
 

 

 
 
 
 
 
 
 
 
 
 
 
Software-Defined Networking and Open Networking 

Understanding Foundational Concepts and Constructs v1.1 

 

 

 

 

 

 

 

  

           

Victor Lama 
Dell Network Solutions 
Enterprise Campus and Data Center 
G500 Banking & Securities 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
This document is for informational purposes only and may contain typographical errors and 
technical inaccuracies. The content is provided as is, without express or implied warranties of any 
kind. 

© 2016 Dell Inc. All Rights Reserved. Dell, the Dell logo, and other Dell names and marks are 
trademarks of Dell Inc. in the US and worldwide. All other trademarks mentioned herein are 
the property of their respective owners. 

Date Version Description 

07-11-2016 1.0 Initial Release 

08-01-2016 1.1 Minor font and syntax changes.  



 

 

Table of Contents 
 

Introduction ............................................................................................................................................... 5 

1.0  General SDN and Open Networking Concepts ..................................................................... 6 

1.1 What is SDN? .............................................................................................................................. 6 

1.2  What is Open Networking? ...................................................................................................... 6 

1.3  What exactly is disaggregation and why is this development in the networking 

industry significant? ................................................................................................................... 7 

1.4  Is there any special requirement for installing a third party operating system on Dell 

Networking bare-metal switches? ......................................................................................... 8 

1.5  How does ONIE work? ............................................................................................................. 8 

1.6 So-called off-the-shelf “merchant silicon” features highly in discussions about Open 

Networking. What is it and why is it relevant? ...................................................................... 9 

1.7 Explanations of SDN typically consist of references to a control plane, a data plane 

and a management plane. What are they? ........................................................................... 9 

1.8  Discussions around SDN network design oftentimes focus on what are called leaf 

and spine or Clos architectures – what are they? ............................................................ 10 

1.9  Are Dell’s Open Networking solutions considered SDN? ................................................ 11 

1.10  What are some of the abstractions used in SDN? ............................................................. 12 

1.11 SDN is oftentimes equated with OpenFlow. Is that the only “southbound” protocol 

used by SDN controllers? ....................................................................................................... 17 

1.12  What is the Northbound API used for in an SDN Network? ............................................ 19 

1.13  SDN-based solutions are oftentimes categorized in terms of underlay and overlay 

networks. What are they and what is the difference? ..................................................... 20 

1.14  What problems does SDN solve and what are some real-world use cases? .............. 22 

2.0  Dell OS10 and Third-Party OS Vendor Solutions ................................................................25 

2.1  Dell OS10...................................................................................................................................25 

2.1.1 What are Dell Networking OS10’s most salient features and innovations? ......... 26 

2.1.2  Control Plane Services .................................................................................................... 27 

2.1.3  Switch Abstraction Interface ........................................................................................ 28 

2.1.4  Common Management Services ................................................................................. 28 

2.2 Cumulus Linux ......................................................................................................................... 31 

2.2.1 What is Cumulus Linux? .................................................................................................32 

2.2.2 Is Cumulus Linux an overlay or underlay solution? ..................................................32 



 

 

2.2.3 Does Cumulus Linux run OpenFlow or any other “southbound” protocol for the 

purpose of communicating with a centralized SDN controller? ............................32 

2.2.4 Can Cumulus Linux be deployed in an NSX/VxLAN environment? .......................32 

2.2.5 Can Dell switches running Cumulus Linux be deployed in an OpenStack 

environment? ...................................................................................................................33 

2.2.6 On which Dell Networking switches can Cumulus Linux be deployed? ..............33 

2.2.7 What Services and Support model are in place for a customer who buys a Dell 

switch with Cumulus Linux? ..........................................................................................33 

2.3  Big Switch Networks (BSN) .................................................................................................. 34 

2.3.1  Big Cloud Fabric (BCF) ................................................................................................... 34 

2.3.2  Big Monitoring Fabric (BMF) .......................................................................................... 37 

2.4  IP Infusion ................................................................................................................................ 38 

2.5  Pluribus Networks .................................................................................................................. 39 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Introduction 
 

The last several years have a seen a sea-change of innovation in data center 

networking. An entirely new lexicon has emerged that includes terms such as 

software-defined, underlays, overlays, programmatic control and centralized 

controllers. They fall under the rubric of what is termed Software Defined Networking 

(SDN) and they represent a major paradigm shift regarding the manner in which 

networks are considered and deployed.  

Without an understanding of some basic SDN concepts, appreciating the significance 

of these developments can present a challenge to even the most seasoned IT 

professionals. In fact, even networking professionals who don’t understand the 

architectural implications of SDN and do not have a background in fundamental 

software constructs may find themselves overwhelmed by the ecosystem of 

software-based networking solutions, where they fit into the new architecture, and 

the corresponding jargon that is used to describe their functionality.  

The goal of this white paper is to begin the process of demystification by taking a 

taxonomic approach to understanding the lingua franca of the world of SDN and 

Open Networking, especially as it pertains to Dell. The reader can then expand that 

knowledge through further reading.  

For ease of reading, the information in this paper is presented in a question-and-

answer format. Some questions are designed to help seasoned networkers refine 

their knowledge, while others are meant for IT generalists, who are intellectually 

curious and seek to broaden their horizons. To ensure that non-networking focused 

IT professionals can appreciate certain architectural principles associated with SDN, 

some basic legacy networking concepts will also be touched upon. 

Section 1.0 of this paper offers some general knowledge regarding SDN and Dell’s 

Open Networking initiatives. Terms and phrases that appear with relative ubiquity in 

the course of SDN discussions are referenced and deconstructed in this section. 

Section 2.0 focuses on specific vendor offerings from Dell’s third-party ecosystem of 

Open Networking partners.  

Note: This white paper may be updated periodically. It is advisable to look for the 

latest version.  

 

 

 

 



 

 

1.0  General SDN and Open Networking Concepts 
 

The following section is an FAQ-formatted overview of some of the most important 

foundational concepts around SDN and Dell Open Networking, their relationship to 

each other, the architectural constructs they exploit, the innovations they offer, and 

the lexicon used by computer scientists and vendors to describe all of the above. This 

section will also cover some general networking concepts. 

 

1.1 What is SDN? 
 

For the last 25 years, TCP/IP networks have been built using well-known distributed 

communication protocols, such as the Spanning Tree Protocol and the Routing 

Information Protocol. As Professor Scott Shenker, one of SDN’s pioneers, explains, 

without the necessary software abstractions in place, computer scientists have been 

forced to “master the complexity” of writing distributed algorithms on vertically 

integrated packet forwarders. SDN addresses these shortcomings by centralizing 

control and providing a standardized interface to configure network forwarding state 

in a dynamic and programmatic fashion. Stated otherwise, SDN is about creating 

programmable networks.  

 This topic will be addressed in much more depth in subsequent questions. 

 

1.2  What is Open Networking? 
 

Within the context of Dell Networking, Open Networking refers to the disaggregation 

of a network switch’s operating system (OS) from the underlying hardware. A switch 

that does not ship with a vertically integrated OS from the hardware vendor is 

commonly referred to as a bare-metal switch or a White Box. When the bare-metal 

switch is provided by an established network hardware vendor, like Dell, it is referred 

to as a Brite-box (a concatenation of white and brand name box).  

In general, Brite-box vendors offer a “safer” approach to disaggregated networking. 

By choosing Dell, one can take advantage of a global footprint, a world-class supply 

chain, and a 24x7 follow-the-sun support model. As an industry pioneer in the 

disaggregated model, Dell offers operating systems from several different vendors 

that can be loaded onto a bare-metal Dell switch, such as Cumulus Linux, Big Switch 

Networks Switch Light or IP Infusion’s OcNOS. Dell also offers its latest Linux-based 

OS10 operating system as part of its disaggregated model. 

 



 

 

1.3  What exactly is disaggregation and why is this development in the 

networking industry significant? 
 

The decoupling of an operating system from the underlying hardware is known as 

disaggregation. This allows network architects the flexibility to deploy the operating 

system and hardware platform of their choice, independent of each other. This is 

similar to the manner in which an x86 server from Dell or HP can load an OS from 

multiple vendors, like Microsoft or Red Hat. The opposite of this would be a vertically 

integrated switch from vendors like Cisco Systems that come with the proprietary 

NX-OS software, or a Dell Networking switch with Dell OS9 loaded. 

Disaggregation in networking has opened up the market to fierce competition 

among third-party software vendors whose objective is to bring differentiated 

solutions to market before the other. Competition breeds innovation and better 

economics for the consumer.  

A software-driven network design also has its advantages in terms of agility and the 

ease with which it can be adapted to support future network demands. Since the 

network’s persona (its forwarding and processing logic) is abstracted from the 

underlying hardware, the network can be redesigned by changing the software that 

defines it. Meanwhile, all the networking hardware can remain the same.  
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Figure 1-1 – Vertically Integrated and Disaggregated: White Box and Brite Box 

 

 



 

 

1.4  Is there any special requirement for installing a third party operating system 

on Dell Networking bare-metal switches? 
 

Yes, a piece of Linux-based software called the Open Networking Install Environment 

(ONIE - pronounced “oh-nee”) is required. This boot loader or “shim” sits between 

the network switching chipset and the operating system, thereby abstracting the 

underlying hardware. ONIE enables a bare-metal network switch ecosystem, where 

end users have a choice among different network operating systems from which to 

choose. Among the founding members of the ONIE project are Cumulus, Big Switch 

Networks, Dell and Broadcom. ONIE was contributed to the Open Compute Project 

in 2013. 

All Dell Networking switches with the “ON” designation are equipped to leverage 

ONIE and load third party switch operating systems. Today, that includes 1, 10, 40, 

and 100G (multi-rate) switches that are all built using commoditized hardware from 

network chipset manufacturers, such as Broadcom. 

 

1.5  How does ONIE work? 
 

ONIE is a small operating system based on Linux that boots on a switch, discovers 

which network installer images are available (whether on a local network or locally 

stored), loads the image, and then provides an environment so that the installer can 

load the network OS onto the switch. This is illustrated in the figure below. Take note 

that this example is provided by Cumulus, but ONIE is leveraged for other third party 

OS solutions, too. 

 

Figure 1-2 – Open Networking Install Environment Behavior 



 

 

1.6  So-called off-the-shelf “merchant silicon” features highly in discussions 

about Open Networking. What is it and why is it relevant? 
 

Merchant silicon refers to the Application Specific Integrated Chips (aka ASICs, 

Network Processing Unit [NPU] or chipset) used for TCP/IP switching that are 

manufactured by vendors, like Broadcom and Cavium. Over the last few years, 

advancements in merchant silicon’s feature sets, functionality and scalability have 

placed it on par with specially-designed ASICs, thereby lending feasibility to the 

disaggregated model. In fact, Cisco Systems, which arguably has represented the 

gold standard in proprietary switching ASICs, is now including a Broadcom chipset to 

perform the foundational L3/L2switching in the Nexus 9000 Series, one of its 

highest-performing data center switch platforms.  

Spirited discussions can be had with regard to feature parity between merchant 

silicon ASICs and proprietary ASICs, but one thing is certain: advances in the former 

have allowed for a departure from the vertically integrated hardware-software model 

and enabled innovation and competition among networking operating system 

vendors. 

 

1.7  Explanations of SDN typically consist of references to a control plane, a data 

plane and a management plane. What are they? 
 

A network‘s architecture consists of three conceptual layers of functionality in which 

the tasks of gathering intelligence (control plane), forwarding data (data plane), and 

managing devices (management plane) are addressed.  

When forwarding traffic, a switch or router has two tasks to perform that are handled 

by the control and data planes. First, it has to understand the topology of the 

network, meaning the manner in which network devices are connected to each other 

and the role that each plays. For example, in a layer 21 network that is running the 

Spanning Tree Protocol (STP), a switch will have to exchange Bridge Protocol Data 

Units (BPDUs) with other switches to determine which one is the root bridge, which 

path to the root bridge should remain enabled, and which ones need to be blocked 

to remove any bridging loops.  

Similarly, in a layer 32 network that is running, say, the Open Shortest Path First 

(OSPF) routing protocol, messages will have to be exchanged between routers to 

calculate a loop-free path across the networks in the domain. For example, each 

                                                           
1 “Layer 2” refers to an environment in which frames are switched  between hosts on the same VLAN/subnet using only their 

source and destination MAC addresses. 
2 “Layer 3” refers to an environment in which frames are routed  between hosts on different VLANs/subnets using their source 

and/or destination IP addresses. 



 

 

router on a multi-access network must determine which one is the Designated 

Router (DR), which is the Backup DR (BDR) and which is a DROTHER. Then OSPF Link 

State Advertisements (LSAs) will be exchanged between them to populate the OSPF 

Link-State Database. Once the Dijkstra algorithm is run, the calculated shortest path 

routes to all the discovered networks in the domain will populate the Routing 

Information Base (RIB).  

In short, the switch’s control plane provides the layer 2 and layer 3 data sets (network 

and host reachability information) that inform the data plane. A network control plane 

that has an instance running on every switch is said to be distributed. 

Second, the switch has to process the user data it receives on the ingress interface 

and make a forwarding decision. But it may first need to filter the incoming packets 

according to a configured security policy. Then it will have to analyze the frame’s 

header to glean the necessary source and destination address information and 

consult the tables and databases that the control plane populated for guidance on 

how to forward it. At that point, an encapsulation and packet header rewrite 

operation may have to take place. Then the packet will need to be queued according 

to a Quality of Service (QoS) policy as it’s scheduled for transmission at the outgoing 

interface. In short, the mechanisms and processing logic used to forward frames exist 

in the switch’s data plane, which is sometimes referred to as the forwarding plane.  

Lastly, the management plane concerns itself with those protocols and mechanisms 

used to manage the switch itself, such as Telnet, SSH, SNMP and NTP. The 

management plane is sometimes described as a subset of the control plane. 

 

1.8  Discussions around SDN network design oftentimes focus on what are called 

leaf and spine or Clos architectures – what are they? 
 

Clos architectures are not new. In fact, the name comes from the scientist, Charles 

Clos, who designed them to scale telecommunications networks back in 1952. Clos 

architectures lend themselves to efficient horizontal scaling, path resilience, 

deterministic traffic flows and predictable latency and jitter. The availability of high-

density, low profile, fixed configuration, multi-rate switches have made Clos 

architectures relevant once again. 

A leaf-and-spine architecture replicates the internal architecture of a chassis crossbar 

switch, which is referred to as the switch fabric because of the ability of an interface 

to send data to any other interface (full mesh). Picture a matrix or the mesh of a 

fabric with intersecting horizontal and vertical cross stitches.  

One of the benefits related to this meshed fabric design involves resiliency and the 

shrunken failure domain (“blast radius”) that results when one of the spine (core) 



 

 

switches fails. In the legacy Fat Tree (multi-tiered) design with only 2 core (“spine”) 

switches, a failure of one of them results in a loss of 50% of the network’s forwarding 

capacity. 
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Compare that with a Clos network that leverages L2 or L3 multi-pathing between a 

leaf switch and multiple (more than 2) spine switches, such as the one depicted in 

Figure 1-3 above. If one of the 8 spine switches fails, the network will experience a 

corresponding loss of only 12.5% of “backplane” capacity. 

The following article offers an excellent overview (with historical context) of Clos 

networks.  

http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-

s-old-is-new-again.html 

 

1.9  Are Dell’s Open Networking solutions considered SDN? 
 

As one may suspect, the answer depends on interpretation. According to the Open 

Networking Foundation (ONF), which describes itself as “an organization dedicated to 

the promotion and adoption of Software-Defined Networking (SDN) through open 

standards development,” SDN is defined as a set of standards-based software 

abstractions that separate the control plane from the data plane and provide 

http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html
http://www.networkworld.com/article/2226122/cisco-subnet/clos-networks--what-s-old-is-new-again.html


 

 

programmatic provisioning of the physical and virtual switches. The ultimate 

objective is to be able to create programmable networks.  

Dell Networking’s Big Cloud Fabric (BCF) solution from Big Switch Networks is an 

example of the canonical SDN architecture described by the ONF. On the other 

hand, Dell Networking’s Cumulus Linux or OS10 offerings do not provide such 

control and data plane separation, but do offer programmatic capabilities through 

the Linux API and a wide ecosystem of existing Linux-based packages/tools. 

Different interpretations of Open Networking and SDN notwithstanding, there is a 

common thread that runs through the fabrics of all the aforementioned solutions: 

the use of software abstractions to create tractable layers of modularity and 

programmability. This accelerates innovation at each layer while maintaining a 

consistent interface. 

For example, a computer’s architecture is typically represented as consisting of the 

following five levels of abstraction: hardware, firmware, assembler, operating system 

(kernel) and processes (applications). Scientists and engineers have leveraged these 

abstractions for decades to divide responsibility for development and to accelerate 

innovation at all levels. 

The OSI 7-layer model is another good example of layered abstractions. Each layer 

can have its existing protocols further developed, and new ones added, without 

impacting the layer above or below it; this is absolutely essential. Imagine how 

complex (read: impossible) it would be to write an application or add functionality if 

every change directly impacted – or depended on – the specifics of the physical 

transport! The Internet, which has undergone profound changes at each layer, would 

have never survived had the OSI’s data plane abstractions never existed.  

Unfortunately, many such abstractions have been absent in the network control 

plane. This has changed, however, over the last decade thanks to research and 

development in academic circles. The result is a [r]evolutionary network engineering 

paradigm known as SDN.  

 

1.10  What are some of the abstractions used in SDN? 
 

In the classic SDN model (Figure 1-4 below), the control plane is abstracted 

(separated) from the data plane and centralized. Furthermore, within the SDN 

controller itself, there are several layers of abstraction that enable a division of 

responsibilities among them. The centralized control plane’s software is typically 

hosted by a cluster of x86 servers (at least two) for redundancy.  



 

 

The control program, the “northmost” software construct in the SDN controller stack, 

is presented with an abstracted view (virtual topology) of the network by the Network 

Hypervisor. The control program is acted upon by an operator or by an external 

application through a northbound Application Programming Interface (API). A set of 

network connectivity and service requirements are instantiated by the control 

program and presented to the Network Hypervisor. The requirements articulated by 

the control program may be related to a routing or traffic engineering application, or 

perhaps a security-related primitive to provide tenant isolation, like VLANs or VRFs. 

Regardless, the control program is only responsible for expressing the desired 

outcome without having to actually implement anything. Instead, it relegates the 

implementation to a lower level of software.  
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Figure 1-4 – Classic SDN Architecture with Control Plane Abstractions 

 



 

 

The Network Hypervisor translates (or compiles) the control program’s requirements 

into low-level messages to program the physical network. Since the Network 

Hypervisor has a global view of the network, it knows how to orchestrate among the 

physical elements and it knows how to configure the network to execute the 

requirements presented to it by the control program. The Network Hypervisor is also 

responsible for discovering all the physical and virtual network endpoints and 

maintaining state information regarding any topology changes of the underlying 

network, including the addition or removal of switches, routers, and interconnecting 

links and their capabilities.  

The southbound interface on the SDN controller that interacts directly with the 

physical and virtual switches is hosted by a Network Operating System (NOS). The 

NOS has an authoritative view of the entire network, including all the endpoints, and 

is responsible for conveying forwarding state from the Network Hypervisor to the 

switches. It also keeps track of traffic statistics, topology changes and interface state.  

The NOS pushes the desired forwarding state to the switches by leveraging a low-

level protocol known as OpenFlow to program a switch’s flow tables. OpenFlow 

leverages a secure communications channel between the controller and the switches 

(TLS) and uses TCP as its transport (Port 6653). As a result, the network fabric gets 

programmed with the forwarding rules that must be honored to implement the 

control program’s requirements. These rules, also known as flow entries, populate a 

switch’s flow-table(s), i.e., forwarding memory, which is stored in Ternary Content 

Addressable Memory (TCAM).  

The OpenFlow standard does not specify the low-level details of how it should be 

implemented. Like most protocol specifications, the implementation details are left 

to the vendor’s imagination. Moreover, the manner in which a switch’s flow tables are 

populated is directly related to the question of scalability. As such, different operating 

models have come into existence as the availability of a switch’s flow tables have 

been made available to OpenFlow.  

In the days of OpenFlow 1.0, data plane programming was accomplished “reactively.” 

In practice, this means that the forwarding memory is treated like a cache that gets 

gradually populated as packets arrive. If at the time of the packet’s arrival there is no 

entry in a switch’s flow table, it will execute an OpenFlow “Packet-in” operation to 

consult the controller, which would then reactively program a flow entry into the 

switch’s TCAM.  

Depending on the size of the network and its level of activity, the number of Packet-

in messages and responses could easily choke the communication bus between the 

switch and the controller, thereby creating a bottleneck and associated scalability 

limitations. There is also a concomitant CPU overload consideration to be made 

regarding the controller’s ability to respond to so many queries.  



 

 

Reactive flow control is an effort to work around the limitations of early OpenFlow 

implementations and not an inherent requirement of the protocol itself.  Because the 

amount of forwarding memory (TCAM) exposed by these early implementations was 

so small, SDN controllers could not program all necessary forwarding rules at once 

and were in effect forced to cache them dynamically. 

On the other hand, OpenFlow versions 1.3 and later allow for the utilization of 

multiple flow tables as part of its pipeline processing schema. Therefore, the network 

control plane can converge proactively and populate the tables with the forwarding 

rules in a preemptive manner. As such, once a policy is configured (e.g., adding an 

ACL from the CLI) or a network change occurs (e.g., a link comes up), the controller 

proactively updates all of the necessary switches and forwarding memory with the 

new forwarding rules.   

A proactive OpenFlow implementation means that common case packet forwarding 

operations do not even involve the controller and the data plane/control plane 

channel is no longer a bottleneck, the controller’s CPU is no longer being 

overwhelmed, and overall packet processing latency is reduced. Proactive forwarding 

is only feasible with switches that expose multiple tables of forwarding memory.   

In either case, upon receipt of a frame, the switch’s data plane will try to match the 

information found in the header with the information found in its flow tables. If a 

match is found, an associated action against the frame will be taken – either it will be 

forwarded or dropped – and the relevant counters will be incremented. If a match is 

not found, the frame will be punted to the controller. 

As per the OpenFlow 1.5 specification, OpenFlow-enabled switches are required to 

support up to 12 match-header fields (e.g., source/destination MAC, 

source/destination IP, TCP ports, etc.), but up to 38 optional fields are defined, 

including MPLS (Multi-protocol Label Switching) labels, TTL counters and QoS 

markings.  

In a similar manner to the way a server’s operating system compiles high-level source 

program requirements into a low-level machine language to program a server’s CPU, 

the Network Hypervisor compiles the control program’s requirements and the NOS 

leverages OpenFlow to program the switch’s flow tables. This is why Dr. Martin 

Casado, OpenFlow’s primary developer, once described his creation as something 

akin to an x86 instruction set for a network. With this basic architecture and set of 

abstractions in place, it is up to the industry to develop control programs and 

applications that will exploit them. Therefore, OpenFlow should be viewed as a way 

of implementing an SDN network; it’s a means to an end and not the end in and of 

itself.  



 

 

As alluded to previously, not all abstractions deal directly with separating the control 

plane from the data plane. In the Open Networking (disaggregated) model, an 

abstraction in the form of a Linux program called the Open Networking Install 

Environment (ONIE) exists within the switching hardware itself. The ONIE bootloader 

allows different third party operating systems to be loaded onto a bare-metal switch 

that uses industry standard merchant silicon, such as Broadcom or Cavium ASICs. 

That third-party OS may be the engine behind an SDN solution, as in the case of Big 

Switch Networks – or perhaps not, as described earlier with Cumulus Linux. The 

network shown in Figure 1-5 below is an example of a typical controller-based SDN 

architecture. Notice that it is the exact same topology of switches that were used in 

the Clos network in Figure 1-3, which happened to have Dell Networking OS9 

running on them, and no controllers. However, because the Dell switches were ON-

enabled, all one had to do was uninstall OS9, install Big Switch Networks’ Switch 

Light operating system for Big Cloud Fabric (BCF), and deploy the BCF centralized 

controllers. With relatively minimal disruption, a legacy network is converted to a 

next-generation SDN without having to remove or replace any switching hardware. 

That is the power of abstractions!  
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Figure 1-5 – Sample Big Switch BCF SDN Clos-based Architecture 

 

Yet another abstraction, this time provided by Dell’s OS10 SDN/DevOps-inspired 

Operating System, is known as the Switch Abstraction Interface (SAI, pronounced 



 

 

“sigh”). The SAI takes the ONIE model to the next logical step by providing a standard 

C-based API to program switching ASICs, thus allowing different vendor chipsets 

(other than Broadcom) to be deployed with various different third party operating 

systems. 

 

1.11  SDN is oftentimes equated with OpenFlow. Is that the only “southbound”     

protocol used by SDN controllers? 
 

Although OpenFlow was the original SDN protocol used to provide programmatic 

control of the data plane, SDN architectures have evolved since then. They now 

include a litany of other design approaches and protocols that exploit the original 

abstractions that the original SDN architecture defined. OpenFlow itself has been 

considerably developed since its inception to include more functionality, such as the 

ability to support multiple tables and a management protocol known as OF-Config or 

the OpenFlow Configuration and Management Protocol. OF-Config is a companion 

protocol to OpenFlow and leverages YANG modules (RFC 6020) and NETCONF (RFC 

6241) to model and manipulate configurable system attributes and operational state 

for both physical and virtual switches that run OpenFlow. Parenthetically, the OVSDB 

protocol (Open vSwitch Database) is a configuration and management protocol for 

OVS. 

An SDN controller from vendors like Cisco take an approach that deviates from the 

classic SDN model. For example, Cisco’s Application Centric Infrastructure (ACI) 

controller, known as the Application Policy Infrastructure Controller (APIC), does not 

fully centralize the control plane (logically speaking) nor does its southbound 

protocol assume a completely “dumb” switch.  

In the view of Cisco’s developers, the built-in intelligence that has traditionally 

defined a switch’s control plane has value to offer: specifically, in delivering 

programmable networks by sharing responsibility with the controller as part of a 

hybrid approach. Instead of using OpenFlow to program a switch’s flow tables with 

low-level match-action instructions, Cisco’s APIC uses a higher-level protocol called 

OpFlex to convey a set of policy-based requirements from the APIC controller to the 

switch, which will in turn leverage its own policy engine to implement them.  

Cisco’s approach illustrates the difference between an imperative programming 

model and a declarative one. In the former, a control program will define a desired 

end state as well the exact steps that need to be executed to achieve it; whereas in 

the latter, which is the programming model leveraged by Cisco’s APIC, the desired 

end state is defined without directives on how to implement it. Instead, the 

implementation details are left for an intelligent forwarding device to determine. One 

way to think about this is to consider the idea that the lowest compiled state for a set 



 

 

of programming instructions has been moved further “south” in the declarative 

model from the SDN controller’s Network Operating System (centralized control 

plane) to the switch’s operating system (distributed control plane). 

Moreover, service provider-oriented SDN solutions leverage a new MP-BGP (Multi-

Protocol Border Gateway Protocol) NLRI (Network Layer Reachability Information) 

and address family known as BGP-LS (BGP Link State) to communicate IGP (Interior 

Gateway Protocol - OSPF or IS-IS) link state information from an IGP speaker to a 

centralized controller for the purpose of establishing MPLS-based Label Switch Paths 

(LSP) within and across different domains as part of an end-to-end MPLS-TE (Traffic 

Engineering) solution. Yet another extension to MP-BGP known as Ethernet Virtual 

Private Network (EVPN) offers a new address family to convey L2 MAC address 

information for endpoints as a control plane alternative to VxLAN’s (Virtual Extensible 

LAN) default “flood-and-learn” approach. 

SDx Central published a report in 2015 that includes some of the most popular SDN 

controller solutions and the southbound protocols they use. As illustrated in the list 

below, OpenFlow is just one of many southbound protocols to deliver programmable 

networks. 

URL to Report: https://www.sdxcentral.com/reports/sdn-controllers-report-2015/ 

From the report:  

 Brocade SDN Controller – OpenFlow, OVSDB, BGP and NETCONF 

 Cisco APIC SDN Controller – OpFlex 

 Cisco Virtual Topology System – NETCONF, RESTCONF, MP-BGP EVPN 

 Ericsson SDN Controller – OpenFlow, OVSDB, BGP, NETCONF, PCEP, BGP-LS 

 Juniper Contrail – BGP, XMPP, NETCONF, OVSDB 

 NEC Programmable Flow PF6800 SDN Controller – OpenFlow 

 Avaya SDN Fx Controller – OpenFlow, OVSDB, OF-Config, NETCONF 

 Nuage Networks SDN Controller – OpenFlow, OVSDB, BGP 

 ODL Lithium – OpenFlow, OVSDB, BGP, NETCONF 

 VMware NSX (not in report) – User World Agent, netcpa, RabbitMQ, vsfwd 

(NSX-vSphere). OpenFlow and ovsdb (NSX-Multi-Hypervisor) 

 

 

https://www.sdxcentral.com/reports/sdn-controllers-report-2015/
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Figure 1-6 Generalized View of Classic SDN Architecture 

 

1.12  What is the Northbound API used for in an SDN Network? 
 

During the early days of SDN, it was the Southbound API, and in particular OpenFlow, 

that garnered the lion’s share of the industry’s attention. That’s understandable given 

that OpenFlow was the foundational technology that enabled programmatic 

networks. The implications of separating the control plane from the data plane and 

leveraging abstractions to dynamically program the network were foreign concepts 

that network engineers spent a good amount of time trying to grasp and appreciate. 

As such, conversations around applications took a backseat and were nebulous at 

best, since no one could point to a specific use case or a vendor that was actually 

shipping a product that anyone had in production. Much has changed since then, 

and the application layer that consumes the Northbound API has been demystified. 

The Northbound API makes the network’s control information (Control Plane) 

available to higher level abstractions, such as applications. Everything below the 

Northbound API (i.e. the control and forwarding planes) still delivers the same 

traditional networking functionalities. The network basically continues to forward 



 

 

packets, as it always has, although the implementation is different. What is new, 

insofar as the application is concerned, is the architecture. Instead of control 

information being distributed across multiple network devices, thereby requiring 

complex distributed algorithms, it is now abstracted from the hardware, centralized 

and made available to the applications via the API. The network can thus be 

programmed with software applications instead of command line interface (CLI).  

The application could be designed to deliver traditional network services, such as 

firewalls or load balancers and basic L2 and L3 forwarding, or complex orchestration 

across cloud resources (storage, compute and network), like OpenStack. SDN 

applications can instantly change network configuration to align it with business 

objectives or customer Service Level Agreements (SLA), such as forwarding packets 

over the least expensive path (think SD-WAN), dynamically adapting QoS based on 

available bandwidth and user subscription, dropping unwanted packets and tracking 

back to their source for containment, etc. Security, traffic engineering, multi-tenancy 

management, and network monitoring are just a few examples of the applications 

that are leveraged by the Northbound API.  

Some vendors sell a controller with built-in applications, like Big Switch’s Monitoring 

Fabric, Cisco’s ACI and vMware’s NSX. All of them, however, expose an API (RESTful) 

that software developers can write to with the hope that a massive ecosystem of 

software can be developed around it, thereby making their API a de facto standard.  

 

 1.13  SDN-based solutions are oftentimes categorized in terms of underlay and 

overlay networks. What are they and what is the difference? 
 

An underlay network is defined as the underlying physical network – the transport – 

upon which virtual networks (overlays) forward data. Each network type has 

implications with regard to the possession and exploitation of topological awareness, 

forwarding intelligence and path selection.  

Overlay networks put flow-based path selection at the endpoints, such as hypervisors 

or their hardware-based analogs. In other words, the forwarding intelligence resides 

at the edge of the network. Overlays can be used when one does not have control of 

the underlying infrastructure. A good example of an overlay network is a Virtual 

Private Network (VPN), like the one telecommuters use every day to access their 

company’s intranet. A laptop with a VPN client installed is one endpoint of the tunnel 

while the VPN concentrator at company headquarters acts as the other. The underlay 

is provided by the ISPs that connect the two ends.  

At the sending end, the traffic payload is encapsulated in another frame. A separate 

tunnel (outside) header is appended to it whose source and destination IP addresses 

are those of the tunnel endpoints. At the distant end, the original frame is de-



 

 

encapsulated and forwarded onto the private network. The original packet travels 

through the physical underlay without its payload, including its original (inside) 

header, ever being examined or acted upon by the intermediate switching nodes. 

This is why it is said to have traveled through a tunnel: insofar as the original frame is 

concerned, its headers were examined twice, once at the encapsulating end, and 

again at the de-encapsulating end – with no intermediate hops in between. 
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Figure 1-7 – Overlay Networks in a Multi-Tenant Environment. The underlay 

forwards traffic based on tunnel header information. The tunnel endpoint is a 

hypervisor or a physical switch. 

 

SDN and Network Virtualization have brought overlay networks inside the data 

center. They are used in cloud-based XaaS applications for multi-tenancy network 

isolation and to provide Layer-2 adjacency across routed boundaries. The two most 

common overlay tunneling technologies used in SDN solutions today are VxLAN and 

GRE (Generic Route Encapsulation). In each case, the hypervisor acts as the virtual 

tunnel endpoints for virtual workloads. For physical servers with no hypervisor 

installed, a hardware-based endpoint is used, such as the VxLAN Tunnel Endpoint 

(VTEP) functionality available in the Broadcom Trident-2 (and later) chipset.  

Take note that the underlay fabric has no knowledge of the existence of any private 

networks that sit “behind” the tunnel endpoints. That relieves it from having to create, 

store or change network forwarding state. That is of particular value in a dynamic 

cloud environment with migrating workloads whose identity is routinely being 

decoupled from its location courtesy of the logical tunnels. All the underlay has to do 



 

 

is route packets between static endpoints, which is something that IP fabrics have 

been doing very well for many years. 

By the same token, the overlay network has no knowledge of the underlay network’s 

topology, forwarding mechanisms, routing protocols, security and quality of service 

policies, etc. It can be said that the two are orthogonal to each other, although the 

underlay provides transport services to the overlay. Therefore, the transport fabric 

needs to be reliable, robust, redundant and resilient.  

There are SDN solutions available that are designed for a more collaborative 

approach between overlays and underlays, in which the overlay is allowed to exploit 

underlay information to conduct efficient path monitoring and construct highly-

reliable overlay topologies. Cisco’s ACI (Application Centric Infrastructure) and Big 

Switch Network’s Big Cloud Fabric (BCF) solutions are examples of this approach. 

 

1.14  What problems does SDN solve and what are some real-world use cases? 
 

As Professor Scott Shenker, one of the pioneers of SDN development, once 

remarked, “[OpenFlow] doesn't let you do anything you couldn't do on a network 
before.” Given that this comes from one of the most passionate and prolific voices in 

SDN evangelism, this is not an altogether mundane comment. 

So what exactly does OpenFlow-based SDN provide? SDN establishes a set of 

clearly defined layers of functionality that comprise a set of principles upon which 

to build networks. These principles are embodied in the following: 

 Separation of the control plane from the data plane 

 A centralized view of the entire network, including endpoints 

 Software abstractions that allow for modularity within the control plane stack  

 The concept of a network operating system that abstracts the installation of 

state in network switches from the logic and applications that control the 

behavior of the network 

 A standardized programmatic interface (API) for the data plane  

This clearly defined architecture sets the stage for the development of control 

programs and applications that can exploit these constructs to solve the network 

challenges that are addressed sub-optimally – if at all – today, as well as the 

requirements for future use cases. With that, the network has been put on par with its 

compute and storage counterparts. 

In terms of the usefulness of an OpenFlow-based SDN is concerned, given the SDN 

controller’s centralized view of the entire network, which includes the identity 

(IP/MAC addresses) and location (switch/hostname/port) of all the physical and 



 

 

virtual endpoints, deploying legacy networking functionality (segmentation, isolation, 

quality-of-service, security and load balancing, etc.), as well as managing and 

monitoring the network, can be simplified.  

The so-called “killer app” for SDN is Network Virtualization. It’s worth mentioning that 

the availability to leverage virtualized networking constructs is not new at all. For 

example, Virtual Local Area Networks (VLANs) have been in existence for over 25 

years. And network engineers have been deploying virtual device contexts for routers 

and firewalls, Virtual Routing and Forwarding instances (VRFs), logical routers, data-

path virtualization solutions, like Virtual Private Networks (VPNs) and Multi-protocol 

Label Switching (MPLS), control plane virtualization and other forms of network 

virtualization for many years. In fact, a well-known Cisco Press book titled Network 
Virtualization by Victor Moreno and Kumar Reddy was published in 2006 – long 

before anyone heard of SDN and OpenFlow.  

However, within the context of SDN, Network Virtualization (NV) refers to the 

creation of virtualized network entities (routers, switches, firewalls, and load 

balancers) using one of two methods.  

 

 The first is through software emulation plus overlays. This model is referred 

to as hypervisor-based or overlay-based network virtualization, which can 

use a centralized controller – i.e. vMware NSX/Nicira NVP, OpenStack, Big 

Switch BCF P+V, etc.  

 

 The second method is to virtualize the physical network itself via the classic 

SDN model, which utilizes a centralized controller and a southbound API for 

the data plane, such as OpenFlow – i.e. Big Switch BCF, NEC Programmable 

Flow, Brocade SDN Controller, Cisco APIC, etc.  

 

In either case, the virtual networks exist as part of a software abstraction that is 

decoupled from the underlying physical hardware. The hardware acts as the actual 

forwarding engine, the substrate upon which the virtual constructs are built. In the 

overlay model, that hardware is typically a virtualized server running hypervisor 

software, in which case the physical network is irrelevant. In the classic SDN 

approach (sometimes referred to as an underlay model), the underlying hardware is 

the physical network itself, in which case a network virtualization app/control 

program can leverage SDN’s abstractions to create from it a shared pool of network 

transport that can be “sliced” into different virtualized networks. 

The compute analog to NV is Server Virtualization, where the familiar attributes of a 

physical server are decoupled and reproduced in software (the hypervisor) as vCPU, 



 

 

vRAM, vNIC, etc. And just like a virtual machine, a virtual network can be instantiated, 

manipulated, saved and deleted with a few clicks of the mouse.   

  

Control Program/App

DATA PLANE

CONTROLLER

C
o

n
fi

gu
ra

ti
o

n
A

P
I

Control Program/App

DATA PLANE

CONTROLLER

HYPERVISORVirtual Switch

CONTROL PLANE

Tu
n

n
el

/C
o

n
fi

gu
ra

ti
o

n

Vendor-SpecificVendor-Specific

Open API 
(e.g. OpenFlow)

SERVER
SWITCH

SWITCH
A

P
I

Vendor-Specific 
(e.g. OnePK)

Overlays (e.g. VxLAN, NVGRE)

 

 

Figure 1-8 – Two Approaches to Network Virtualization: Classic SDN (left) and 
Overlay SDN (right). Note that the underlay switches are inconsequential in the 
overlay model.  
 

There is a growing number of use cases and applicability for SDN, such as SD-WAN, 

network monitoring and tap aggregation, service insertion (IDS/IPS, firewalls, load-

balancers), campus applications, automation and orchestration and others. The list 

grows as more control programs/applications are written and the technology 

matures. 

 

 

 

 

 



 

 

2.0  Dell OS10 and Third-Party OS Vendor Solutions 
 

The following sections will give a high-level overview of Dell Networking’s Open 

Networking-enabled software solutions, including the Dell OS10 operating system. 

They are part of Dell’s disaggregated software-hardware model. Given that each 

operating system defines a certain architecture and design approach, the choice of 

which one to deploy is a function of the specific architectural and operational 

requirements.  

 

2.1  Dell OS10 
 

In January of 2016, Dell Networking released the Base version (Open Edition) of its 

next-generation data center networking operating system called OS10. The “10” 

reflects the next numerical progression from Dell’s legacy OS9 software train, but the 

two OSes are completely different. OS9 is a mature, tried and tested network switch 

operating system with a NetBSD kernel and a wide range of “table stakes” data center 

and campus networking technologies. As Dell Networking’s flagship, legacy operating 

system, OS9 has a global footprint and a long history of success. 

On the other hand, Dell OS10 is slated for release in general purpose enterprise 

deployments (Enterprise Edition) by CY16Q4. It is new and very different from OS9. 

Also, like the third-party software vendor solutions that will be described later in this 

section, Dell OS10 leverages the Open Networking Install Environment (ONIE) that 

comes with a Dell “ON” switch, such as the S4048-ON.  

From the Dell OS10 FAQ Document – June 2016: 

The OS10 Open Edition includes the Linux distribution, SAI API (NPU abstraction), and 
CPS API (Control Plane Abstraction) over REST and Python wrappers. The Open 
Edition enables native Linux applications (management, monitoring), third party 
applications such as Quagga and Bird, and the integration of custom applications via 
the CPS API. 

The Open Edition is a development environment suitable for lab environments to 
prototype, develop, and test new applications. The Open Edition is also suitable for 
customers that require a high level of customization and have in-house capabilities 
for both development and support for production environments. 

The OS10 Enterprise Edition includes the Open Edition capabilities plus a full Dell 
Networking protocol stack and management infrastructure providing a CLI to 
configure and monitor the platform. The Dell protocol stack comes fully integrated 
with the system software for the underlying hardware. 



 

 

OS10 Enterprise Edition is designed for mainstream production networking 
environments, especially for organizations transitioning to a DevOps operational 
model.  

 

Figure 2-1 Dell OS10 Software Stack with Unmodifed Linux Kernel 

 

2.1.1 What are Dell Networking OS10’s most salient features and innovations? 
 

The OS10 Base Module has been available for free since March of 2016 and runs an 

unmodified Debian Jesse Linux kernel. Linux is one of the most widely-used 

operating systems and can provide deployment and operational homogeneity across 

multiple IT layers, including networking, storage and compute. The OS10 Base 

Module can leverage the wide array of software packages and tools that exist within 

the Linux ecosystem today, like Quagga and Bird for routing TCP/IP, and it also 

provides a rich environment for developing homegrown applications and leveraging 

DevOps automation and management tools, such as Puppet, Chef and Kubernetes.  

Dell OS10 is a very modular operating system that consists of several layers of 

abstraction. Of these, the most notable are the Switch Abstraction Interface (SAI), the 

Control Plane Services layer (CPS) and the Common Management Services interface 

(CMS). Combined, they make application development and network programmability 

(configuration and management) simpler and more streamlined. Recall that the very 

purpose of software abstractions is to create tractable layers of functionality that can 



 

 

be developed independently of each other, and without consideration for the 

underlying complexities and detail. Recall the abstracted control plane in the ONF’s 

SDN model that was covered in section 1.10. This modularity makes OS10 extremely 

flexible in terms of its programmability and supported deployment scenarios. 

 

2.1.2  Control Plane Services  
 

The benefits of Dell OS10 Control Plane Services revolve around platform stability, 

scalability, feature development velocity, extensibility, and integration with external 

systems and applications. The CPS is the chief enabler of a network operating system 

that is purposefully designed for cloud/DevOps/SDN environments. The CPS layer is 

an inter-application framework that provides a stateful, distributed database service 

that also leverages a publish/subscribe messaging paradigm. OS10 applications use 

the CPS API to communicate with each other, just as custom-written applications 

use the CPS API to communicate with the OS10 components and services. As such, 

an application expresses a desire (subscribe) to receive state information regarding 

one of the OS10 device’s subsystems, and then consumes that information in order 

to take a prescribed action.  

To understand how the CPS infrastructure operates, consider the example of a 

Temperature Control (TC) application. This simple application will monitor an OS10-

based switch’s temperature and the speed of its cooling fans. The TC application will 

subscribe to event information regarding the temperature of the switch by registering 

its interest in such an event with the CPS layer. When the temperature exceeds a pre-

configured threshold, the Platform Abstraction Service (PAS, which is a higher layer 

abstraction of the actual hardware drivers) will publish that information. In response 

to the notification, the TC application can speed up the rotation of the fans and/or 

send out an urgent email to the network operations center team, or even manipulate 

the data center’s environmental controls to compensate for the cooling system’s 

failure.  

The CPS API has been leveraged by Dell Engineering in partnership with other 

vendors and clients to deliver innovative solutions. The following are two examples. 

 Silverpeak Accelerated Route Convergence 

The objective of the convergence application is to accelerate route convergence and 

failover after a link failure. In the topology under test, the SD-WAN edge appliance 

was connected to both a broadband Internet service and an MPLS cloud through a 

Dell switch that was running OS10. Typically, in SD-WAN solutions, delay-

sensitive/tier 1 traffic travels over a highly-reliable and private MPLS link, while less 

demanding traffic is sent over a public broadband connection. The application must 

register with the CPS and subscribe to event information regarding the state of the 



 

 

physical link that is connected to the broadband provider. Once the link is 

deliberately failed, an event notification is sent to the CPS, which in turn publishes it 

for consumption by the application. The application, in turn, will shut down the link 

that the SD-WAN appliance uses for Internet-bound traffic, thereby triggering an 

immediate reconvergence and traffic switchover to the MPLS link. 

 OS10 Integration with Kubernetes Networking 

The client had an existing Kubernetes container environment that was leveraging the 

Tectonic distribution of CoreOS, which uses Flannel to provide an overlay network 

for inter-pod communications. Dell provided a solution for Kubernetes networking, 

where the customer was able do away with overlay networks and allowed them to 

deploy a Kubernetes cluster on an existing L3 fabric. The solution is a simple app that 

runs on a top-of-rack Dell OS10 switch. The app extracts the necessary network 

information about the Kubernetes cluster that is stored in the distributed key value 

database known as etcd. The CPS API is leveraged to program the container subnets 

on to the kernel and the ASIC by pointing those subnets to the server that hosts the 

particular subnet. Then BGP advertises those subnets to a peer router, thereby 

ensuring that they are reachable. 

 

2.1.3  Switch Abstraction Interface  
 

Under the hood, Dell OS10 employs the Switch Abstraction Interface (SAI), which 

provides a common interface for operating system software to communicate with 

and program the underlying networking ASIC/NPU. That operating system software 

can be the kernel itself or processes that are running in user space, while the chipset 

may be from any one of several vendors whose SDK conforms to the SAI 

standard.  The SAI allows Dell to quickly integrate new ASIC/NPUs for customers 

reducing the time it takes to provide them with the latest chipset technologies.  

This is not trivial, as it represents the next step in the evolution of disaggregation. The 

end-result is that ASICs from multiple vendors may be deployed (Broadcom, Cavium, 

etc.) with the operating system software of choice, thereby allowing network 

architects to build a network that meets their needs without any deployment 

constraints imposed by proprietary solutions.  

 

2.1.4  Common Management Services 
 

Dell OS10 exposes an API for use by external management systems such as a 

NETCONF client. NETCONF is a switch management protocol that was first 

developed by the Internet Engineering Task Force (IETF) in 2006 and later revised in 

2011. It provides mechanisms to install, manipulate and delete configuration files on 



 

 

network devices. The impetus for its development was the realization by the industry 

that SNMP was only being used as a means to monitor the network and not write to a 

system’s configuration. Network engineers preferred vendor CLI and vendor-

provided scripts over unwieldy SNMP workflows.  

In OS10, the NETCONF server leverages the data modeling structures that are 

defined by Yang data modules. Yang modules explicitly and precisely determine the 

syntax and semantics of the data that can be externally managed and manipulated by 

the NETCONF protocol. In other words, Yang provides a well-defined abstraction of 

the different elements of a switch’s subsystems that can be configured by an external 

management system, such as the attributes of physical and virtual interfaces, IP 

routing protocols, platform management related items, etc. Yang also makes a 

distinction between configuration data and operational state data for the purpose of 

streamlining management. 

Through the Hello process and the subsequent exchange of capabilities that occurs 

during session initialization between a NETCONF client (network management 

station) and NETCONF server (OS10 device), Yang advertises the specific elements in 

the device’s subsystems that can be configured, monitored or otherwise manipulated 

by the management station. Notifications and administrative actions that are available 

to NETCONF are also made known at that time.  

A concrete example of how OS10’s NETCONF agent can make life easier for network 

operators involves the data stores that it defines. NETCONF defines several types of 

data stores in the network device, including the startup, running and candidate data 

stores. The running data store is where the device’s current running configuration 

can be found and the startup data store includes the configuration that will be 

executed upon starting the device. These two data stores are well-known to network 

engineers. On the other hand, the candidate data store, although less familiar to 

some, is comparatively the more interesting element in terms of operations. The 

candidate data store holds a potential configuration that can be executed once it is 

committed to the running configuration. This is a very handy tool to have at one’s 

disposal when making configuration changes that may inadvertently cause an 

outage. The candidate data configuration will be withdrawn after a set period of time 

has lapsed if it is not committed, thereby restoring the network to a previously 

operational state.  

NETCONF also works symbiotically with the candidate data store to make network 

configuration changes to many devices at once in what is described as network-wide 

transactional operations. The change is first made to the each device’s candidate data 

store and only after all devices agree to the feasibility of the new configuration will 

the candidate configurations be executed. If something fails and the confirm-commit 
message is not executed, the changes will rollback to a previous functioning state.  



 

 

OS10 meets the demands that Cloud/DevOps environments make of modern 

network operating systems, such as programmatic access to a device’s configuration, 

automation, the ability to execute unordered configurations (relegating ordering to 

the intelligence within the device itself), configuration validation, the ability to 

execute network-wide configuration changes at once, a standardized data structure 

to advertise configurable elements and the ability to separate configuration and state 

information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2.2 Cumulus Linux 
 

The Cumulus operating system for Dell Networking ON-based switches is most 

suitable for enterprises whose personnel are familiar with Linux. The Cumulus 

administrator interface is not quite an “industry-standard” command line interface 

(CLI) to which network engineers have become accustomed, but it is similar. One 

should be familiar with Linux file manipulation and basic command sets for managing 

images, as well as with Linux-based networking constructs to be effective. In short, 

there is indeed a learning curve for the “average” network administrator, but for 

engineers who want to capitalize on the value of deploying a Linux operating system 

in their environments and also possess the drive to venture slightly out of their 

comfort zone, the learning curve is certainly manageable.  

One of the biggest benefits offered by Cumulus is the ability to manage the network 

with the same automation tools that are used to manage a Linux-based server farm, 

such as Ansible, Puppet and Chef.  

 

 

 

Figure 2-2 Cumulus Linux Network Operating System Architecture (from Cumulus 

website) 



 

 

2.2.1 What is Cumulus Linux? 
 

Cumulus Linux is a networking focused Linux distribution that is deeply rooted in 
Debian. Cumulus Linux replaces the vertically integrated operating system that a 
networking vendor would normally provide with their hardware. Switches running 
Cumulus Linux provide standard networking functions such as bridging, routing, 
VLANs, MLAGs, IPv4/IPv6, OSPF, BGP, access control, VRFs, and VxLAN overlays. 
 

2.2.2 Is Cumulus Linux an overlay or underlay solution? 

 
Insofar as Cumulus Linux is simply an operating system that runs on the physical 

networking hardware itself, it can loosely be categorized as an underlay, although it 

does not support an SDN architecture with a centralized control plane, as described 

earlier in this paper. It does support network overlays by providing the ability to 

enable the VxLAN gateway feature in the Broadcom chip. 

 

2.2.3 Does Cumulus Linux run OpenFlow or any other “southbound” protocol 

for the purpose of communicating with a centralized SDN controller? 
 

No. According to Cumulus CEO JR Rivers, “The only way you can truly be successful 
in meeting the customer needs around OpenFlow is to be truly focused on a great 
OpenFlow agent that lives on the switch platform…In general, when customers want 
to use OpenFlow, Cumulus will say, go talk to Big Switch.” 

 

2.2.4 Can Cumulus Linux be deployed in an NSX/VxLAN environment?  
 

Absolutely. The value offered by virtual networks comes from the fact that they are 

abstracted from the underlying physical network. Therefore, a virtualization overlay, 

like VxLAN, which is also the overlay engine behind NSX, is orthogonal to the 

switching hardware and the operating system they run. The VxLAN Tunnel Endpoint 

(VTEP) resides on the virtualized server’s hypervisor. This is where the 

encapsulation/de-encapsulation of the tunnel header takes place. The underlying 

network only needs to have the ability to forward IP traffic between those tunnel 

endpoints.  

There is an exception and it involves the case in which a server is not running a 

virtualization platform and therefore has no hypervisor. In that case, the server will 

require a physical switch to act as the VTEP to allow for communication between the 

physical and virtual server environments. Broadcom’s Trident-2 chipset fully supports 

that functionality from a hardware perspective, but the operating system running on 



 

 

the switch will have to offer the ability to expose that functionality through CLI. 

Cumulus Linux version 2.0 and later fully support VxLAN and NSX. 

 

2.2.5 Can Dell switches running Cumulus Linux be deployed in an OpenStack 

environment? 
 

Yes. In fact, there is a detailed design guide on Cumulus’ website for deploying 

Cumulus Linux with OpenStack.  

URL to Design Guide:  

https://cumulusnetworks.com/media/resources/validated-design-guides/VMware-

vSphere-Cumulus-Linux-Validated-Design-Guide.pdf 

 

2.2.6 On which Dell Networking switches can Cumulus Linux be deployed? 
 

Dell Networking switches with the “ON” designation are capable of running third-

party operating systems. The Cumulus Linux HCL is actively updated as more vendor 

hardware platforms are tested and certified. As of the writing of this paper, the Dell 

Networking S6000-ON, S4048-ON, S3048-ON, S6100-ON and the Z9100-ON are 

on the Cumulus HCL. 

 

2.2.7 What Services and Support model are in place for a customer who buys a 

Dell switch with Cumulus Linux?  
 

As always, the hardware is fully supported by Dell and that does not change at all in 

the disaggregated model. Typically, the customer is responsible for installing the 

operating system and configuring the switch. However, the Dell Networking SE, 

along with their counterparts at Cumulus, are resources who can be leveraged to 

give the customer a smooth out-of-box experience. As of today, Dell Services does 

not provide any services SKU for a Cumulus Linux rollout, but services can be 

purchased from Cumulus.  

 
 

 

 

 

 

https://cumulusnetworks.com/media/resources/validated-design-guides/VMware-vSphere-Cumulus-Linux-Validated-Design-Guide.pdf
https://cumulusnetworks.com/media/resources/validated-design-guides/VMware-vSphere-Cumulus-Linux-Validated-Design-Guide.pdf


 

 

2.3  Big Switch Networks (BSN) 
 

Contrary to what the name suggests, Big Switch Networks does not sell switches. 

The company sells networking software that is loaded onto an Open Networking-

enabled switch as part of a disaggregated deployment model. Dell offers two 

solutions from BSN: Big Cloud Fabric (BCF) and Big Monitoring Fabric (BMF). Both 

solutions involve a classic controller-based SDN architecture, and the operating 

system for both is BSN’s Switch Light OS.  

 

2.3.1  Big Cloud Fabric (BCF) 
 

BCF is an SDN-based networking solution that closely resembles the classic SDN 

model that was described in the previous section. The architecture includes a pair of 

centralized controllers that present a northbound API for consumption by 

orchestration and cloud management tools, such as CloudStack, OpenStack and 

vMware. There is also a CLI and GUI interface for human interaction, but they are 

both REST API clients that translate command inputs into REST calls. 

 

 

 

Figure 2-3 Big Switch Networks - Switch Light OS Decomposed 

 

 



 

 

The centralized controllers also leverage OpenFlow’s southbound API to program the 

data plane with the necessary flow information to implement the policies that are 

instantiated by the control program. Because the Switch Light OS completely 

displaces any other software on the switch, it does not have to share the hardware 

tables with any other protocol data structures. That, coupled with the fact that newer 

versions of OpenFlow (1.3 and higher) allow for the use of multiple flow tables, 

means that BCF can operate in proactive OpenFlow mode, thereby allowing the 

fabric to scale.  

The data plane is a leaf and spine (Clos) topology that – as of the writing of this paper 

– scales to 32 leaf switches (48 x 10G ports typically) and 6 spine switches (32 x 40G 

typically). The best way to think of the BCF architecture is to imagine a decomposed 

chassis-based switch with a pair of supervisor modules (aka Route Processor 

Modules, L2/L3 engines, etc.) and line cards. The BCF centralized controllers would 

be the equivalent of the redundant supervisor modules (active/standby), the leaf 

switches would comprise the 10G access line cards, and the inter-switch links and 

spine switches would comprise the non-blocking backplane. See figure 2-4 below. 

The L2/L3 boundaries of the Clos network are arbitrary and policy-driven, not 

topology driven.  

In other words, the inter-switch link ports are non-committal in terms of their 

function; they may be part of a L2 or L3 forwarding mechanism.  

 
Figure 2-4 Big Cloud Fabric from Big Switch Networks. Comparison to Chassis-

based switch.  



 

 

As mentioned in the previous section, network virtualization is one of the prime use 

cases for SDN. In the BCF solution, a virtual network, which is comprised of L2 and L3 

entities, is called a Tenant. The L2 broadcast domain (aka VLAN) of the Tenant 

network is referred to as a Logical Segment and the L3 component is called a Logical 

Router, which is also described as a VRF or Tenant Router. Tenants communicate 

with each other and with external devices through another L3 construct known as a 

System Router. Tenant routing – meaning between and within a segment – takes 

place at the leaf/access layer, which acts as a distributed router in hardware in which 

each leaf acts as the default gateway for any logical segment that it hosts. Inter-

Tenant and external routing take place at the spine. 

Starting with version 2.6 of the Switch Light OS, BCF can integrate with vMware NSX 

to provide visibility to the network underlay on which the NSX overlay tunnels “ride,” 

as well as analytics to gage performance and reliability. By consuming an API 

provided by vCenter, the BCF controller can learn of the activity occurring on the 

overlay (i.e., which ESXi hosts are connected to which leaf switch and the virtual 

networks that they host, the creation of VTEPs, visibility to the VMS connected to the 

VTEPs, and virtual overlay network troubleshooting and analytics). This is what was 

being referred to earlier in this paper with regard to the value of integrating between 

the underlay and overlay networks.  

BCF also integrates with OpenStack Neutron via a user space software agent for 

KVM-based virtual switches that adds functionality and is said to enhance 

performance of Open vSwitch (OVS).  

 

       Figure 2-5 Big Cloud Fabrics Architecture Overall View 



 

 

2.3.2  Big Monitoring Fabric (BMF) 
 

The BMF solution from Big Switch Networks involves the deployment of a similar 

architecture to the BCF solution, but it is used as a means to interconnect a 

production network to a separate fabric whose only purpose is to provide “pervasive 

visibility and security.”  In other words, the network itself is a packet broker. It uses the 

same Switch Light OS with some modifications, redundant controllers and an 

unfolded Clos architecture. The entire solution can also be thought of as a big switch 

chassis to which the production network’s monitoring taps and SPAN ports are 

connected, as well as the monitoring tools and performance analyzers. BMF 

leverages the ability of OpenFlow to match a wide scope of abstracted control plane 

information to capture traffic flows and forward them programmatically to a 

repository (farm) of network monitoring tools. 

Enterprises who want to test the SDN waters may leverage this solution as a low-risk 

opportunity to introduce SDN into their environments and learn about how to 

leverage its capabilities and how to manage and maintain them while keeping their 

existing legacy production network in place.   

 

 

       Figure 2-6 Big Monitoring Fabric Architecture Overall View 

 



 

 

2.4  IP Infusion 
 

OcNOS is the name of the operating system from IP Infusion that can be loaded onto 

a Dell Networking ON-based switch. The main attraction for this operating system is 

the vast MPLS-based services that it provides. This enables Dell to offer 

commoditized WAN edge and service provider based solutions. MPLS is a packet-

switched data transport technology that is typically leveraged by enterprises to 

connect a data center to remote sites or as a data center interconnect (DCI) solution. 

MPLS can offer L3 or L2 connectivity, in which case, in its simplest form, an MPLS 

service can be thought of as a big switch (L2) or router (L3) that sits between sites.  

OcNOS offers a relatively newer MPLS-based control plane solution known as EVPN 

– or Ethernet Virtual Private Network. One use case that is of particular relevance in 

the field of virtual networking is as a control plane for VxLAN. By default (according to 

IETF RFC 7348), VxLAN uses a multicast-based flood-and-learn approach (data plane 

learning) to VTEP and endpoint discovery. The overlay broadcast, unknown unicast, 

and multicast traffic (BUM) is encapsulated into multicast VXLAN packets and 

transported to remote VTEP switches through the underlay using multicast 

forwarding. Flooding in such a deployment can present a challenge for the scalability 

of the solution. The requirement to enable multicast capabilities in the underlay 

network also presents a challenge because some organizations do not want to 

enable multicast in their data centers or WAN networks. 

EVPN offers a standards-based control plane solution to the VxLAN data plane that is 

more intelligent, efficient and scalable. It leverages a newly-established MP-BGP 

address family (L2VPN) and NLRI for advertising MAC addresses and mapping them to 

IP addresses. EVPN inherently supports multitenancy, privacy and route isolation.  

One can find a solutions guide for VxLAN and EVPN using OcNOS at the following 

link: 

http://www.ipinfusion.com/sites/default/files/OcNOS%20Solution%20Guide_VxLAN-

EVPN.pdf 

Since EVPN is an evolutionary technology that relies on other foundational 

technologies, to fully understand EVPN, one should familiarize themselves with the 

following RFCs: 

 RFC 4271 - Border Gateway Protocol 4 (BGP-

4): https://tools.ietf.org/html/rfc4271 

 RFC 4760 - Multiprotocol Extensions for BGP-

4: https://tools.ietf.org/html/rfc4760 

 RFC 4364 - BGP/MPLS IP VPNs: https://tools.ietf.org/html/rfc4364#page-15 

http://www.ipinfusion.com/sites/default/files/OcNOS%20Solution%20Guide_VxLAN-EVPN.pdf
http://www.ipinfusion.com/sites/default/files/OcNOS%20Solution%20Guide_VxLAN-EVPN.pdf
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc4364#page-15


 

 

Finally, the OcNOS management plane can support a variety of management 
interfaces, such as “industry-standard” CLI, SNMP, REST, NETCONF and SAF IMM-OI.  
 

2.5  Pluribus Networks 
 

Open Netvisor Linux (ONVL), which is based on Canonical's Ubuntu Linux 

distribution, is the name of the network switch operating system that Dell offers from 

Pluribus Networks. Pluribus’ software-centric solution is called Virtualization-Centric 

Fabric or VCF. The fabric is typically a Clos architecture whose switches are 

coalesced into a single management domain (“fabric”) that can be managed through 

CLI or a C, RESTful API, as well as by DevOps tools, such as Ansible. Each switch runs 

an instance of a proprietary distributed database clustering software to create the 

management domain and it is used for configuration and state management across 

the physical network. 

A VCF network does not leverage a centralized controller like BCF and BMF, nor is it 

an overlay solution, like NSX. Instead, it employs a distributed control plane across 

the fabric. All L2 and L3 control plane protocols, data plane forwarding mechanisms, 

multipathing and loop mitigation considerations are the same as they are in so-called 

legacy networks. The inter-switch links between leaf and spine may be L2 trunks or 

L3 interfaces. VCF has come a long way in its support for table stakes technologies 

and it continues to travel down that path, with support for VRF and other network 

virtualization technologies on the roadmap. 

VCF’s value comes from its ability to provide deep analytics and visibility (Insight 

Analytics) to existing and archived traffic flows across the network without having to 

deploy a separate tool farm, as one does with a typical packet broker-based solution. 

Analyzed production traffic flows “inline” and the analytics engines run on the 

switches themselves, with no need to purchase separate appliances. Traffic analysis 

can be done via a GUI or through CLI.  

Specifically, the fabric analytics engine provides the following visibility: 

 Telemetry – inspects every individual TCP connection and client-server 

aggregated connection fabric statistics.  

 vFlow - filtering fabric-wide data center switching traffic on a granular flow 

level and applying security/QoS actions or forwarding decisions on each 

defined flow.  

 vPort - tracking endpoints/VMs on a global, fabric-wide endpoint table. 

 

 



 

 

Conclusion 
 

This paper aimed to provide the necessary background, technical information and 

historical context to understand and appreciate SDN’s foundational concepts and 

their relationship to Open Networking. While other vendors focus on a particular 

solution set and approach to delivering programmatic networks, Dell Networking 

offers engineers and architects the ability to choose a path that best suits their needs 

and meets their requirements through its championing of the disaggregated 

hardware/software model.  


