

A Dell EMC Technical White Paper

Implementation of the DMTF Redfish API on
Dell EMC PowerEdge Servers

Dell EMC Customer Solution Centers
Jonas Werner, Sr. Solution Architect

Dell EMC Server Solutions
P. Raveendra Reddy, Platform Software Staff Engineer
Texas Roemer, Test Principal Engineer
Paul Rubin, Sr. Product Manager

October 2017

2 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Revisions

Date Description

March 2016 Initial release

June 2017 Updated for 14th generation of PowerEdge release

October 2017 Updated for iDRAC7/8 2.50.50.50 release

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2017 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other

trademarks may be the property of their respective owners. Published in the USA [10/14/2017]

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

3 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Contents
Revisions... 2

Executive summary ... 5

1 Introduction ... 6

2 The Redfish management standard ... 7

2.1 Next-generation server management ... 8

2.2 Rack, multi-node, and nested chassis .. 8

2.3 Keeping up with changes in IT philosophy ... 8

2.4 Redfish key technologies .. 8

2.4.1 HTTPS communication ... 9

2.4.2 RESTful application programming interface ... 9

2.4.3 JSON data .. 9

2.4.4 OData ... 9

2.4.5 Eventing .. 9

2.5 Redfish operational model .. 10

2.5.1 Redfish client .. 10

2.6 Redfish architecture .. 10

2.6.1 Redfish tree structure ... 11

2.6.2 Redfish operations .. 12

2.6.3 Authentication ... 12

2.6.4 Privileges .. 13

3 Using the Redfish API on PowerEdge systems ... 14

3.1 Web browser access .. 14

3.2 Accessing Redfish by using the cURL application ... 15

3.2.1 Using cURL with authentication .. 16

3.3 Accessing Redfish by using Python scripting ... 17

3.3.1 View general system information and status .. 17

3.3.2 View system health across multiple servers ... 18

3.3.3 View system event log .. 19

3.3.4 Check system power state ... 19

3.3.5 Turn on a system .. 20

3.3.6 Turn off a system .. 20

3.3.7 View system power usage .. 20

4 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

3.3.8 Update general System Information with PATCH operation .. 21

3.3.9 Change boot device temporarily ... 22

3.3.10 Update / modify iDRAC user account .. 23

3.3.11 Redfish 2016 for 12th, 13th and 14th generation PowerEdge servers ... 23

3.3.12 View and Configure BIOS Attributes .. 24

3.3.13 Viewing server firmware inventory ... 31

3.3.14 Updating server firmware ... 34

3.3.15 Extended information ... 39

4 Summary .. 41

5 Additional Information ... 42

5.1 Acronyms .. 42

5.2 Definitions ... 43

5 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Executive summary

The growing scale of cloud- and web-based data center infrastructure is reshaping the requirements of IT

administrators world-wide. New approaches to systems management are needed to keep up with the growing

and changing market.

The Distributed Management Task Force (DMTF) Scalable Platforms Management Forum (SPMF) has

published Redfish, an open industry-standard specification and schema designed to meet the needs of IT

administrators for simple, modern, and secure management of scalable platform hardware. Dell EMC is a key

contributor to the Redfish standard, acting as co-chair of the SPMF, promoting the benefits of Redfish, and

working to deliver those benefits within Dell EMC industry-leading systems management solutions.

This technical white paper provides an overview of the Redfish Scalable Platforms Management API standard

and describes the Dell implementation of Redfish for the12th, 13th, and 14th generation PowerEdge

servers—delivered by the integrated Dell Remote Access Controller (iDRAC) with Lifecycle Controller.

6 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

1 Introduction
Since the inception of the x86 server in the late 1980’s, IT administrators have sought the means to efficiently

manage a growing number of distributed resources. Industry suppliers have responded by developing

management interface standards to support common methods of monitoring and controlling heterogeneous

systems.

While management interfaces such as SNMP and IPMI have been present in data centers for the past

decade, they have not been able to meet the changing requirements due to security and technical limitations.

Further, the scale of deployment has grown significantly as IT models have evolved. Today, organizations

often rely on a large number of lower-cost servers with redundancy provided in the software layer, making

scalable management interfaces more critical.

To meet such market requirements, a new, unifying management standard was needed.

This technical white paperr describes Redfish—a next generation management standard using a data model

representation inside a hypermedia RESTful interface. The data model is defined in terms of a standard,

machine-readable schema, with the payload of the messages expressed in JSON and the protocol using

OData v4. Because it is a hypermedia API, Redfish is capable of representing a variety of implementations by

using a consistent interface. It has mechanisms for discovering and managing data center resources,

handling events, and managing long-lived tasks.

Dell EMC is enhancing its leading Systems Management capabilities with the introduction of Redfish support

on the iDRAC with Lifecycle Controller. This technical white paper provides the required information to create

Redfish clients or use existing REST clients to deliver the benefits of the Redfish API on PowerEdge servers.

This technical white paper can also be used to help legacy management consoles support or enable the

Redfish standard.

7 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

2 The Redfish management standard
There are various Out-of-Band (OOB) systems management standards available in the industry today.

However, there is no single standard that can be easily used within emerging programming standards, can be

readily implemented within embedded systems, and can meet the demands of today’s evolving IT solution

models.

New IT solutions models have placed new demands on systems management solutions to support expanded

scale, higher security, and multi-vendor openness, while also aligning with modern DevOps tools and

processes.

Recognizing these needs, Dell EMC and other IT solutions leaders within the DMTF undertook the creation of

a new management interface standard. After a multi-year effort, the new standard, Redfish v1.0, was

announced in July, 2015.

Its key benefits include:

 Increased simplicity and usability

 Encrypted connections and generally heightened security

 A programmatic interface that can easily be controlled through scripts

 Ability to meet the Open Compute Project’s Remote Machine Management requirements

 Based on widely-used standards for web APIs and data formats

Redfish has been designed to support the full range of server architectures from monolithic servers to

converged infrastructure and hyper-scale architecture. The Redfish data model, which defines the structure

and format of data representing server status, inventory and available operational functions, is vendor-neutral.

Administrators can then create management automation scripts that can manage any Redfish compliant

server. This is crucial for the efficient operation of a heterogonous server fleet.

Using Redfish also has significant security benefits—unlike legacy management protocols, Redfish utilizes

HTTPS encryption for secure and reliable communication. All Redfish network traffic, including event

notifications, can be sent encrypted across the network.

Redfish provides a highly organized and easily accessible method to interact with a server using scripting

tools. The web interface employed by Redfish is supported by many programming languages, and its tree-like

structure makes information easier to locate. Data returned from a Redfish query can be turned into a

searchable dictionary consisting of key-value-pairs. By looking at the values in the dictionary, it is easy to

locate settings and current status of a Redfish managed system. These settings can then be updated and

actions issued to one or multiple systems.

Since its July, 2015 introduction, Redfish has continued to grow and evolve with specification updates

released in 2016 covering key operations such as BIOS configuration, server firmware update, and detailed

server inventory.

8 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

2.1 Next-generation server management
The DMTF white paper on Redfish, DSP2044, describes the need to move away from managing servers as

individual “pets”. Rather, administrators should begin to treat their servers more as “cattle” and manage them

as “herds”. While in the past, IT staff could spend time to adapt their management methods to match a

smaller number of servers, they now have many more servers and much less time. Managing a large and

growing infrastructure requires the capability to issue commands at scale with the expectation that the “herd”

will follow regardless of make or model of the individual servers.

2.2 Rack, multi-node, and nested chassis
Another limitation of legacy management standards is an implied understanding that one management

endpoint such as a Baseboard Management Controller or BMC means one server. Modern converged server

infrastructure such as the PowerEdge M1000e and FX2 are becoming more prevalent, invalidating this

assumption. Redfish explicitly addresses converged infrastructure and rack-level management with modeling

that can scale for the management of multiple nodes, nested chassis, and server blades within a larger,

actively managed enclosure.

2.3 Keeping up with changes in IT philosophy
Redfish has taken into account the recent changes in the IT field. These changes include not only new types

of hardware but also important changes in IT philosophy that are impacting how administrators expect to

manage their infrastructure.

Organizations are now looking for open management solutions that can be controlled in the same way they

control other resources, irrespective of whether the resources are located in a cloud or in a data center. By

adopting data structures and access methods as used for cloud- and web-based infrastructure, Redfish will

enable management methods aligned with modern IT infrastructure. Utilizing a modern data model and

RESTful API, Redfish can be readily integrated with the IT automation tools and processes employed by

DevOps practices, a key requirement in many IT organizations.

System administrators can use Redfish to manage heterogeneous server fleets more efficiently throughout

the server lifecycle— from bare metal deployments to maintenance and repurposing. Using a simple and

powerful interface that supports modern automation technologies, Redfish can speed time-to-solution for IT

developers.

2.4 Redfish key technologies
Redfish is a RESTful interface over HTTPS in JSON format based on ODATA v4 usable by clients, scripts,

and browser-based GUIs. It utilizes a range of IT technologies that have been selected because of their

widespread use. By adopting these accepted technologies, administrators will find it easier to use Redfish.

Taken together, these technologies create a new foundation from which servers can be managed by using

common programming and scripting languages, such as Python, Java, and C.

http://www.dmtf.org/sites/default/files/standards/documents/DSP2044_1.0.0.pdf

9 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

2.4.1 HTTPS communication
The Hypertext Transfer Protocol or HTTP is an application protocol for distributed, collaborative, hypermedia

information systems and forms the foundation of data communication for the World Wide Web. Secure HTTP

or HTTPS is a secure version of HTTP that enables secure communications by operating HTTP within a

network connection encrypted by TLS or SSL. By utilizing HTTPS, Redfish significantly enhances the security

of server management especially in comparison to legacy server management protocols.

2.4.2 RESTful application programming interface
REpresentational State Transfer or REST is a software architectural style used within the World Wide Web.

Since 2000, when representational state transfer was introduced and defined by Roy Fielding in his University

of California Irvine doctoral dissertation, REST has been applied for a range of purposes including the

definition of web-based APIs. Systems that adhere to REST practices are often referred to as RESTful

interfaces and typically use the HTTP Methods (GET, POST, DELETE, and more) that web browsers use to

access web pages. RESTful architectures are now commonly used by many IT solutions. Leveraging this

standardized approach, Redfish implements a RESTful API for accessing management information and for

issuing commands to change the configuration or operational state of a server.

2.4.3 JSON data
Redfish represents data using JSON. JSON is a lightweight data-interchange format that is easy for people to

read and write and also for machines to parse. JSON is based on a subset of the JavaScript Programming

Language, using a text format that is completely language independent but uses conventions familiar to

programmers of the C-family of languages such as C, C++, C#, Java, JavaScript, PERL, and Python. These

properties make JSON an ideal data-interchange language.

2.4.4 OData
OData is an open protocol standard for the definition and exchange of information using RESTful APIs. OData

was originally created in 2007 by Microsoft and subsequently standardized by the OASIS standards body.

When implementing a common interface across multiple vendors, it becomes important to standardize the

data formats. OData provides Redfish the required framework to ensure that the data structures remain

interchangeable between server vendors.

2.4.5 Eventing
The Redfish specification includes support for eventing that enables the notification to a management client of

significant events occurring in a server. Redfish provides push style event notifications to an event listener,

defined as a Redfish compliant HTTPS server. The listener subscribes to the events of interest based on the

event types defined in the Redfish specification. Event subscriptions remain in place until specifically deleted

or until the Redfish manager such as iDRAC is reset to its default configuration.

Upon receiving an event subscription request, iDRAC will add the hostname of the requestor to the list of

targets to be notified when the event occurs. In the initial iDRAC Redfish implementation, all events are

categorized under the Alert Event Type with a maximum of 20 event subscriptions per event listener. If

delivery of an event notification fails, the event service will retry delivery. The parameters for re-delivery are

configurable.

http://www.json.org/
http://www.odata.org/

10 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Redfish events are delivered only over HTTPS transport. In the initial iDRAC Redfish implementation, HTTPS

certificates are disabled; this requires the event listener to support receiving event notifications without

certificate validation. Eventing with certificate support is planned for a future release.

2.5 Redfish operational model
Redfish operations are initiated by a client using HTTPS for GET, POST, PATCH and DELETE operations

and capable of interpreting the JSON responses from the managed server. The responses provide the

requested information and indications of success or failure of the requested operation.

 Redfish operational model

2.5.1 Redfish client
The REST principle of "Everything is a Resource" means that every Uniform Resource Identifier or URI

represents a resource of a specific type. This can be a service, a collection, an entity or some other construct.

In the Redfish context, a resource can be thought of as the content of the HTTP message returned when

accessing a URI. A variety of REST Clients can be used for gaining access to Redfish resources such as:

 Web browser plug-ins such as “Advanced REST Client”, “Postman”, “REST Easy” and “RESTClient”

 cURL, Python, and other scripting/programming languages that provide support for dealing with URIs

and for parsing JSON payloads.

2.6 Redfish architecture
Because the RESTful API employed by Redfish is web-based, access is provided using URIs, which can be

typed into a web browser. The Redfish API uses a simple folder structure that starts with the Redfish root at

Management
Network

GET https://<iDRAC IP>/redfish/v1/…

JSON response

Redfish Client Managed Servers

POST https://<iDRAC IP>/redfish/v1/…

JSON response

iDRAC

11 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

“/redfish/”. In the case of a PowerEdge server, the root is accessed through the URI https://<iDRAC

IP>/redfish/v1/ - the “v1” at the end of the URI denotes the version of the API.

The URI is the primary unique identifier of resources. Redfish URIs consist of three parts as described in

RFC3986: Part one defines the scheme and authority of the URI, part two specifies the root service and

version and part three defines a unique resource identifier.

For example, in the following URI: https://mgmt.vendor.com/redfish/v1/Systems/SvrID

 https://mgmr.vendor.com is the scheme and authority

 /redfish/v1 is the root and version

 /Systems/SvrID is the resource identifier

2.6.1 Redfish tree structure
From the top-level root, the RESTful interface branches out to cover a number of “Collections”, which each in

turn include multiple sub-items, creating a tree-like structure. The administrator can drill down through this

structure to find information and settings of interest.

 Redfish API tree structure

For example, accessing the Redfish structure for the PERC RAID controller on a PowerEdge R630 server

would be navigated by using the following path:

https://<iDRAC IP>/redfish/v1/Systems/System.Embedded.1/Storage/Controllers/RAID.Integrated.1-1

12 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Or, more graphically represented as:

Note that the API is best navigated starting from the root as some portions of an API path can vary depending

upon the server hardware configuration. For example, the “RAID.Integrated.1-1” Sub-item in the preceding

example may be different when another type of RAID controller is installed in the managed server.

2.6.2 Redfish operations
In Redfish, HTTP methods implement the operations of a RESTful API. This allows the user to specify the

type of request being made. It adheres to a standard CRUD (Create, Retrieve, Update, and Delete) format.

Depending on the desired result, a user can issue the following types of commands:

 GET View data

 POST Create resources or use actions

 PATCH Change one or more properties on a resource

 DELETE Remove a resource

Note: In the current implementation, HEAD and PUT operations are not supported for Redfish URIs.

Creation and removal of data are limited depending on the management characteristics of the resource being

targeted. Generally, viewing and changing settings will be more common.

2.6.3 Authentication
Depending upon the sensitivity of a given resource, Redfish clients will be required to authenticate their

access. The required credentials and supported forms of authentication are determined by the platform being

managed. In the case of iDRAC, authentication is supported using local iDRAC credentials or any of the other

supported authentication methods, such as LDAP and Active Directory.

Access to iDRAC data is allowed by authenticated and authorized users only, except as noted below.

Authentication is achieved using a subset of the common HTTP headers supported by a Redfish service – in

particular, the X-Auth-Token header. More details on authentication are provided in the “Session

Management” section of the Redfish specification.

Authorization covers both user privilege and license authorization. Note that iDRAC Redfish support does not

require any special or separate licensing. The following table details the authentication and authorization

required for each iDRAC Redfish action:

13 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Redfish Actions Authentication
Required

Authorization
Required

Read operation on any instrumentation data Yes Yes
Write operation on any instrumentation data Yes Yes
Execute operation on any instrumentation data Yes Yes
View Service root No No
View Metadata document No No
View OData Service Document No No
View Message Registry No No

 iDRAC Redfish authentication and authorization requirements

Unlike certain management interfaces that restrict authentication to a single command, the Redfish Service

provides access to Redfish URIs by using two methods:

 Basic authentication: In this method, user name and password are provided for each Redfish API

request.

 Session based authentication: This method is used when issuing multiple Redfish operation

requests.

- Session login is initiated by accessing the Create session URI. The response for this request

includes an “X-Auth-Token” header with a session token. Authentication for subsequent requests

is made using this “X-Auth-Token” header.

- Session logout is performed by issuing a DELETE of the Session resource provided by the Login

operation including the X-Auth-Token header.

- Using this approach, Redfish supports multiple transactions within a session with the help of X-

Auth-token, session token and Location headers.

2.6.4 Privileges
Privilege model requirements are aligned to the Redfish specification and schema. The following table shows

the relationship between Redfish Privileges and native iDRAC Privileges:

Redfish Privileges iDRAC Privileges

Login Login

ConfigureManager Config iDRAC

ConfigureUser Config User

ConfigureManager System Control

ConfigureComponents Virtual Console

ConfigureComponents Virtual Media

ConfigureManager Clear Logs

 Mapping Redfish privileges to iDRAC privileges

14 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

3 Using the Redfish API on PowerEdge systems
The following tests were carried out using a PowerEdge R740 server loaded with firmware version

3.00.00.00, conformant with Redfish 2016.R1 and R2 releases. If a Redfish conformant server is not

available, a simulated server Redfish interface is available at the DMTF website:

http://redfish.dmtf.org/redfish/v1.

3.1 Web browser access
Because REST is a web-based API, a typical web browser such as Microsoft Internet Explorer or Google

Chrome can be used for access. Start the web browser and enter the iDRAC IP address or hostname

followed by /redfish/v1/ and the Redfish root is displayed as shown in the following figure:

 Accessing PowerEdge Redfish interface using a web browser

This figure illustrates the JSON response to a GET query using the Postman browser plug-in.

Each of the “@odata.id” tags can be explored individually to allow a user to drill down deeper into the Redfish

tree, but further access will prompt for authentication.

For example, Figure 4 shows how to access the Chassis collection. When the

/redfish/v1/Chassis/System.Embedded.1 URI is accessed, a pop-up box appears prompting for the entry of

http://redfish.dmtf.org/redfish/v1

15 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

an iDRAC user name and password. After these credentials are validated, more system details and additional

@odata.id tags are presented:

 iDRAC Redfish authenticated server details access

3.2 Accessing Redfish by using the cURL application
Interacting with Redfish using scripting tools can be extremely powerful. The following examples use a Dell

Latitude E7440 running Ubuntu to access the Redfish API from the command line using the cURL application.

cURL is a powerful open source command line tool for interacting with various web-based services. It

supports both HTTP and HTTPS in addition to other protocols. In the case of Redfish, cURL can be used to

test the availability and function of the REST interface.

Supplying cURL with the iDRAC IP address and the Redfish root will access the service root. If the server has

a self-signed certificate, as in this case, the certificate check can be skipped using the cURL option “-k”.

Command:

curl "https://<iDRAC IP>/redfish/v1/" -k

16 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Response:

{"@odata.context":"/redfish/v1/$metadata#ServiceRoot","@odata.id":"/redfish/v1",

"@odata.type":"#ServiceRoot.1.0.0.ServiceRoot","AccountService":{"@odata.id":"/r

edfish/v1/Managers/iDRAC.Embedded.1/AccountService"},"Chassis":{"@odata.id":"/re

dfish/v1/Chassis"},"Description":"Root

Service","EventService":{"@odata.id":"/redfish/v1/EventService"},"Id":"RootServi

ce","JsonSchemas":{"@odata.id":"/redfish/v1/JSONSchemas"},"Links":{"Sessions":{"

@odata.id":"/redfish/v1/Sessions"}},"Managers":{"@odata.id":"/redfish/v1/Manager

s"},"Name":"Root

Service","RedfishVersion":"1.0.0","Registries":{"@odata.id":"/redfish/v1/Registr

ies/Messages/En"},"SessionService":{"@odata.id":"/redfish/v1/SessionService"},"S

ystems":{"@odata.id":"/redfish/v1/Systems"},"Tasks":{"@odata.id":"/redfish/v1/Ta

skService"}}

For cleaner output formatting, the JSON output can be passed to Python and the module json.tool (output

limited for brevity):

Command:

curl "https://<iDRAC IP>/redfish/v1/" -k | python -m json.tool

Response:

{

 "@odata.context": "/redfish/v1/$metadata#ServiceRoot",

 "@odata.id": "/redfish/v1",

 "@odata.type": "#ServiceRoot.1.0.0.ServiceRoot",

 "AccountService": {

 "@odata.id": "/redfish/v1/Managers/iDRAC.Embedded.1/AccountService"

 },

 "Chassis": {

 "@odata.id": "/redfish/v1/Chassis" …

3.2.1 Using cURL with authentication
As discussed above, Redfish supports Basic and Session based authentication. Here are the cURL

commands used for authentication operations:

Basic authentication: Drilling down further into the Redfish API will require authentication. This can be done

using “-u username:password” on the cURL command line:

curl "https://<iDRAC IP>/redfish/v1/Chassis" -k -u root:calvin

This authenticates the single operation using the provided credentials.

17 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Session based authentication: This requires a two stage process, creating a session called Login and

deleting session called Logout. For login, run the following command in verbose mode by appending option –

v; this will output the X-Auth-Token value for use in the subsequent commands:

curl -k -X POST -d '{"UserName":"root","Password":"calvin"}' https://<iDRAC

IP>/redfish/v1/Sessions -v

Once logged in, subsequent commands can be sent using X-Auth-Token as shown below:

curl -k https://<iDRAC IP>/redfish/v1/Chassis -v --header "X-Auth-Token: <X-Auth-Value>"

curl -k https://<iDRAC IP>/redfish/v1/Systems -v --header "X-Auth-Token: <X-Auth-Value>"

After executing the desired commands, the session can be terminated using Logout:

curl -k -X DELETE https://<iDRAC IP>/redfish/v1/Sessions/6 -v --header "X-Auth-Token: <X-Auth-Value>"

3.3 Accessing Redfish by using Python scripting
One of the goals of the Redfish API is to enable easy access from common scripting languages such as

Python. The following Python script examples implement key Redfish API use cases. In these examples, it is

assumed that the Python HTTP “requests” library (found here: http://docs.python-requests.org/en/master/)

has been downloaded. Also, note that the examples assume the credentials of “root”/“calvin” for access to the

Redfish API – these should be changed to the appropriate credentials for a specific iDRAC target.

These Python examples as well as example PowerShell cmdlets are available as open source on Github:

https://github.com/dell/iDRAC-Redfish-Scripting

3.3.1 View general system information and status
In this use case, the SSL/TLS certificate check is skipped by setting “verify=False”. Note that the

“RAID.Integrated.1-1” path may differ between systems depending on the type of RAID controller installed.

Therefore, it is recommended to navigate the API path starting from the root.

import requests

import json

system = requests.get('https://<iDRAC

IP>/redfish/v1/Systems/System.Embedded.1',verify=False,auth=('root','calvin'))

storage = requests.get('https://<iDRAC

IP>/redfish/v1/Systems/System.Embedded.1/Storage/Controllers/RAID.Integrated.1-

1',verify=False,auth=('root','calvin'))

systemData = system.json()

storageData = storage.json()

print "Model: {}".format(systemData[u'Model'])

http://docs.python-requests.org/en/master/
https://github.com/dell/iDRAC-Redfish-Scripting

18 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

print "Manufacturer: {}".format(systemData[u'Manufacturer'])

print "Service tag {}".format(systemData[u'SKU'])

print "Serial number: {}".format(systemData[u'SerialNumber'])

print "Hostname: {}".format(systemData[u'HostName'])

print "Power state: {}".format(systemData[u'PowerState'])

print "Asset tag: {}".format(systemData[u'AssetTag'])

print "Memory size: {}".format(systemData[u'MemorySummary']

[u'TotalSystemMemoryGiB'])

print "CPU type: {}".format(systemData[u'ProcessorSummary'][u'Model'])

print "Number of CPUs: {}".format(systemData[u'ProcessorSummary'][u'Count'])

print "System status: {}".format(systemData[u'Status'][u'Health'])

print "RAID health: {}".format(storageData[u'Status'][u'Health'])

Output:

Model: PowerEdge R740

Manufacturer: Dell Inc.

Service tag BN7----

Serial number: CN7-----------

Hostname: WIN-GHLELBK2V2M

Power state: On

Asset tag:

Memory size: 64.0

CPU type: Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz

Number of CPUs: 2

System status: OK

RAID health: OK

3.3.2 View system health across multiple servers
This example displays the service tag and overall system status for multiple systems; the source servers are

identified by a file consisting of iDRAC IP addresses and FQDNs as input.

import requests

import json

with open("serverList.txt", "r") as serverList:

 for server in serverList.readlines():

 req = requests.get("https://" + server.rstrip() +

"/redfish/v1/Systems/System.Embedded.1",verify=False,auth=('root','calvin'))

 reqJson = req.json()

 print "System {}: Health status:

{}".format(reqJson[u'SKU'],reqJson[u'Status'][u'Health'])

19 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

3.3.3 View system event log

import requests

import json

system = requests.get('https://<iDRAC

IP>/redfish/v1/Managers/iDRAC.Embedded.1/Logs/Sel',verify=False,

auth=('root','calvin'))

systemData = system.json()

for logEntry in systemData[u'Members']:

 print "{}: {}".format(logEntry[u'Name'],logEntry[u'Created'])

 print " {}\n".format(logEntry[u'Message'])

Output (shortened for brevity):

 Log Entry 93: 2016-02-26T09:35:55+09:00

 The chassis is closed while the power is off.

 Log Entry 92: 2016-02-26T09:35:50+09:00

 The chassis is open while the power is off.

 Log Entry 91: 2015-09-24T14:04:59+09:00

 OEM software event.

 Log Entry 90: 2015-09-24T14:04:59+09:00

 C: boot completed.

3.3.4 Check system power state
This script displays the current server power state - on or off.

import requests

import json

response = requests.get('https://<iDRAC

IP>/redfish/v1/Systems/System.Embedded.1',verify=False,auth=('root','calvin'))

data = response.json()

print data[u'PowerState']

20 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

3.3.5 Turn on a system
Server power is controlled by using a POST operation to the ComputerSystem.Reset URI to request the

desired action.

import requests

import json

url = 'https://<iDRAC

IP>/redfish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset'

payload = {'ResetType': 'On'}

headers = {'content-type': 'application/json'}

response = requests.post(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

3.3.6 Turn off a system

import requests

import json

url = 'https://<iDRAC

IP>/redfish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset'

payload = {'ResetType': 'ForceOff'}

headers = {'content-type': 'application/json'}

response = requests.post(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

3.3.7 View system power usage
Use this script to view current, average, minimum, and maximum system power consumption.

import requests

import json

system = requests.get('https://<iDRAC

IP>/redfish/v1/Chassis/System.Embedded.1/Power/PowerControl',verify=False,

auth=('root','calvin'))

systemData = system.json()

print "Consumed power: {}".format(systemData[u'PowerConsumedWatts'])

print "Average reading:

{}".format(systemData[u'PowerMetrics'][u'AverageConsumedWatts'])

print "Max reading:

{}".format(systemData[u'PowerMetrics'][u'MaxConsumedWatts'])

21 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

print "Min reading:

{}".format(systemData[u'PowerMetrics'][u'MinConsumedWatts'])

Output:

Consumed power: 149

Average reading: 155

Max reading: 169

Min reading: 144

3.3.8 Update general System Information with PATCH operation
This example demonstrates how to update the System read/write properties as defined in the Redfish

specification. Users can provide information about the properties in the System and can update single or

multiple properties. If the user provides invalid information for updating a property due to an invalid data type

or unacceptable data, the iDRAC Redfish service provides extended information along with an error

indication.

import requests

import json

url = 'https://<iDRAC IP>/redfish/v1/Systems/System.Embedded.1'

payload = {' Hostname ': ' Ubuntu ' }

headers = {'content-type': 'application/json'}

response = requests.patch(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

print "Status Code: {}".format(response.status_code)

print "Extended Info Message: {}".format(response.json())

Output:

Status Code: 200

Extended Info Message: {u'Success': {u'Message': u'Successfully Completed

Request', u'Resolution': u'None', u'Severity': u'Ok', u'MessageId':

u'Base.1.0.Success'}}

Using the above script, if the user provides an incorrect type for the input data as shown below, they will

receive extended information specifying the error. For example, if the payload was improperly input as:

payload = {' Hostname ': 1234 } this would result in the following output:

22 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Output:

Status Code: 400

Extended Info Message: {u'error': {u'code': u'Base.1.0.GeneralError',

u'message': u'A general error has occurred. See ExtendedInfo for more

information', u'@Message.ExtendedInfo': [{u'Severity': u'Warning', u'MessageId':

u'Base.1.0.PropertyValueTypeError', u'RelatedProperties': [u'HostName'],

u'Message': u'The value integer or boolean for the property HostName is of a

different type than the property can accept.', u'Resolution': u'Correct the

value for the property in the request body and resubmit the request if the

operation failed.', u'MessageArgs': [u'integer or boolean', u'HostName']}]}}

If there are internal processing errors for a request, a 500 status code will be returned with an internal error

message:

Output:

Status Code: 500

Extended Info Message: {u'error': {u'code': u'Base.1.0.GeneralError',

u'message': u'A general error has occurred. See ExtendedInfo for more

information', u'@Message.ExtendedInfo': [{u'Severity': u'Critical',

u'MessageId': u'Base.1.0.InternalError', u'RelatedProperties': [u'HostName'],

u'Message': u'The request failed due to an internal service error. The service

is still operational.', u'Resolution': u'Resubmit the request. If the problem

persists, consider resetting the service.'}]}}

The same approach is implemented for POST and DELETE operations.

3.3.9 Change boot device temporarily
Instructing a server to boot once into BIOS or to boot from an alternate source, such as PXE can be done by

modifying the BootSourceOverrideTarget value. Note that a PATCH action is required because the script

updates the existing boot target value.

import requests

import json

url = 'https://<iDRAC IP>/redfish/v1/Systems/System.Embedded.1'

payload = {'Boot': {'BootSourceOverrideTarget': 'BiosSetup'} }

headers = {'content-type': 'application/json'}

response = requests.patch(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

23 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

3.3.10 Update / modify iDRAC user account
The iDRAC has pre-defined slots for internal user accounts. To modify an account, a PATCH action is used

rather than a POST. “RoleId” is used to specify the type of access permissions to be granted to the user; in

this case, the Operator role is used.

import requests

import json

url = 'https://<iDRAC

IP>/redfish/v1/Managers/iDRAC.Embedded.1/Accounts/<Account-id>'

plUserName = {'UserName': 'user03'}

plPass = {'Password': 'calvin'}

plRoleId = {'RoleId': 'Operator'}

headers = {'content-type': 'application/json'}

for payload in plUserName,plPass,plRoleId:

 response = requests.patch(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

Note: You can configure up to 16 local users in iDRAC with specific access permissions. Before you create

an iDRAC user, verify if any current users exist. You can set user names, passwords, and roles with the

privileges for these users. User 1 is reserved for the IPMI anonymous user and you cannot change this

configuration. By default, User 2 is the “root” user.

Note: iDRAC local users are deleted by setting the user name to NULL.

3.3.11 Redfish 2016 for 12th, 13th and 14th generation PowerEdge servers
New for the 14th generation of PowerEdge servers, the iDRAC9 supports Redfish 2016 features including:

 BIOS configuration including set attributes, change boot order, enable/disable boot device state;

 Secure boot and iDRAC configuration

 Firmware inventory and streamed local updates. To perform a streamed update, the firmware image

must be stored locally on the system where the Redfish update API is executed.

iDRAC9 includes enhancements to the iDRAC RESTful API for Server Configuration Profiles (SCP) support

and iDRAC configuration including:

 Firmware update via a networked repository during SCP import

 Auto Config, RACADM, WS-Man and Redfish SCP operations via HTTP/HTTPS in addition to CIFS

and NFS

 SCP operations via local file streaming

 SCP JSON format for export / import in addition to XML format

24 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

iDRAC7/8 also support Redfish 2016 and iDRAC RESTful API enhancements beginning with firmware

version 2.50.50.50. That support includes:

 BIOS configuration – set attributes, only

 Secure boot configuration

 Firmware update via a networked repository during SCP import

 SCP operations via local file streaming

 SCP JSON format for export / import in addition to XML format

For more information about RESTful server configuration, see the Dell EMC technical white paper Zero-Touch

Bare Metal Server Provisioning using Dell EMC iDRAC with Lifecycle Controller Auto Config, available on the

Dell Techcenter.

3.3.12 View and Configure BIOS Attributes
iDRAC7/8 firmware 2.50.50.50 or later and iDRAC9 firmware 3.00.00.00 or later implement the Redfish 2016

API for BIOS configuration. Here is a script to view all BIOS attributes and a script to change a single BIOS

attribute.

redfish_get_bios_attribute_settings.py

Get BIOS attributes and current settings

Print to STDOUT and save to file "bios_attributes.txt"

Synopsis:

redfish_get_bios_attribute_settings.py <iDRAC IP addr> <user> <password>

import requests, json, sys, re, time, os

try:

 idrac_ip = sys.argv[1]

 idrac_username = sys.argv[2]

 idrac_password = sys.argv[3]

except:

 print "- FAIL: You must pass in script name along with iDRAC IP / iDRAC

username / iDRAC password"

 sys.exit()

try:

 os.remove("bios_attributes.txt")

except:

 pass

Function to get BIOS attributes /current settings

def get_bios_attributes():

 f=open("bios_attributes.txt","a")

 global current_value

25 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 global pending_value

 response =

requests.get('https://%s/redfish/v1/Systems/System.Embedded.1/Bios' %

idrac_ip,verify=False,auth=(idrac_username,idrac_password))

 data = response.json()

 a="\n--- BIOS Attributes ---\n\n%-30s%-30s\n\n" % ("Attribute", "Value")

 print a

 f.writelines(a)

 for i in data[u'Attributes'].items():

 attribute_name = "%-30s" % (i[0])

 #print attribute_name

 f.writelines(attribute_name)

 attribute_value = "%-30s\n" % (i[1])

 #print attribute_value

 f.writelines(attribute_value)

 print "%-30s%-30s" % (i[0],i[1])

 print "\n- Attributes are also captured in \"bios_attributes.txt\" file"

 f.close()

Run Code

get_bios_attributes()

Output (shortened for brevity):

--- BIOS Attributes ---

Attribute Value

NodeInterleave Disabled

IscsiDev1Con1EnDis Disabled

MemFrequency MaxPerf

HttpDev3EnDis Disabled

SataPortADriveType Unknown Device

MemPatrolScrub Standard

SataPortNDriveType Unknown Device

FailSafeBaud 115200

MeFailureRecoveryEnable Enabled

SystemBiosVersion 1.0.0

WriteDataCrc Disabled

MemoryRmt Disabled

WriteCache Disabled

IscsiDev1Con2EnDis Disabled

SysProfile PerfPerWattOptimizedDapc

…

26 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

redfish_set_One_bios_attribute.py

Set a single BIOS attributes to a new value

Synopsis:

redfish_set_one_bios_attribute.py <iDRAC IP> <user> <password>

<Attribute name> <New value>

import requests, json, sys, re, time

from datetime import datetime

try:

 idrac_ip = sys.argv[1]

 idrac_username = sys.argv[2]

 idrac_password = sys.argv[3]

 attribute_name = sys.argv[4]

 pending_value = sys.argv[5]

except:

 print "- FAIL: You must pass in script name along with iDRAC IP / iDRAC

username / iDRAC password / attribute name / attribute value. Example:

\"script_name.py 192.168.0.120 root calvin MemTest Enabled\""

 sys.exit()

Function to get BIOS attribute current value

def get_attribute_current_value():

 global current_value

 response =

requests.get('https://%s/redfish/v1/Systems/System.Embedded.1/Bios' %

idrac_ip,verify=False,auth=(idrac_username, idrac_password))

 data = response.json()

 current_value = data[u'Attributes'][attribute_name]

 if current_value == pending_value:

 answer = raw_input("\n- WARNING, %s is already set to %s, do you still

want to set the attribute? Type (y) or (n): " % (attribute_name, current_value))

 if answer == "n":

 sys.exit()

 else:

 pass

Function to set BIOS attribute pending value

def set_bios_attribute():

 print "\n- WARNING: Current value for %s is: %s, setting to: %s\n" %

(attribute_name, current_value, pending_value)

 time.sleep(2)

27 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 url = 'https://%s/redfish/v1/Systems/System.Embedded.1/Bios/Settings' %

idrac_ip

 payload = {"Attributes":{attribute_name:pending_value}}

 headers = {'content-type': 'application/json'}

 response = requests.patch(url, data=json.dumps(payload), headers=headers,

verify=False,auth=(idrac_username, idrac_password))

 statusCode = response.status_code

 if statusCode == 200:

 print "\n- PASS: Command passed to set BIOS attribute %s pending value

to %s\n" % (attribute_name, pending_value)

 else:

 print "\n- FAIL, Command failed, errror code is %s" % statusCode

 detail_message=str(response.__dict__)

 print detail_message

 sys.exit()

 d=str(response.__dict__)

Function to create BIOS target config job

def create_bios_config_job():

 global job_id

 url = 'https://%s/redfish/v1/Managers/iDRAC.Embedded.1/Jobs' % idrac_ip

 #payload = {"Target":"BIOS.Setup.1-1","RebootJobType":"PowerCycle"}

 payload =

{"TargetSettingsURI":"/redfish/v1/Systems/System.Embedded.1/Bios/Settings"}

 headers = {'content-type': 'application/json'}

 response = requests.post(url, data=json.dumps(payload), headers=headers,

verify=False,auth=(idrac_username, idrac_password))

 statusCode = response.status_code

 #print "Status Code: {0}".format(response.status_code)

 #print "Extended Info Message: {0}".format(response.json())

 if statusCode == 200:

 print "\n- PASS: Command passed to create target config job, status code

200 returned.\n"

 else:

 print "\n- FAIL, Command failed, status code is %s\n" % statusCode

 detail_message=str(response.__dict__)

 print detail_message

 sys.exit()

 d=str(response.__dict__)

 z=re.search("JID_.+?,",d).group()

 job_id=re.sub("[,']","",z)

 print "- WARNING: %s job ID successfully created\n" % job_id

Function to verify job is marked as scheduled before rebooting the server

def get_job_status():

28 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 while True:

 req =

requests.get('https://%s/redfish/v1/Managers/iDRAC.Embedded.1/Jobs/%s' %

(idrac_ip, job_id), auth=(idrac_username, idrac_password), verify=False)

 statusCode = req.status_code

 if statusCode == 200:

 print "\n- PASS, Command passed to check job status, code 200

returned\n"

 time.sleep(20)

 else:

 print "\n- FAIL, Command failed to check job status, return code is

%s" % statusCode

 print "Extended Info Message: {0}".format(req.json())

 sys.exit()

 data = req.json()

 if data[u'Message'] == "Task successfully scheduled.":

 print " JobID = "+data[u'Id']

 print " Name = "+data[u'Name']

 print " Message = "+data[u'Message']

 print " PercentComplete = "+str(data[u'PercentComplete'])+"\n"

 break

 else:

 print "\n- WARNING: JobStatus not scheduled, current status is:

%s\n" % data[u'Message']

Function to reboot the server

def reboot_server():

 url =

'https://%s/redfish/v1/Systems/System.Embedded.1/Actions/ComputerSystem.Reset' %

idrac_ip

 payload = {'ResetType': 'ForceOff'}

 headers = {'content-type': 'application/json'}

 response = requests.post(url, data=json.dumps(payload), headers=headers,

verify=False, auth=(idrac_username,idrac_password))

 statusCode = response.status_code

 if statusCode == 204:

 print "\n- PASS, Command passed to power OFF server, code return is

%s\n" % statusCode

 else:

 print "\n- FAIL, Command failed to power OFF server, status code is:

%s\n" % statusCode

 print "Extended Info Message: {0}".format(response.json())

 sys.exit()

 time.sleep(10)

 payload = {'ResetType': 'On'}

 headers = {'content-type': 'application/json'}

29 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 response = requests.post(url, data=json.dumps(payload), headers=headers,

verify=False, auth=('root','calvin'))

 statusCode = response.status_code

 if statusCode == 204:

 print "\n- PASS, Command passed to power ON server, code return is %s\n"

% statusCode

 else:

 print "\n- FAIL, Command failed to power ON server, status code is:

%s\n" % statusCode

 print "Extended Info Message: {0}".format(response.json())

 sys.exit()

Function to loop checking the job status until marked completed or failed

def loop_job_status():

 start_time=datetime.now()

 while True:

 req =

requests.get('https://%s/redfish/v1/Managers/iDRAC.Embedded.1/Jobs/%s' %

(idrac_ip, job_id), auth=(idrac_username, idrac_password), verify=False)

 current_time=(datetime.now()-start_time)

 statusCode = req.status_code

 if statusCode == 200:

 print "\n- PASS, Command passed to check job status, code 200

returned\n"

 else:

 print "\n- FAIL, Command failed to check job status, return code is

%s" % statusCode

 print "Extended Info Message: {0}".format(req.json())

 sys.exit()

 data = req.json()

 if str(current_time)[0:7] >= "0:30:00":

 print "\n- FAIL: Timeout of 30 minutes has been hit, script

stopped\n"

 sys.exit()

 elif "Fail" in data[u'Message'] or "fail" in data[u'Message']:

 print "- FAIL: %s failed" % job_id

 sys.exit()

 elif data[u'Message'] == "Job completed successfully.":

 print "\n JobID = "+data[u'Id']

 print " Name = "+data[u'Name']

 print " Message = "+data[u'Message']

 print " PercentComplete = "+str(data[u'PercentComplete'])+"\n"

 break

 else:

30 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 print "- WARNING, JobStatus not completed, current status is:

\"%s\", current job polling time is: %s\n" %

(data[u'Message'],str(current_time)[0:7])

 time.sleep(30)

Function to check attribute new current value

def get_new_current_value():

 response =

requests.get('https://%s/redfish/v1/Systems/System.Embedded.1/Bios' %

idrac_ip,verify=False,auth=(idrac_username, idrac_password))

 data = response.json()

 current_value_new = data[u'Attributes'][attribute_name]

 if current_value_new == pending_value:

 print "\n- PASS, BIOS attribute \"%s\" new current value is: %s" %

(attribute_name, pending_value)

 else:

 print "n\- FAIL, BIOS attribute \"%s\" attribute not set to: %s" %

(attribute_name, current_value)

 sys.exit()

Run code

get_attribute_current_value()

set_bios_attribute()

create_bios_config_job()

get_job_status()

reboot_server()

loop_job_status()

get_new_current_value()

Output:

% redfish_set_one_bios_attribute.py 100.65.99.66 root calvin MemTest Enabled

- WARNING: Current value for MemTest is: Disabled, setting to: Enabled

- PASS: Command passed to set BIOS attribute MemTest pending value to Enabled

- PASS: Command passed to create target config job, status code 200 returned.

- WARNING: JID_956505296759 job ID successfully created

- PASS, Command passed to check job status, code 200 returned

 JobID = JID_956505296759

 Name = ConfigBIOS:BIOS.Setup.1-1

31 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 Message = Task successfully scheduled.

 PercentComplete = 0

- PASS, Command passed to power OFF server, code return is 204

- PASS, Command passed to power ON server, code return is 204

- PASS, Command passed to check job status, code 200 returned

- WARNING, JobStatus not completed, current status is: "Task successfully

scheduled.", current job polling time is: 0:00:00

- PASS, Command passed to check job status, code 200 returned

(Edited for bevity…)

- WARNING, JobStatus not completed, current status is: "Job in progress.",

current job polling time is: 0:02:35

- PASS, Command passed to check job status, code 200 returned

 JobID = JID_956505296759

 Name = ConfigBIOS:BIOS.Setup.1-1

 Message = Job completed successfully.

 PercentComplete = 100

- PASS, BIOS attribute "MemTest" new current value is: Enabled

3.3.13 Viewing server firmware inventory
14th generation PowerEdge servers implement the Redfish API for a detailed inventory of the installed server

firmware. The following script produces a report of the currently installed server firmware.

redfish_get_FW_inventory.py

Get and print the current inventory of a server's firmware

Synopsis:

redfish_get_FW_inventory.py <iDRAC IP addr> <user> <password>

import requests, json, sys, re, time, os, ConfigParser, logging

from datetime import datetime

try:

 idrac_ip = sys.argv[1]

 idrac_username = sys.argv[2]

 idrac_password = sys.argv[3]

32 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

except:

 print "\n- FAIL, you must pass in script name along with iDRAC IP / iDRAC

username / iDRAC password. Example: \"script_name.py 192.168.0.120 root

calvin\""

 sys.exit()

 print "\n- Getting current firmware version(s) for all devices in the system

iDRAC supports\n"

 time.sleep(3)

 req = requests.get('https://%s/redfish/v1/UpdateService/FirmwareInventory/'

% (idrac_ip), auth=(idrac_username, idrac_password), verify=False)

 statusCode = req.status_code

 data = req.json()

 number_of_devices=len(data[u'Members'])

 count = 0

 installed_devices=[]

 while count != len(data[u'Members']):

 a=data[u'Members'][count][u'@odata.id']

 a=a.replace("/redfish/v1/UpdateService/FirmwareInventory/","")

 if "Installed" in a:

 installed_devices.append(a)

 count +=1

 installed_devices_details=["\n--- Firmware Inventory ---"]

 a="-"*75

 installed_devices_details.append(a)

 l=[]

 ll=[]

 for i in installed_devices:

 req =

requests.get('https://%s/redfish/v1/UpdateService/FirmwareInventory/%s' %

(idrac_ip, i), auth=(idrac_username, idrac_password), verify=False)

 statusCode = req.status_code

 data = req.json()

 a="Name: %s" % data[u'Name']

 l.append(a.lower())

 installed_devices_details.append(a)

 a="Firmware Version: %s" % data[u'Version']

 ll.append(a.lower())

 installed_devices_details.append(a)

 a="Updateable: %s" % data[u'Updateable']

 installed_devices_details.append(a)

 a="-"*75

 installed_devices_details.append(a)

 for i in installed_devices_details:

 print i

33 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Output:

C:\Python26>redfish_get_FW_inventory.py 100.65.99.66 root calvin

- Getting current firmware version(s) for all devices in the system iDRAC

supports

--- Firmware Inventory ---

Name: PERC H330 Mini

Firmware Version: 25.5.2.0001

Updateable: True

Name: OS COLLECTOR, 3.0, A00

Firmware Version: 3.0

Updateable: True

Name: Disk 1 in Backplane 1 of Integrated RAID Controller 1

Firmware Version: TT31

Updateable: True

Name: Disk 0 in Backplane 1 of Integrated RAID Controller 1

Firmware Version: TT31

Updateable: True

Name: Disk 2 in Backplane 1 of Integrated RAID Controller 1

Firmware Version: VT31

Updateable: True

Name: Intel(R) Ethernet Converged Network Adapter XL710-Q2 - 3C:FD:FE:15:99:AA

Firmware Version: 18.0.16

Updateable: True

Name: BP14G+EXP 0:1

Firmware Version: 2.14

Updateable: True

Name: iDRAC Service Module Installer, 3.0.1, A00

Firmware Version: 3.0.1

Updateable: True

Name: Power Supply.Slot.1

Firmware Version: 00.23.32

Updateable: True

Name: BIOS

Firmware Version: 1.0.0

Updateable: True

34 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Name: Dell OS Driver Pack, 17.05.21, A00

Firmware Version: 17.05.21

Updateable: True

Name: Integrated Dell Remote Access Controller

Firmware Version: 3.00.00.00

Updateable: True

Name: Dell 64 Bit uEFI Diagnostics, version 4301, 4301X07, 4301.8

Firmware Version: 4301X07

Updateable: True

Name: QLogic 577xx/578xx 10 Gb Ethernet BCM57800 - 18:66:DA:8E:28:26

Firmware Version: 08.07.00

Updateable: True

Name: System CPLD

Firmware Version: 1.0.0

Updateable: True

Name: Lifecycle Controller

Firmware Version: 3.00.00.00

Updateable: False

3.3.14 Updating server firmware
14th generation PowerEdge servers implement the Redfish 2016 API to update server component firmware.

The following script can be used to perform a firmware update using a single Dell Update Package such as a

BIOS update, a PERC firmware update, or as shown in the example, a Diagnostics update.

redfish_single_device_update.py

Update a single server component's firmware

Synopsis:

redfish_single_device_update.py <iDRAC IP addr> <user> <password>

<FW file folder> <FW file name>

<Install option>

Install option - Now: update now, do not reboot,

NowandReboot: update now and reboot,

NextReboot: update at next reboot

import requests, json, sys, re, time, os, ConfigParser, logging

from datetime import datetime

35 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

Validate all correct parameters are passed in

try:

 idrac_ip = sys.argv[1]

 idrac_username = sys.argv[2]

 idrac_password = sys.argv[3]

 firmware_image_location = sys.argv[4]

 file_image_name= sys.argv[5]

 Install_Option = sys.argv[6]

except:

 print "\n- FAIL, you must pass in script name along with iDRAC IP / iDRAC

username / iDRAC password / Image Path / Filename / Install Option. Example: \"

script_name.py 192.168.0.120 root calvin c:\Python26 bios.exe NowAndReboot\""

 sys.exit()

Convert install option to correct string due to case sensitivity in iDRAC.

if Install_Option == "now":

 install_option = "Now"

elif Install_Option == "nowandreboot":

 install_option = "NowAndReboot"

elif Install_Option == "nextreboot":

 install_option = "NextReboot"

else:

 install_option = Install_Option

Download the image payload to the iDRAC

def download_image_payload():

 print "\n- WARNING, downloading DUP payload to iDRAC\n"

 global Location

 global new_FW_version

 global dup_version

 req = requests.get('https://%s/redfish/v1/UpdateService/FirmwareInventory/'

% (idrac_ip), auth=(idrac_username, idrac_password), verify=False)

 statusCode = req.status_code

 data = req.json()

 filename = file_image_name.lower()

 ImageLocation = firmware_image_location

 ImagePath = ImageLocation + "\\" + filename

 ETag = req.headers['ETag']

 url = 'https://%s/redfish/v1/UpdateService/FirmwareInventory' % (idrac_ip)

 files = {'file': (filename, open(ImagePath, 'rb'), 'multipart/form-data')}

 headers = {"if-match": ETag}

 response = requests.post(url, files=files, auth = (idrac_username,

idrac_password), verify=False, headers=headers)

 d = response.__dict__

36 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 if response.status_code == 201:

 print "\n- PASS: Command passed, 201 status code returned\n"

 z=re.search("\"Message\":.+?,",d['_content']).group().rstrip(",")

 z=re.sub('"',"",z)

 print "- %s" % z

 else:

 print "\n- FAIL: Post command failed to download, error is %s" %

response

 print "\nMore details on status code error: %s " % d['_content']

 sys.exit()

 d = response.__dict__

 z=re.search("Available.+?,",d['_content']).group()

 z = re.sub('[",]',"",z)

 new_FW_version = re.sub('Available','Installed',z)

 zz=z.find("-")

 zz=z.find("-",zz+1)

 dup_version = z[zz+1:]

 entry = "- FW file version is: %s" % dup_version; print entry

 Location = response.headers['Location']

Install the downloaded image payload and loop checking job status

def install_image_payload():

 global job_id

 print "\n- WARNING, installing downloaded firmware payload to device\n"

 url =

'https://%s/redfish/v1/UpdateService/Actions/Oem/DellUpdateService.Install' %

(idrac_ip)

 InstallOption = install_option

 payload = "{\"SoftwareIdentityURIs\":[\"" + Location +

"\"],\"InstallUpon\":\""+ InstallOption +"\"}"

 headers = {'content-type': 'application/json'}

 response = requests.post(url, data=payload, auth = (idrac_username,

idrac_password), verify=False, headers=headers)

 d=str(response.__dict__)

 job_id_location = response.headers['Location']

 job_id = re.search("JID_.+",job_id_location).group()

 print "\n- PASS, %s job ID successfully created\n" % job_id

 #time.sleep(20)

Check the new firmware version installed

def check_new_FW_version():

 print "\n- WARNING, checking new firmware version installed for updated

device\n"

37 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 req =

requests.get('https://%s/redfish/v1/UpdateService/FirmwareInventory/%s' %

(idrac_ip, new_FW_version), auth=(idrac_username, idrac_password), verify=False)

 #print req

 statusCode = req.status_code

 data = req.json()

 if dup_version == data[u'Version']:

 print "\n- PASS, New installed FW version is: %s" % data[u'Version']

 else:

 print "\n- FAIL, New installed FW incorrect, error is: %s" % data

 sys.exit()

Check the job status for host reboot needed

def check_job_status_host_reboot():

 # Loop get command to check the job status of completed, completed with

errors or failed

 start_time=datetime.now()

 time.sleep(15)

 while True:

 req = requests.get('https://%s/redfish/v1/TaskService/Tasks/%s' %

(idrac_ip, job_id), auth=(idrac_username, idrac_password), verify=False)

 statusCode = req.status_code

 data = req.json()

 message_string=data[u"Messages"]

 current_time=(datetime.now()-start_time)

 if statusCode == 202 or statusCode == 200:

 print "\n- Query job ID command passed\n"

 time.sleep(10)

 else:

 print "Query job ID command failed, error code is: %s" % statusCode

 sys.exit()

 if "failed" in data[u"Messages"] or "completed with errors" in

data[u"Messages"]:

 print "- FAIL: Job failed, current message is: %s" %

data[u"Messages"]

 sys.exit()

 elif data[u"TaskState"] == "Completed":

 print "\n- Job ID = "+data[u"Id"]

 print "- Name = "+data[u"Name"]

 try:

 print "- Message = "+message_string[0][u"Message"]

 except:

 print data[u"Messages"][0][u"Message"]

 print "- JobStatus = "+data[u"TaskState"]

 print "\n- %s completed in: %s" % (job_id, str(current_time)[0:7])

 break

38 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

 elif data[u"TaskState"] == "Completed with Errors" or data[u"TaskState"]

== "Failed":

 print "\n- Job ID = "+data[u"Id"]

 print "- Name = "+data[u"Name"]

 try:

 print "- Message = "+message_string[0][u"Message"]

 except:

 print "- "+data[u"Messages"][0][u"Message"]

 print "- JobStatus = "+data[u"TaskState"]

 print "\n- %s completed in: %s" % (job_id, str(current_time)[0:7])

 sys.exit()

 else:

 print "- Job not marked completed, current status is: %s" %

data[u"TaskState"]

 print "- Message: %s\n" % message_string[0][u"Message"]

 print "- Current job execution time is: %s\n" %

str(current_time)[0:7]

 time.sleep(1)

 continue

Run code here

download_image_payload()

install_image_payload()

if install_option == "NowAndReboot" or install_option == "Now":

 check_job_status_host_reboot()

 check_new_FW_version()

else:

 check_job_status()

Output:

C:\Python26>redfish_single_device_update.py <iDRAC9 IP address> root calvin

c:\Python26 Diagnostics_Application_JF9MW_WN64_4301X06_4301.7.EXE Now

- WARNING, downloading DUP payload to iDRAC

- PASS: Command passed, 201 status code returned

- Message: Package successfully downloaded.

- FW file version is: 4301X06

- WARNING, installing downloaded firmware payload to device

- PASS, JID_956512038576 job ID successfully created

- Query job ID command passed

39 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

- Job ID = JID_956512038576

- Name = Firmware Update: Diagnostics

- Message = Job completed successfully.

- JobStatus = Completed

- JID_956512038576 completed in: 0:00:15

- WARNING, checking new firmware version installed for updated device

- PASS, New installed FW version is: 4301X06

C:\Python26>

3.3.15 Extended information
When errors occur during operations, Redfish provides Extended Information detailing the error. iDRAC

includes a Dell EMC-provided Message Registry, accessible by the MessageId returned as part of the

Extended Information, that gives direction for resolution of the error.

The following is a Python scripting example illustrating Extended Information:

import requests

import json

url = 'https://<iDRAC

IP>/redfish/v1/Managers/iDRAC.Embedded.1/SerialInterfaces/iDRAC.Embedded.1%23Ser

ial.1'

payload = {'BitRate':19200}

headers = {'content-type':'application/json'}

response =

requests.patch(url,data=json.dumps(payload),headers=headers,verify=False,auth=('

root','calvin'))

print "Status Code:{}".format(response.status_code)

print "Extended Error Message:{}".format(response.json())

The above script updates the property BitRate to the value 19200, a valid setting.

Output:

Status Code: 200

Extended Error Message:{u'Success': {u'Message': u'Successfully Completed

Request', u'Resolution': u'None', u'Severity': u'Ok', u'MessageId':

u'Base.1.0.Success'}}

40 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

If the script is modified to attempt an update with an unsupported value, an error will occur and Extended

Information will be returned:

payload = {'BitRate':1900}

Output:

Status Code: 400

Extended Error Message: {u'error': {u'code': u'Base.1.0.GeneralError',

u'message': u'A general error has occurred. See ExtendedInfo for more

information', u'@Message.ExtendedInfo': [{u'Severity': u'Warning', u'MessageId':

u'Base.1.0.PropertyValueNotInList', u'RelatedProperties': [u'BitRate'],

u'Message': u'The value 1900 for the property BitRate is not in the list of

acceptable values.', u'Resolution': u'Choose a value from the enumeration list

that the implementation can support and resubmit the request if the operation

failed.', u'MessageArgs': [u'1900', u'BitRate']}]}}

The following example uses an incorrect data type – a text string rather than a numeric value. This illustrates

the distinctive error information and resolutions provided by Extended Information and the Dell Message

Registry.

payload = {'BitRate':'19200'}

Output:

Status Code:400

Extended Error Message: {u'error': {u'code': u'Base.1.0.GeneralError',

u'message': u'A general error has occurred. See ExtendedInfo for more

information', u'@Message.ExtendedInfo': [{u'Severity': u'Warning', u'MessageId':

u'Base.1.0.PropertyValueTypeError', u'RelatedProperties': [u'BitRate'],

u'Message': u'The value string or boolean for the property BitRate is of a

different type than the property can accept.', u'Resolution': u'Correct the

value for the property in the request body and resubmit the request if the

operation failed.', u'MessageArgs': [u'string or boolean', u'BitRate']}]}}

41 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

4 Summary
The DMTF Redfish standard is emerging as a key new tool for efficient, scalable, and secure server

management. Utilizing an industry-standard interface and data format, Redfish supports rapid development of

automation for one-to-many server management. System administrators and IT developers will appreciate

Redfish’s features that can increase efficiency, lower costs and boost productivity across their organizations.

Dell EMC is a committed leader in the development and implementation of open, industry standards.

Supporting Redfish within the iDRAC with Lifecycle Controller further enhances the manageability of

PowerEdge servers, providing another powerful tool to help IT administrators reduce complexity while

increasing the efficiency of their operations.

42 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

5 Additional Information
 DMTF white papers, Redfish Schemas, specifications, webinars and work-in-progress documents

https://www.dmtf.org/standards/redfish

 The Redfish standard specification is available from the DMTF website

http://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.0.1.pdf

 Open source iDRAC REST API with Redfish Python and PowerShell examples

https://github.com/dell/iDRAC-Redfish-Scripting

 The iDRAC with Lifecycle Controller home page on Dell TechCenter provides access to product

documents, technical white papers, how-to videos and more

http://en.community.dell.com/techcenter/systems-management/w/wiki/3204

 JSON lightweight data interchange format

http://www.json.org/

 OData4 open protocol standard for the definition and exchange of information using RESTful APIs

http://www.odata.org/

5.1 Acronyms
API Application Programming Interface

BMC Baseboard Management Controller

DMTF Distributed Management Task Force

DSP DMTF Standard Publications

FQDD Fully Qualified Device Descriptor

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure or HTTP over TLS/SSL

iDRAC Integrated Dell Remote Access Controller

IPMI Intelligent Platform Management Interface

JSON Java Script Object Notation

LC Lifecycle Controller

OData Open Data Protocol

OOB Out-of-Band

REST Representational State Transfer

SNMP Simple Network Management Protocol

SPMF Scalable Platforms Management Forum

SSL Secure Sockets Layer

TLS Transport Layer Security

URI Uniform Resource Identifier

https://www.dmtf.org/standards/redfish
http://www.dmtf.org/sites/default/files/standards/documents/DSP0266_1.0.1.pdf
https://github.com/dell/iDRAC-Redfish-Scripting
http://en.community.dell.com/techcenter/systems-management/w/wiki/3204
http://www.json.org/
http://www.odata.org/

43 Implementation of the DMTF Redfish API on Dell EMC PowerEdge Servers

5.2 Definitions
 cURL: an open source command line tool and library for transferring data with URL Syntax

 DMTF: Distributed Management Task Force, defines management standards supported by numerous

hardware, software and service vendors.(www.dmtf.org)

 Redfish Client: Name for the functionality that communicates with a Redfish Service and accesses

one or more resources or functions of the Service.

 Event: A record that corresponds to an individual alert.

 Subscription: The act of registering a destination for the reception of events.

 Notification: One-way message sent to indicate that an event has occurred

 Redfish Event Listener: The name for the functionality that receives alerts from a Redfish Service.

This functionality is typically software running on a remote system that is separate from the managed

system.

