the operation to transaction
if(cps_api_action(&tran,obj) != cps_api_ret_code_O0K){
cps_api_object_delete(obj);
return false;

// Commit the transaction

if(cps_api_commit(&tran) != cps_api_ret_code_OK) {
cps_api_transaction_close(&tran);
return false;

// Cleanup the Transaction

cps_api_transaction_close(&tran);

return true;

187

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Example: Register for Events using Python

1. Import the CPS Python library.

import cps

2. Create a handle to connect to event service.

handle = cps.event_connect()

3. Register a key with the event service to receive notification when an event for this key is
published.

cps.event_register(handle, cps.key_from_name('observed', 'base-port/interface'))
while True:

wait for the event

0 = cps.event_wait(handle)

print o

Code Block: Register for Events using Python

import cps
handle = cps.event_connect()

cps.event_register(handle, cps.key_from_name('observed', 'base-port/interface'))
while True:
0 = cps.event_wait(handle)

print o

Example: Register for Events using C/C++

#include "cps_api_events.h"
#include "cps_api_object.h"
#include "dell-base-phy-interface.h"
#include "cps_class_map.h"

#include "cps_api_object_key.h"

#include <stdlib.h>

188

CPS APPLICATION EXAMPLES

#include <stdio.h>
#include <unistd.h>

//Callback for the interface event handling
static bool cps_if_event_cb(cps_api_object_t obj, void *param){

char buf[1024];
cps_api_object_to_string(obj,buf,sizeof(buf));
printf("Object Received %s \n",buf);

return true;

bool cps_reg_intf_events(){

// Initialize the event service
if (cps_api_event_service_init() != cps_api_ret_code_OK) {
return false;
}
// Initialize the event handling thread
if (cps_api_event_thread_init() != cps_api_ret_code_0K) {
return false;

//Create and initialize the key

cps_api_key_t key;

cps_api_key_from_attr_with_qual(&key, BASE_PORT_INTERFACE_OBJ,
cps_api_qualifier_OBSERVED);

//Create the registration object
cps_api_event_reg_t reg;
memset(®,0,sizeof(reg));

reg.number_of_objects = 1;
reg.objects = &key;

// Register to receive events for key created above
if (cps_api_event_thread_reg(®, cps_if_event_cb,NULL)!=cps_api_ret_code_0K) {
return false;

//Wait for the events
while(1){
sleep(1);

return true;

PROGRAMMABILITY

189

CPS APPLICATION EXAMPLES

D NOTE: CPS Python does not support a C/C++ API to to register a callback when
events are published.

Example: Publish Events using Python

1. Import cps and cps_utils libraries.
import cps
import cps_utils
2. Create a handle to connect to the event service.

handle = cps.event_connect()

3. Create an object.

obj = cps_utils.CPSObject('base-port/interface',qual="'observed’,
data= {"ifindex":23})

4. Publish an object.

cps.event_send(handle, obj.get())

Code Block: Publish Events using Python

import cps
import cps_utils

handle = cps.event_connect()

obj = cps_utils.CPSObject('base-port/interface',qual="'observed’,
data= {"ifindex":23})

cps.event_send(handle, obj.get())

PROGRAMMABILITY

190

CPS APPLICATION EXAMPLES PROGRAMMABILITY

Example: Publish Events using C/C++

#include "cps_api_events.h"
#include "cps_api_object.h"
#include "dell-base-phy-interface.h"
#include "cps_class_map.h"

#include "cps_api_object_key.h"

#include <stdio.h>
#include <net/if.h>

bool cps_pub_intf_event() {

static cps_api_event_service_handle_t handle;

if (cps_api_event_service_init() != cps_api_ret_code_OK) {
return false;

}

if (cps_api_event_client_connect(&handle) != cps_api_ret_code_OK) {
return false;

}

//Create and intialize the key

cps_api_key_t key;

cps_api_key_from_attr_with_qual(&key, BASE_PORT_INTERFACE_OBJ,
cps_api_qualifier_OBSERVED);

// Create the object
cps_api_object_t obj = cps_api_object_create();

if(obj == NULL){
return false;

// Add attributes to the object
cps_api_object_attr_add_u32(obj,BASE_PORT_INTERFACE_IFINDEX,
if_nametoindex("el01-001-0"));

//Set the Key to the object
cps_api_object_set_key(obj,&key);

//Publish the object

if(cps_api_event_publish(handle,obj)!= cps_api_ret_code_0K){
cps_api_object_delete(obj);
return false;

}

// Delete the object

cps_api_object_delete(obj);

return true;

191

PROGRAMMABILITY

CPS API Reference

The OS10 website provides reference documentation for:

o CPS C/C++ API

o CPS Python API

o OS10 YANG models

The YANG model files and C header files derived from the YANG models are included in the

development packages provided for OS10. You can download the development packages
from the OS10 website.

192

Troubleshooting

TROUBLESHOOTING

Overview

This section describes the methods and tools available for gathering information and
debugging OS10.

194

TROUBLESHOOTING

OS10 Linux and Network Debugging

Standard utilities, such as user and file management commands, are included with the
0S10 image. Use these utilities for debugging.

Packet Analysis

tcpdump is a Linux packet analyzer tool used to capture packets on any network interface.
Only a privileged user can execute the command. For more options and support, refer to
the Linux manual page for tcpdump http://linux.die.net/man/8/tcpdump .

For example, to capture all the packets on physical ports of the switch, enter:

$ tcpdump -1 el1l01-003-0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on el1l01-003-0, link-type EN1OMB (Ethernet), capture size 262144 bytes

01:39:22.457185 IP 3.3.3.1 > 3.3.3.4: ICMP echo request, id 5320, seq 26, length 64
01:39:22.457281 IP 3.3.3.1 > 3.3.3.4: ICMP echo reply, id 5320, seq 26, length 64

Coredumps

Core image files are saved in the /var/coredumps directory.

Get Port Statistics

Use the following command to dump interface statistics:

$ 0s10-show-stats
0s10-show-stats

if_stat {iface_name} {filter_list} - Get stats for all interfaces if no input provided
- Get the statistics of given interface
- filter_1list is the filters if user want

only specific statistics
vlan_stat [vlan_ifindex] {filter_list} - Get the statistics of given vlan ifindex

- filter_1list is the filters if user want

only specific statistics

195

http://linux.die.net/man/8/tcpdump

OS10 LINUX AND NETWORK DEBUGGING TROUBLESHOOTING

clear [iface_name] - Clear the interface statistics

For example: 0s10-show-stats if_stat el01-001-0

For more information on this script and its use, refer to Monitoring (0s10-show-stats).

Firmware Versions

To display version information about installed firmware, open the
/var/log/firmware_versions file.

Transceivers

To display information about installed transceivers, enter the following command:

$ 0sl0-show-transceivers summary

Front Panel Port Media Type Part Number Serial Number DellQualified
1 QSFP 40GBASE SR4 FTL410QE1C MLJ004C No

Debugging Interfaces

During system startup, physical ports are mapped to Linux network interfaces. Refer to the
Physical Interfaces section in Networking Features for more details regarding the naming
convention of Linux network interfaces.

o Use the 05s10-switch-shell ps command to list all ports created in the NPU.

o Use the hshell command to verify the administrative and operating status of an
interface in the NPU.

0s10-switch-shell "ps xe4" >> indicated port is enabled in NPU, but no admin or oper up

ena/ speed/ link auto STP lrn 1inter max loop
port 1link duplex scan neg? state pause discrd ops face frame back
xe4 l!ena 40G FD SW No Forward None FA XGMII 1528

0s10-switch-shell "ps xe4" >> indicated port is enabled in NPU, admin and oper up.

ena/ speed/ link auto STP 1irn inter max loop

196

OS10 LINUX AND NETWORK DEBUGGING TROUBLESHOOTING

port Tlink duplex scan neg? state pause discrd ops face frame back
xe4 up 40G FD SW No Forward None FA XGMII 1528

0s10-switch-shell "ps xe4" >> indicated port is enabled in NPU, admin up but oper up.

ena/ speed/ link auto STP lrn inter max loop
port Tlink duplex scan neg? state pause discrd ops face frame back
xe4 down 40G FD SW No Forward None FA XGMII 1528
Troubleshooting Tips

Problem: Linux network interfaces are not created
Resolution:

o Check that the NAS process is running. Check /var/log/syslog for errors.

o |If NAS is not running, check that services on which NAS depends are running.

Problem: Interfaces not enabled in the NPU

Resolution:

o Check that SAI/NPU SDK have initialized correctly. Check /var/log/syslog for errors.

Layer 3 Troubleshooting
Use the following Linux commands to verify routing-related tables:
o ip route show
o arp -a

o |Pv6 debugging:
e ip -6 neighbor show

e ip -6 route show

To troubleshoot routing issues in the NPU:

[o]

0s10-switch-shell "13 defip show"
0s10-switch-shell "13 13table show"

[

o

0s10-switch-shell "13 egress show"

o]

For IPv6 routes:
e 0510-switch-shell "13 ip6route show"

e 0510-switch-shell "13 ip6host show"

197

OS10 LINUX AND NETWORK DEBUGGING TROUBLESHOOTING

o Multipath:
e 0s10-switch-shell "13 multipath show"

e 0510-switch-shell "13 egress show"

o Traffic:
e 0s10-switch-shell "show c"

To enable NAS and SAIl Layer 3 logging:

o 0s10-logging enable ROUTE
0s10-logging enable INTERFACE

o

[o]

0s10-logging enable NETLINK
0s10-logging enable SAI_NEXT_HOP

[

o

0s10-logging enable SAI_ROUTE

D NOTE: The NPU debug commands mentioned above are for illustration purposes
only. Refer to the respective NPU SDK for further details.

Layer 2 Troubleshooting
To verify that all Linux network interfaces are created:
o ip link show
To verify VLANs and STP:

o brtcl show

o brctl showstp <br_name>
To enable NAS and SAl Layer 2 logging:

o 0s10-logging enable NAS_L2

o 0s10-logging enable INTERFACE
o 0s10-logging enable L2MAC

o 0s10-logging enable SAI_FDB

o 0s10-logging enable SAI_STP

To display layer status in the NPU:

198

OS10 LINUX AND NETWORK DEBUGGING TROUBLESHOOTING

o 0s10-switch-shell "12 show"
o 0s10-switch-shell "stg show"

o 0s10-switch-shell "vlan show"

199

TROUBLESHOOTING

Log Management

Syslog is a utility for tracking and logging many types of system messages, including
informational and extremely critical messages. Logging for all OS10 modules is routed to
/var/log/syslog. Examples of PAS andNAS logging are shown in this section.

Application Logging Format

date <timestamp> <hostname> <processname> <filename> <functionname>
<line #> string

Example: PAS Logging

Feb 16 18:16:52 0S10 pas_svc: [PAS:PAS]:pas_entity.c:dn_entity_poll:366, PSU 1 is present
Feb 16 18:16:52 0S10 pas_svc: [PAS:PAS]:pas_entity.c:dn_entity_poll:366, Fan Tray 1 is present

Example: NAS Logging

Jan 24 18:49:18 0S10 nas_svc: [INTERFACE:INT-CREATE]:port/nas_int_port.cpp:nas_int_port_create:347, Interface
created 0:29:e101-021-0 - 22

Jan 24 18:49:18 0S10 nas_svc: [INTERFACE:NAS-INT-CREATE], Interface el01-021-0 initial link state is 2

Jan 24 18:49:18 0S10 nas_svc: [INTERFACE:INT-STATE]:port/nas_int_port.cpp:nas_int_port_link_change:312,
Interface state change 0:29 to 2

OS10 application-specific logging is controlled by the 0s10-logging script on the target.

0s10-logging

[show-1d] - displays ids of modules, log-levels and sub-
levels
[show] [all] | [module-id] {log-level} {log-sub-level} - displays current logging status for all/given

sub-sytem/given module and log-level/given
module, log-level and sub-log-level
[enable] [all] | [module-id] {log-level } {log-sub-level} - Enables logging status for all/given
sub-sytem/given module and log-level/given
module, log-level and sub-log-level
[disable] [all] | [module-id] {log-level } {log-sub-level} - Disables logging status for all/given

200

LOG MANAGEMENT TROUBLESHOOTING

sub-sytem/given module and log-level/given
module, log-level and sub-log-level
NOTE :1. For enable and disable log-level and log-sub-level is optional when using module-id.

If only module-id is given it will enable/disable all log-levels and log-sub-levels for that

module-id, similarly if module-id and log-level is given, it will enable All log-sublevel for

the module-id and log-level

2. Instead of Module Ids now you can use the module name as string as well, for eg.

0s10-logging enable L3_SERVICES

Module IDs

NULL 0
NPU 1
BOARD 2
SYSTEM 3
Q0S 4
CoM 5
INTERFACE 6
NETLINK 7
ROUTE 8
ACL 9
SFP 10
MGMT 11
DSAPI 12
DB_SQL 13
NDI 14
SAI_FDB 15
SAI_VLAN 16
SAI_PORT 17
SAI_SWITCH 18
SAI_ROUTER 19
SAI_ROUTER_INTF 20
SAI_NEIGHBOR 21
SAI_NEXT_HOP 22
SAI_NEXT_HOP_GROUP 23
SAI_ROUTE 24
SAI_MIRROR 25
NAS_L2 26
NAS_COM 27
SAI_LAG 31
L2MAC 36
L2CMN 37
NAS_0S 38
SAI_STP 39
BGP 40
RTM 43
L3CMN 44

201

PAS 47
PAS_FUSE 48
PAS_TIMER 49
SAI_SAMPLEPACKET 50
ENV_TMPCTL 51
SAI_HOSTIF 59
SAI_QUEUE 60
SAI_MAPS 61
SAI_POLICER 62
SAI_WRED 63
SAI_SCHEDULER 64
SAI_SCHEDULER_GRP 65
SAI_QOS 66
SERV_HW 67
DATASTORE 68
L3_SERVICES 69
IPM 70
MGMT_INTF 71
FWD_SVCS_SFLOW 73
SAI_UDF 78
SAI_BUFFERS 79
SWITCH_RES_MGR 80
Log Level IDs

ERR

INFO

DEBUG

Log Sub Level IDs

CRITICAL 0

MAJOR 1

MINOR 2

WARNING 3

LOG MANAGEMENT

The SAI module has its own specific logging. To turn on SAl-specific logs, follow these

steps:

0s10-switch-log set [module_name] [level_name]
- Set the given module name's logging level to

given level_name

TROUBLESHOOTING

202

LOG MANAGEMENT TROUBLESHOOTING

eg. 0sl0-switch-log set ALL debug

module_name

{'WRED': 18, 'FDB': 3, 'ROUTE': 6, 'VLAN': 4, 'HOST_INTERFACE': 12, 'ACL': 11, 'MIRROR': 13, 'QOS_QUEUE':

'SCHEDULER_GROUP': 22, 'PORT': 2, 'VIRTUAL_ROUTER': 5, 'NEXT_HOP_GROUP': 8, 'SWITCH': 1, 'POLICER': 17,
'"NEIGHBOR': 10, 'UNSPECIFIED': O, 'SAMPLEPACKET': 14, 'QOS_MAPS': 19, 'STP': 15, 'ALL': 23, 'LAG': 16,
'"ROUTER_INTERFACE': 9, 'NEXT_HOP': 7, 'SCHEDULER': 21}

level_name

{'info': 2, 'notice': 3, 'warning': 4, 'critical': 6, 'error': 5, 'debug': 1}

20,

203

TROUBLESHOOTING

sosreport

sosreport isa standard Linux tool for collecting system information. For a description of
sosreport, refer to: http://sos.readthedocs.org/en/latest.

sosreport plugins

Plugins are a means to provide extensibility to the reporting mechanism and enable you to
specify the information, logs and configuration data you want to collect for your modules.

Information about writing a plugin is provided at:
https://github.com/sosreport/sos/wiki/How-to-Write-a-Plugin

Several modules of OS10 provide plugins to sosreport so that it can collect status
information about various components of OS10 software and hardware. In order to
execute sosreport, use the following command:

#sosreport --batch -a[...]

Creating compressed archive...

Your sosreport has been generated and saved in:
/tmp/sosreport-05S10-20160219191403.tar.gz

The checksum is: a6d3508bde238e46c8cc7923f10c861c

This command executes all OS10 plugins and generates a compressed tar file (.tar.gz) file as
output. The name of the file is provided in the output of the command. For example, the
name of the tar file generated for the previous example is:

sosreport-0510-20160219191403.tar.gz

The following information is contained in the generated tar file:

o

OS10 version

ACL counters and statistics

[o]

ACL table contents

o

o

Port mirroring setup

o

Physical port setup

o

sFlow setup

204

http://sos.readthedocs.org/en/latest
https://github.com/sosreport/sos/wiki/How-to-Write-a-Plugin

o

STP setup

o Transceiver status and setup

[

Linux interface setup and statistics
o Hardware platform information

o NPU low level setup information

In addition, sosreport collects log files and coredumps.

SOSREPORT

TROUBLESHOOTING

205

TROUBLESHOOTING

CPS API Object Management

Refer to the Programmability chapter for more information on CPS API objects.

get Object

Use the cps_get_oid.py command to retrieve and display the contents of a CPS API
object.

cps_get_oid.py category/subcategory [key=value]l ...

Where:

category Category of the requested CPS API object
subcategory Subcategory of the requested CPS API object
key Name of object key attribute

value Value for given key attribute

Example

The following command retrieves the entity object for the PSU in slot 1.

cps_get_oid.py base-pas/entity entity-type=1 slot=1

set Object

Use the cps_set_oid.py command to set one or more attributes of a CPS API object,

cps_set_oid.py category/subcategory [key=value]l ... [attr=value] ...

206

CPS APl OBJECT MANAGEMENT

Where:

category Category of the requested CPS API object
subcategory Subcategory of the requested CPS API object
key Name of object key attribute

attr Name of object attribute to set

value Value for given attribute

Example

The following command sets the beacon LED on.

cps_set_oild.py base-pas/led entity-type=3 slot=1 name=Beacon on=1

Event Trace

Use the cps_trace_events.py command to display CPS APl events as they occur.

cps_trace_events.py qualifier.category

Where:
qualifier Qualifier of the requested CPS API object to trace
category Category of the requested CPS API object to trace

H Note: you must enter the command as a CPS API key in dotted-decimal format.
Consult the section on CPS API keys for how to form a key, and the appropriate
header files for actual key values.

Example

The following command prints all CPS API events generated by the PAS service ("observed”
qualifier) :

cps_trace_events.py 2.19

TROUBLESHOOTING

207

TROUBLESHOOTING

Password Recovery

Follow these steps to recover your password.

1. Connect to the serial console port. The serial settings are: 115200 baud, 8 data bits, no
parity.
2. Reboot or power up the system.

3. Press ESC at the GNU GRUB prompt.

0OS10 GNU GRUB Boot Menu

B i et et +
| x0510-A |
| 0510-B |
| ONIE |
B i et et +

4. Press e for edit on OS10-A which places you in the OS10 GRUB editor.
5. Use the arrow keys to highlight the line that begins with linux and at the very end of the
line, add init=/bin/bash.

OS10 GRUB editor

|setparams '0S10-A'

I
| I
| set root='(hd0,gpt7)"’

| echo 'Loading 0S10 ...'

| 1inux (hd0,gpt7)/boot/0s10.1linux console=ttyS0,115200 root=/dev/sda7 \|
|rw init=/bin/bash |
| initrd (hd0@,gpt7)/boot/0s10.initrd |

6. Press ctrl+x to boot your system. Your system will boot up to a password-less root shell.

7. At the prompt, type in: passwd yourusername.

root@0S10:/# passwd linuxadmin &10;

208

PASSWORD RECOVERY TROUBLESHOOTING

8. Executing Step 7 prompts you to enter new password. Enter the new password.

root@0S10: /# passwd linuxadmin

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

9. Reboot the system by entering the reboot -f command to boot with OS10.

root@0S10:/# reboot -f
Rebooting.[822.327073] sd 0:0:0:0: [sda] Synchronizing SCSI cache

[822.340656] reboot: Restarting system
[822.344339] reboot: machine restart

BIOS (Dell Inc) Boot Selector
S6000-0N 3.20.0.0 (32-port TE/FG)

10. Enter the new password created to log in to the system.

209

