

# Exchange 2013 reference architecture using Dell SC4020 and Windows 2012 R2 Hyper-V

Dell Storage Engineering Solutions October 2014

This document has been archived and will no longer be maintained or updated. For more information go to the Storage Solutions Technical Documents page on Dell TechCenter or contact support.

# Revisions

| Date         | Description     |
|--------------|-----------------|
| October 2014 | Initial release |
|              |                 |

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND.

© 2014 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell.

PRODUCT WARRANTIES APPLICABLE TO THE DELL PRODUCTS DESCRIBED IN THIS DOCUMENT MAY BE FOUND AT:

http://www.dell.com/learn/us/en/19/terms-of-sale-commercial-and-public-sector Performance of network reference architectures discussed in this document may vary with differing deployment conditions, network loads, and the like. Third party products may be included in reference architectures for the convenience of the reader. Inclusion of such third party products does not necessarily constitute Dell's recommendation of those products. Please consult your Dell representative for additional information.

#### Trademarks used in this text:

Dell<sup>™</sup>, the Dell logo, Dell Boomi<sup>™</sup>, Dell Precision<sup>™</sup>, OptiPlex<sup>™</sup>, Latitude<sup>™</sup>, PowerEdge<sup>™</sup>, PowerVault<sup>™</sup>, PowerConnect<sup>™</sup>, OpenManage<sup>™</sup>, EqualLogic<sup>™</sup>, Compellent<sup>™</sup>, KACE<sup>™</sup>, FlexAddress<sup>™</sup>, Force10<sup>™</sup> and Vostro<sup>™</sup> are trademarks of Dell Inc. Other Dell trademarks may be used in this document. Cisco Nexus<sup>®</sup>, Cisco NDS<sup>®</sup>, Cisco NX-OS<sup>®</sup>, and other Cisco Catalyst<sup>®</sup> are registered trademarks of Cisco System Inc. EMC VNX<sup>®</sup>, and EMC Unisphere<sup>®</sup> are registered trademarks of EMC Corporation. Intel<sup>®</sup>, Pentium<sup>®</sup>, Xeon<sup>®</sup>, Core<sup>®</sup> and Celeron<sup>®</sup> are registered trademarks of Intel Corporation in the U.S. and other countries. AMD<sup>®</sup> is a registered trademark and AMD Opteron<sup>™</sup>, AMD Phenom<sup>™</sup> and AMD Sempron<sup>™</sup> are trademarks of Advanced Micro Devices, Inc. Microsoft<sup>®</sup>, Windows<sup>®</sup>, Windows Server<sup>®</sup>, Internet Explorer<sup>®</sup>, MS-DOS<sup>®</sup>, Windows Vista<sup>®</sup> and Active Directory<sup>®</sup> are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or other countries. Red Hat<sup>®</sup> and Red Hat<sup>®</sup> Enterprise Linux<sup>®</sup> are registered trademarks of Red Hat, Inc. in the United States and/or other countries. Novell<sup>®</sup> and SUSE<sup>®</sup> are registered trademarks of Novell Inc. in the United States and other countries. Oracle<sup>®</sup> is a registered trademark of Oracle Corporation and/or its affiliates. Citrix<sup>®</sup>, Xen<sup>®</sup>, Xen<sup>®</sup>, Xen<sup>®</sup>, Xen<sup>®</sup>, Vintual SMP<sup>®</sup>, vMotion<sup>®</sup>, vCente<sup>®</sup> and vSphere<sup>®</sup> are registered trademarks of trademarks of VMware, Inc. in the United States ard other countries. IBM<sup>®</sup> is a registered trademark of International Business Machines Corporation. Broadcom<sup>®</sup> and NetXtreme<sup>®</sup> are registered trademarks of Broadcom Corporation. Qlogic is a registered trademark of QLogic Corporation. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and/or names or their products and are the property of their respective owners. Dell disclaims proprietary interest in the marks and names of others.



# Table of contents

| Rev | visions |                                                               | 2  |
|-----|---------|---------------------------------------------------------------|----|
| Exe | ecutive | e summary                                                     | 5  |
| 1   | Intro   | duction                                                       | 6  |
|     | 1.1     | Purpose and scope                                             | 6  |
|     | 1.2     | Terminology                                                   | 7  |
| 2   | Solut   | ion architecture overview                                     | 8  |
|     | 2.1     | Conceptual system design                                      | 8  |
|     | 2.2     | Physical system configuration tested                          | 9  |
|     | 2.3     | Storage and volume layout                                     | 10 |
| 3   | Virtua  | alization of Microsoft Exchange storage workload              | 11 |
|     | 3.1     | Exchange store elements                                       | 11 |
| 4   | Valida  | ating the Exchange workload                                   | 13 |
| 5   | Perfo   | rmance characteristics                                        | 15 |
|     | 5.1     | Performance at full workload                                  | 15 |
|     | 5.1.1   | Storage Center Manager results                                | 17 |
|     | 5.1.2   | Analysis of workload key performance indicators (KPI)         | 19 |
|     | 5.2     | Performance with single disk failure                          | 19 |
|     | 5.2.1   | Storage Center Manager results                                | 22 |
|     | 5.2.2   | Analysis of workload key performance indicators (KPI)         | 24 |
| 6   | Best    | Practice recommendations                                      | 25 |
|     | 6.1     | Storage best practices                                        | 25 |
|     | 6.2     | Hypervisor and VM best practices                              | 25 |
|     | 6.3     | Exchange Server installation best practices                   | 26 |
|     | 6.4     | Know the workload                                             | 26 |
|     | 6.5     | Distribution of databases and user mailbox count per database | 27 |
|     | 6.6     | Growth and overhead                                           | 27 |
| А   | Conf    | iguration details                                             | 28 |
|     | A.1     | Hardware components                                           | 28 |
|     | A.2     | Software components                                           | 29 |
|     | A.3     | Host hypervisor and VMs configuration                         | 31 |
|     | A.3.1   | Guest VMs memory                                              | 32 |
|     |         |                                                               |    |



|   | A.3.2 | Hyper-V configuration of NUMA                           | . 32 |
|---|-------|---------------------------------------------------------|------|
|   | A.3.3 | Guest VMs disks                                         | 32   |
|   | A.3.4 | Host network adapters and virtual network configuration | . 32 |
|   | A.3.5 | Virtual network adapter configuration                   | . 32 |
| В | Micro | osoft Jetstress reports                                 | 34   |
|   | B.1   | Jetstress considerations                                | 34   |
|   | B.2   | Jetstress report for full workload – HV-JS1             | . 35 |
|   | B.3   | Jetstress report for full workload – HV-JS3             | 38   |
|   | B.4   | Jetstress report disk loss test – HV-JS1                | 41   |
|   | B.5   | Jetstress report disk loss test – HV-JS3                | 43   |
| С | Addit | ional resources                                         | 45   |



# **Executive summary**

Microsoft Exchange Server 2013 storage can be provided in many different ways. This paper presents instructions for obtaining higher mailbox quotas along with first class SAN features such as storage virtualization, Data Instant Replay snapshots, and automatic data tiering while keeping per-mailbox costs down by utilizing the smaller-scale Dell SC4020 storage array.

SC4000 Series arrays are based on the Dell flagship SC8000 platform. Offering similar benefits at a smaller scale, the multiprotocol-capable SC4020 all-in-one array and its optional expansion enclosures may be populated with any combination of hard disk drives (HDD) or Solid State Disks (SSD). The SC4020 dual-controller array features a 2U all-in-one chassis with easy expansion via standard Dell SC Series drive enclosures (up to 120 drives). Virtualized multi-tier, multi-RAID-level storage policies are applied quickly and automatically, taking full advantage of the unique characteristics of the disk, and allowing for target application-specific price and performance requirements with minimum of planning or effort.

Dell SC4020 provides an easily scaled-out storage platform on a versatile virtualization infrastructure supported by Microsoft Windows Hyper-V technologies. This solution is able to address such challenges through a modular or building block approach.

The ability of an SC storage solution to seamlessly scale from one to multiple drive enclosures or additional arrays provides an easy-to-deploy resolution for a sudden or planned change in the storage demand of both capacity and performance. Virtualization technologies assist with growth by providing automation mechanisms and flexibility in provisioning new resources and in distributing the workloads across the virtual infrastructure.

The solution presented in this paper focuses on presenting a moderately heavy-messaging workload for 4500 mailboxes with large storage quotas (6GB) on Microsoft Exchange Server 2013 in a virtualized infrastructure based on Hyper-V technologies and with a back-end storage on Dell SC4020 with 7K drives. Tested scenarios in this document include:

- A Microsoft Jetstress validated 7K only disk solution for 4500 6GB mailboxes using RAID 6
- The storage response to single disk failure in a RAID6 solution during degraded mode and RAID rebuild



# 1 Introduction

The reference architecture, validated for the purpose of this paper, included some of the most common planning variables (mailbox size and user profile) for a Microsoft Exchange solution. The deployment demonstrated a moderate number of users and portrayed an example of scaling the capacity and performance up and out on the back-end SAN. Besides these exercises, an assessment was made of the response to the simulated failure of a single drive in the RAID 6 disk page pool.

# 1.1 Purpose and scope

This paper is primarily intended for IT professionals (IT managers, solution architects, Exchange and storage administrators, and system and virtualization engineers) who are involved in defining, planning, or implementing Exchange Server infrastructures and who would like to investigate the benefits of using Compellent storage. This document assumes the reader is familiar with Exchange Server functions, Compellent SAN operation, and Microsoft Hyper-V architecture and system administration. The scope of this paper is restricted to a local datacenter topology and does not include specific or detailed server sizing information.



# 1.2 Terminology

The following terms will be used throughout this document:

**Disk Folder**: Disks are grouped into disk folders to provide a virtualized pool of storage that can be used by volumes as needed. The assigned disk folder is where new disks can be placed to become part of the usable storage. Custom disk folders can be used to split disks into different resource pools.

**Hypervisor**: Denotes the software layer that manages the access to the physical host hardware resources, residing above the hardware, and in between the guest VM operating systems.

**Virtual Machine (VM)**: An operating system implemented on a software representation of hardware resources (processor, memory, storage, network, and others). VMs are usually identified as guests in relation with the host operating system that executes the processes to allow them to run over an abstraction layer of the hardware.

**Balanced tree (B-Tree)**: A tree data structure where a node can have a variable number of child nodes. This structure is commonly used in databases to maintain data sorted in a hierarchical arrangement. It allows efficient data access to the pages for insertion, deletion, and searches.

**Key performance indicators (KPI)**: A set of quantifiable measures or criteria used to define the level of success of a particular activity.



# 2 Solution architecture overview

The solution presented and evaluated in this paper is built on a virtual infrastructure supported by Microsoft Windows 2012 R2 with Hyper-V and a back-end, fiber-channel SAN comprised of Dell Compellent Storage. The operating system of the VMs simulating the Microsoft Exchange workload and of the host hypervisor machines running the infrastructure and monitoring is Windows Server 2012 R2.

# 2.1 Conceptual system design

The elements of the infrastructure supporting the simulated environment, their main relationships and connectivity links are represented in the conceptual diagram in Figure 1.

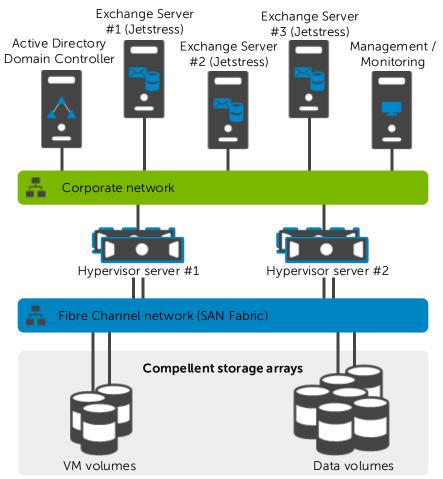
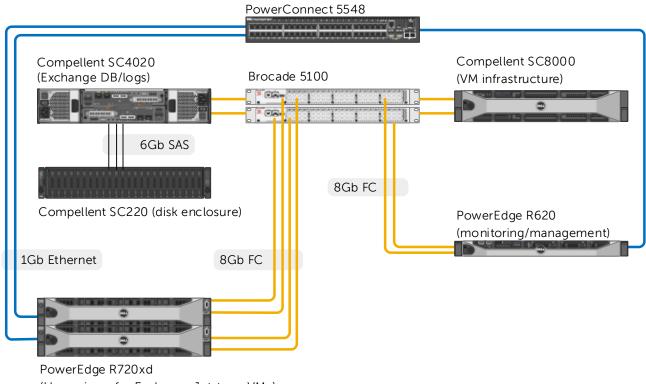



Figure 1 Conceptual system design for the solution components

The key elements of this design are:


8

- Single Active Directory forest, single domain, single site
- Centralized management and monitoring with dedicated resources (both physical and virtual)
- Building block design approach for mailbox server with Jetstress 2013



# 2.2 Physical system configuration tested

The physical components and the connections beneath the virtual infrastructure are shown in Figure 2.



(Hypervisors for Exchange Jetstress VMs)

Figure 2 Physical system design for the components of the solution

The solution architecture was deployed on Dell rack mount servers with top–of-rack (ToR) Ethernet network switches dedicated to IP traffic (traditional client/server, management, and hypervisor communications). The hardware elements included in the architecture were:

- Two PowerEdge R720xd rack mount servers that powered the hypervisors beneath the simulated VMs
- One PowerEdge R620 rack mount server that powered the the Dell Storage Manager centralized management and monitoring infrastructure
- Dell SC4020 SAN provisioned with fiber-channel front-end and SAS back-end with one SC220 drive enclosure connected.
- Dell SC8000 SAN provisioned with fiber-channel front-end and SAS back-end for VM infrastructure storage. This SAN can scale to larger infrastructures and was used in this lab test to offload VM infrastructure from the Exchange workload. This could easily be another SC4020 in smaller environments.
- One PowerConnect 5548 Ethernet switch to support LAN IP traffic configured in stack
- Two Brocade 5100 Fiber-channel switches to support the SAN traffic

**Note**: The configuration details used in the solution infrastructure, including a hardware and software list, SAN array characteristics, hypervisor and VM relationships, and physical and virtual network connections, are listed in <u>Appendix A</u>.

### 2.3 Storage and volume layout

The configuration of Compellent SAN arrays and the volumes underlying the Exchange databases included:

- One Storage Center disk folder, configured with 10 active 900GB 2.5 inch 10K drives for VM boot volumes on a separate SC8000 array designated for virtual machine infrastructure
- One SC4020, configured with one SC220 drive enclosure with one disk folder of 46 active 7K 1TB drives for Exchange databases and logs
- RAID 6-10 storage profile applied as a reference configuration to Exchange database/log volumes
- One volume allocated in the SC8000 disk folder for each host to store the file images, configuration and temporary files for the corresponding hosted VMs
- A set of data volumes allocated within the SC4020 disk folder, dedicated to the Exchange databases and respectively mapped to the R720 hosts containing the virtual disks in Exchange VMs hosting the simulation
- Exchange mailbox databases and their private set of log files are deployed in the same volumes

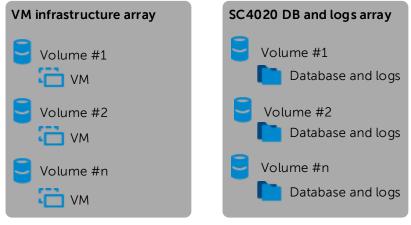



Figure 3 Volumes and database/logs layout

# Virtualization of Microsoft Exchange storage workload

Exchange Server is a product built on a wide set of components and services that cooperate to support the various requirements needed to design and deploy a messaging infrastructure with advanced capabilities in every organization. The latest Exchange Server version offers a simplified topology that reduces the number of server roles required while consolidating and optimizing the services in two layers. The front-end services deal with the clients (Client Access Server role), and the back-end services are in charge of data management and message transport (Mailbox Server role).

Because more capabilities can be now implemented in fewer layers, the first outcome is an increase in processing demand for the servers deployed to support Exchange Server 2013. This is a challenge that should be planned for carefully from both a capacity and performance standpoint and tailored to each organization in order to be successful with virtualized infrastructures.

The appropriate sizing of the storage subsystem is a key factor in the mailbox role performance and can contribute heavily to easing bottlenecks or administrative overhead for that layer. To set the stage for the analysis provided in the later sections of this paper, the components underneath the Managed Store of Microsoft Exchange Server 2013 are examined first in section 3.1.

# 3.1 Exchange store elements

3

Accessing mailbox databases is the primary activity that generates I/O on an Exchange Server storage subsystem. A database is a logical representation of a collection of user or system mailboxes, and it is also an aggregation of files on the disk that are accessed and manipulated by a set of Exchange services following distinct rules (for example, the Information Store, Search feature or Replication Service).

**Database file** (\*.edb): This is the container for user mailbox data. Its content, broken into database pages of 32 KB, is primarily read and written to randomly as required by the Exchange services running on the mailbox server role. A database has a 1:1 ratio with its own \*.edb database file. The maximum supported database size in Exchange Server 2013 is still 16 TB, where the Microsoft guidelines recommend a maximum 200 GB database file in a standalone configuration and 2 TB if the database participates in a replicated DAG environment.

**Transaction logs** (\*.log): This is the container where all the transactions that occur on the database (such as create, modify and delete messages) are recorded. Each database owns a set of logs and keeps a one-to-many ratio with them. The logs are written to the disk sequentially, appending the content to the file. The logs are read only when they are in a replicated database configuration within a DAG or in the event of a recovery. The log truncation method is the process to remove old log files preventing them from accumulating. The truncation happens when a consistent backup is performed or when the log configuration is set to circular logging.

**Checkpoint file** (\*.chk): This is a container for metadata tracking when the last flush of data from the memory cache to the database occurred. Its size is limited to 8 KB and, although repeatedly accessed, its overall amount of I/O is so minimal that it can be ignored. The database keeps a 1:1 ratio with its own checkpoint file and positions it in the same folder location as the log files.



**Search Catalog**: This is a collection of flat files (content index files) built by the Microsoft Search Service, having several different file extensions that all reside in the same folder. The client applications connected to Exchange Server benefit from this catalog as it enables them to perform faster searches based on indexes instead of full scans.

Exchange Server uses a proprietary format called Extensible Storage Engine (ESE) to access, manipulate, and save data to its own mailbox databases. This same format is employed on the Exchange HUB server role for the queue databases. ESE technology, previously known as Jet Database Engine (JDE), has evolved through several versions of Exchange Server and has been a part of several Microsoft products since its inception (for example, Microsoft Access, Active Directory, File Replication Service, WINS server, and Certificate Services).

The ESE is an Indexed Sequential Access Method (ISAM) technology that organizes database data in B-Tree structures. Ideally, these databases are populated by data kept together or adjacent. When this does not occur, external reorganization or defragmentation processes should be used to restore the optimal data contiguity in these structured databases.

To summarize, an Exchange mailbox database is subject to a subset of tasks performing storage access.

- The regular read and write access required to retrieve and store user mailbox data (according to the Exchange cache policy)
- The online defragmentation and compacting activities due to the B-Tree optimization
- The background database maintenance including recoverable items cleanup, deleted mailboxes purge, and other activities addressing logical object support
- The checksum database scan to verify data block integrity (sequential read activity), which can be set to run constantly in the background or at a scheduled time

Furthermore, Exchange Server offers a specialized offline manual defragmentation task that runs while the database is dismounted by taking advantage of the ESEUTIL.EXE command line tool. The principal goal of this task is to reclaim the empty space left in a database by online defragmentation and to shrink the size of the \*.edb file itself. This returns the free space to the operating system volume.

**Note**: It is not recommended to include offline defragmentation in a regular maintenance plan due to the disruption in the availability of the database, the rupture of the logs chain, and the need for database reseeding in case of DAG configuration.

**Exchange DAG** is a pool of up to 16 networked servers that hosts multiple copies of the same Exchange database or databases where only one of the copies is active at a specific point-in-time within the group. The other copies are passive and contain data sourced from replicated and replayed transaction logs.

**Log Checkpoint depth** refers to the amount of logs written to the disk and that contain transactions not yet flushed to the database file. In Exchange Server 2013, during a DAG failover the database cache is no longer flushed, since it is treated as a persistent object. Therefore, the log checkpoint for the passive databases is increased to 100 to reduce the write I/O and to reduce the failover time since the passive database has to pre-read less data.



# 4 Validating the Exchange workload

Microsoft Exchange is a flexible deployment platform offering many different configurations and set of thresholds depending on the needs of the organization and the end-users. The selection of some variables influences the performance, administration and cost effectiveness of the messaging infrastructure.

The focus of this paper is the behavior of larger mailbox sizes and achievable IOPS with acceptable latencies with a fixed number of 7K RPM drives. Storage page sizes from 2MB to 4MB are explored. The drive physics with slower-RPM higher-capacity drives translates to higher I/O latencies. Higher drive failure rates with larger-capacity slower-RPM drives necessitate dual redundancy by leveraging RAID 6, which can handle up to two simultaneous disk failures prior to needing to fail over to additional DAG copies. This paper demonstrates that this cost-effective SAN storage solution provides the needed performance and capacity required for an Exchange Server 2013 workload.

**Note**: the results presented in this white paper are from simulations executed in a lab built to the listed specifications. Other generally available tools or sizing calculators might have results slightly different based on the assumptions made from each particular tool.

The reference Exchange server deployment used is detailed in Table 1. For each scenario evaluated, an explicit description of the relevant differences is reported in a corresponding section of this paper.

| Reference configuration: factors under study    |                                                                              |  |  |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Number of simulated users / mailboxes           | 4,500 concurrent users                                                       |  |  |  |  |  |
| Number of databases                             | 16 databases (active)                                                        |  |  |  |  |  |
| RAID 6 striping                                 | RAID 6-10 wide striped across entire disk folder/pool                        |  |  |  |  |  |
| Array model, SAN configuration                  | One SC4020, one SC220 2.5" enclosure, 46 active 7K 1TB drives, 2 spares      |  |  |  |  |  |
| Reference configuration: consistent facto       | rs across each scenario                                                      |  |  |  |  |  |
| Messages per day per mailbox / IOPS per mailbox | 150 messages / 0.102 IOPS (with DAG)                                         |  |  |  |  |  |
| Mailbox size                                    | 6 GB each                                                                    |  |  |  |  |  |
| Mailbox allocation per database                 | 281 mailboxes per each mailbox database                                      |  |  |  |  |  |
| Database size                                   | 2.2 TB each max (1.67 TB @ 75% for Jetstress)                                |  |  |  |  |  |
| Number of database replica copies               | 2 (two node DAG)                                                             |  |  |  |  |  |
| Background database maintenance                 | Enabled                                                                      |  |  |  |  |  |
| Windows Disk/Partition File System              | Basic disk, GPT partition, default alignment NTFS, 64KB allocation unit size |  |  |  |  |  |
| RAID policy                                     | RAID 6                                                                       |  |  |  |  |  |
| Test duration                                   | 2 hours + time required to complete DBs checksum                             |  |  |  |  |  |

 Table 1
 Reference configuration for Microsoft Jetstress 2013 tests



**Note:** For a comprehensive list of storage configuration options and supported scenarios for Exchange Server, refer to the article *Exchange 2013 Storage Configuration Options* available at: <a href="http://technet.microsoft.com/en-us/library/ee832792%28v=exchg.150%29.aspx">http://technet.microsoft.com/en-us/library/ee832792%28v=exchg.150%29.aspx</a>

The following list provides the metrics and pass/fail criteria recorded while completing the tests. Most of this information is outlined by the Jetstress tool report or is verified through the recording of Windows Performance Monitor and Dell Storage Manager counters. Microsoft thresholds for Exchange Server storage validation are reported as well.

**Database Reads Average Latency (ms)** is the average length of time to wait for a database read operation (random reads). It should be less than 20 ms according to Microsoft threshold criteria.

**Database Writes Average Latency (ms)** is the average length of time to wait for a database write operation (random writes). It should be less than 20 ms according to Microsoft threshold criteria.

**Logs Writes Average Latency (ms)** is the average length of wait time for a log file write operation (sequential writes). It should be less than 10 ms according to Microsoft threshold criteria.

**Planned Transactional IOPS** are the target amount of IOPS for the test (calculated by multiplying the number of users by the IOPS per mailbox).

Achieved Transactional IOPS are the amount of IOPS actually performed by the storage subsystem to address the transactional requests. The result should not diverge more than 5% from the planned IOPS to be considered a successful test iteration according to Microsoft Jetstress.

**LOGs IOPS** are the IOPS performed against the log files during the transactional test. They are not directly taken into account as part of the transactional IOPS, but are tracked separately.

**Additional IOPS** are the IOPS generated for the database (DB) maintenance, log files replication and all the remaining activities on the storage subsystem, calculated as the difference between the IOPS provisioned by the SAN and the previously reported transactional and logs IOPS.

**Total IOPS** of the SAN is the sum of achieved transactional IOPS, Logs IOPS and additional IOPS. It represents the entire IOPS footprint performed against the back-end SAN during a test. It is recorded at the SAN level and verified with the Exchange host.

Note: For details about the simulation tool, Microsoft Jetstress 2013, refer to Appendix B.

# 5 Performance characteristics

As the need for high capacity mailbox storage for Exchange increases, there is no need to sacrifice storage functionality and flexibility that is needed in a dynamic virtual server infrastructure. The SC4020 SAN solution below offers all the functionality of higher-end SAN solutions with a lower price point and acceptable performance. The RAID protection capabilities along with virtualized storage performance make it attractive as compared to a DAS/JBOD configuration for Exchange.

### 5.1 Performance at full workload

The full workload described and tested for this paper was a medium-sized organization with 4500 mailboxes that required a 6GB mailbox quota. This workload was well satisfied by the solution configuration tested. Two Hyper-V virtual machines were utilized with their database/log storage mapped to volumes provisioned on the SC4020 array. In an Exchange DAG environment, an additional storage array and hypervisor server/s would be required to maintain high availability according to best practices.

| Table 2 | Test parameters: 4500 concurrent Mailboxes at full workload |
|---------|-------------------------------------------------------------|
|---------|-------------------------------------------------------------|

| Reference configuration: factors under study                                          |                                                                                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| Performance characteristics required of RAID-6<br>7K architecture at maximum workload | Read IOPS achieved =< 450                                                      |  |  |  |  |  |  |
|                                                                                       | Read Latency < 20ms                                                            |  |  |  |  |  |  |
| Reference configuration: consistent factors within this scenario                      |                                                                                |  |  |  |  |  |  |
| Messages per day per mailbox / IOPS per mailbox                                       | 150 messages/0.102 IOPS (with DAG)                                             |  |  |  |  |  |  |
| Number of simulated users / mailboxes                                                 | 4,500 concurrent users                                                         |  |  |  |  |  |  |
| Mailbox size                                                                          | 6 GB (6144 MB) each                                                            |  |  |  |  |  |  |
| Number of databases                                                                   | 16 databases (active)                                                          |  |  |  |  |  |  |
| Mailbox allocation per database                                                       | 281 mailboxes per each mailbox database                                        |  |  |  |  |  |  |
| Database size                                                                         | 2.2 TB each (max)                                                              |  |  |  |  |  |  |
| Number of database replica copies                                                     | 2 (two node DAG)                                                               |  |  |  |  |  |  |
| Array model, SAN configuration                                                        | One SC4020, one SC220 2.5" SAS enclosure, 46<br>active 7K 1TB drives, 2 spares |  |  |  |  |  |  |
| RAID policy                                                                           | RAID 6                                                                         |  |  |  |  |  |  |









### 5.1.1 Storage Center Manager results

Table 3 Test results from Storage Manager - Full workload I/O usage

### IO Usage for SC 31

#### Volume Reporting I/O Usage

| Total IOPS  |     |     |       | Read  | IOPS |     |        | Write | IOPS |     |        |
|-------------|-----|-----|-------|-------|------|-----|--------|-------|------|-----|--------|
| Volume Name | Min | Max | Avg   | StDev | Min  | Max | Avg    | StDev | Min  | Max | Avg    |
| HV-JS1-DB1  | 42  | 42  | 42    | 0     | 29   | 30  | 29.12  | 0.35  | 12   | 13  | 12.88  |
| HV-JS1-DB2  | 42  | 43  | 42.12 | 0.35  | 29   | 31  | 29.25  | 0.71  | 12   | 13  | 12.88  |
| HV-JS1-DB3  | 41  | 43  | 42    | 0.53  | 29   | 30  | 29.38  | 0.52  | 12   | 13  | 12.62  |
| HV-JS1-DB4  | 42  | 43  | 42.38 | 0.52  | 29   | 30  | 29.5   | 0.53  | 12   | 13  | 12.88  |
| HV-JS1-DB5  | 40  | 42  | 41.62 | 0.74  | 28   | 30  | 29     | 0.53  | 12   | 13  | 12.62  |
| HV-JS1-DB6  | 40  | 43  | 41.62 | 0.92  | 28   | 31  | 29     | 0.93  | 12   | 13  | 12.62  |
| HV-JS1-DB7  | 42  | 43  | 42.12 | 0.35  | 29   | 30  | 29.25  | 0.46  | 12   | 13  | 12.88  |
| HV-JS1-DB8  | 41  | 42  | 41.62 | 0.52  | 29   | 30  | 29.12  | 0.35  | 12   | 13  | 12.5   |
| HV-JS3-DB1  | 39  | 42  | 41.5  | 1.07  | 27   | 30  | 28.88  | 0.83  | 12   | 13  | 12.62  |
| HV-JS3-DB2  | 39  | 42  | 41.12 | 0.99  | 27   | 30  | 28.88  | 0.83  | 11   | 13  | 12.25  |
| HV-JS3-DB3  | 39  | 43  | 41.62 | 1.19  | 27   | 30  | 29.12  | 0.99  | 12   | 13  | 12.5   |
| HV-JS3-DB4  | 39  | 43  | 41.88 | 1.25  | 27   | 31  | 29.25  | 1.16  | 12   | 13  | 12.62  |
| HV-JS3-DB5  | 40  | 43  | 42.12 | 1.13  | 27   | 31  | 29.38  | 1.19  | 12   | 13  | 12.75  |
| HV-JS3-DB6  | 40  | 42  | 41.38 | 0.74  | 28   | 30  | 29     | 0.53  | 12   | 13  | 12.38  |
| HV-JS3-DB7  | 40  | 43  | 41.62 | 0.92  | 27   | 30  | 29     | 0.93  | 12   | 13  | 12.62  |
| HV-JS3-DB8  | 40  | 42  | 41.38 | 0.74  | 27   | 30  | 28.88  | 0.83  | 11   | 13  | 12.5   |
| Total       |     |     | 668.1 |       |      |     | 466.01 |       |      |     | 202.12 |



#### Table 4 Test results from Storage Manager - Full workload I/O latencies

#### I/O Usage for SC 31

#### Volume Reporting I/O Latencies

|             | Read Latency |     |         |       | Write Latency |     |         |       |
|-------------|--------------|-----|---------|-------|---------------|-----|---------|-------|
| Volume Name | Min          | Мах | Avg     | StDev | Min           | Max | Avg     | StDev |
| HV-JS1-DB1  | 18           | 19  | 18.79   | 0.34  | 0             | 1   | 0.76    | 0.15  |
| HV-JS1-DB2  | 15           | 16  | 15.95   | 0.21  | 0             | 1   | 1.03    | 0.26  |
| HV-JS1-DB3  | 15           | 16  | 16.05   | 0.24  | 0             | 1   | 0.96    | 0.33  |
| HV-JS1-DB4  | 15           | 16  | 16.08   | 0.33  | 0             | 1   | 0.89    | 0.27  |
| HV-JS1-DB5  | 15           | 16  | 16.29   | 0.51  | 0             | 0   | 0.75    | 0.1   |
| HV-JS1-DB6  | 15           | 16  | 15.95   | 0.23  | 0             | 1   | 1       | 0.31  |
| HV-JS1-DB7  | 15           | 16  | 16.09   | 0.32  | 0             | 0   | 0.72    | 0.06  |
| HV-JS1-DB8  | 15           | 16  | 15.92   | 0.25  | 0             | 1   | 1.03    | 0.32  |
| HV-JS3-DB1  | 17           | 18  | 18.23   | 0.51  | 0             | 1   | 0.93    | 0.25  |
| HV-JS3-DB2  | 15           | 16  | 15.97   | 0.34  | 0             | 1   | 0.85    | 0.24  |
| HV-JS3-DB3  | 15           | 16  | 15.91   | 0.39  | 0             | 1   | 0.95    | 0.23  |
| HV-JS3-DB4  | 15           | 16  | 15.99   | 0.4   | 0             | 1   | 0.86    | 0.23  |
| HV-JS3-DB5  | 15           | 16  | 15.94   | 0.35  | 0             | 1   | 0.88    | 0.21  |
| HV-JS3-DB6  | 15           | 16  | 15.88   | 0.19  | 0             | 1   | 0.86    | 0.21  |
| HV-JS3-DB7  | 15           | 16  | 15.99   | 0.39  | 0             | 1   | 0.83    | 0.2   |
| HV-JS3-DB8  | 15           | 16  | 15.94   | 0.43  | 0             | 1   | 0.84    | 0.19  |
| Total       |              |     | 16.3106 |       |               |     | 0.88375 |       |



### 5.1.2 Analysis of workload key performance indicators (KPI)

#### 5.1.2.1 Summary

- HV-JS1
  - IO Size average = 82K
  - DB Reads/sec = 229.82
  - Total IOPS = 335
- HV-JS3
  - IO Size average = 82K
  - DB Reads/sec = 230.94
  - Total IOPS = 336
- TOTAL
  - 671 IOPS F/E = 14.58 IOPS F/E per disk
  - 2,300 IOPS B/E = 50 IOPS B/E per disk

#### 5.1.2.2 Analysis

- On average, this configuration performed up to the necessary IOPS for the workload of 450 read IOPS.
- Read Latency on average was 16.31ms, which is comfortably under the 20 millisecond threshold that Exchange requires for excellent user experience.
- The higher latency instances on each server were discovered to have a smaller percentage of pages on the fast tracks of the drive. Therefore the drive physics of seek time at slower RPMs caused some slightly higher latency, but still under the 20ms seek time.
- Using the same type of drives in the external SC200 enclosure as the internal enclosure (1TB 7K in this case), allowed adding the disks to the same disk folder and show consistent results of performance and latency across all database volumes. This same drive preparation is best practice for a disk folder. If different size/class drives are used, these can be used to form a separate disk folder or tier of storage.
- Tests with 4MB page vs. the default 2MB page size did not appear to change the key performance characteristics for these tests. It was postulated that since the average I/O sizes were quite large, that increasing the page size to 4MB would decrease read latency due to fewer I/Os needed to read the same amount of data. There was no appreciable change seen in these specific tests.

# 5.2 Performance with single disk failure

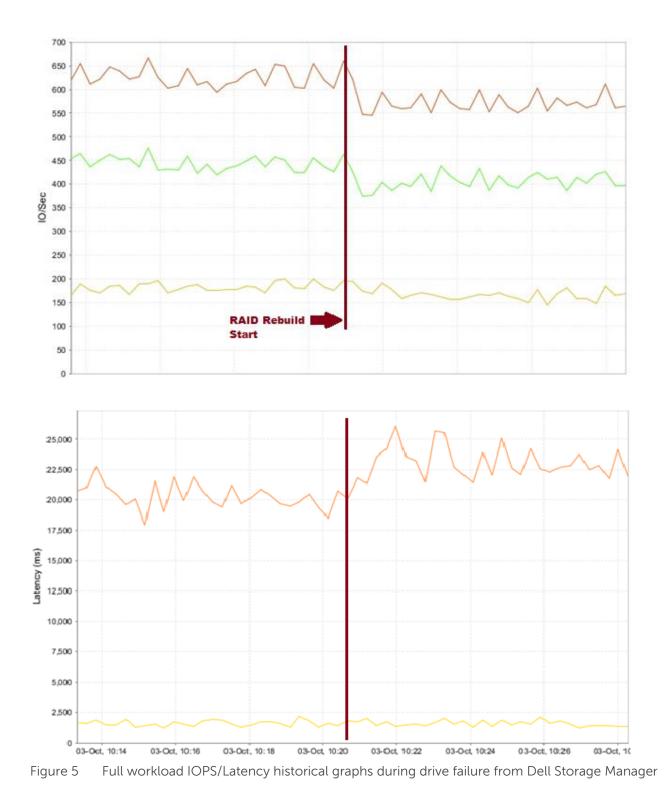
The full workload was tested again with the same medium-sized organization and the 4500 mailboxes that require a 6GB mailbox quota. In this test, a simulated drive failure was introduced to demonstrate the continuation of the workload at acceptable performance in RAID degraded mode and RAID rebuild.

In an Exchange DAG environment, the additional storage array and hypervisor servers could be utilized to manually switch over the workload to the additional DAG database copies in the unlikely event of



performance becoming unacceptable during rebuild. The tests showed that at full workload capacity, on average the read latency was acceptable.

 Table 5
 Test parameters: 4500 concurrent Mailboxes at full workload with single drive failure


| Reference configuration: factors under study                                          |                                                                                                                                                         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Performance characteristics required of RAID-6<br>7K architecture at maximum workload | Read IOPS achieved ~ 450                                                                                                                                |  |  |  |  |  |  |
|                                                                                       | Read Latency < 20ms                                                                                                                                     |  |  |  |  |  |  |
| Reference configuration: consistent factors within                                    | this scenario                                                                                                                                           |  |  |  |  |  |  |
| Messages per day per mailbox / IOPS per mailbox                                       | 150 messages/0.102 IOPS (with DAG)                                                                                                                      |  |  |  |  |  |  |
| Number of simulated users / mailboxes                                                 | 4,500 concurrent users                                                                                                                                  |  |  |  |  |  |  |
| Mailbox size                                                                          | 6 GB (6144 MB) each                                                                                                                                     |  |  |  |  |  |  |
| Number of databases                                                                   | 16 databases (active)                                                                                                                                   |  |  |  |  |  |  |
| Mailbox allocation per database                                                       | 281 mailboxes per each mailbox database                                                                                                                 |  |  |  |  |  |  |
| Database size                                                                         | 2.2 TB each (max)                                                                                                                                       |  |  |  |  |  |  |
| Number of database replica copies                                                     | 2 (two node DAG)                                                                                                                                        |  |  |  |  |  |  |
| Array model, SAN configuration                                                        | One SC4020, one SC220 2.5" SAS enclosure, 45<br>active 7K 1TB drives, 2 spares – RAID degraded to<br>single redundancy, then RAID rebuild on spare disk |  |  |  |  |  |  |
| RAID policy                                                                           | RAID 6                                                                                                                                                  |  |  |  |  |  |  |

**Notes:** The Storage Manager graphs below show that although there was a perceptible decrease in I/O during the RAID rebuild mode, there was not any I/O interruption or large latency spike during or after the drive failure.

The latency graph shown below is not the average I/O over the volumes, but the highest among all volumes. As shown in later tables, the majority of the volumes were under 20ms read latency even after drive failure.

Notice that as the RAID rebuild started, the IOPS dropped slightly due to the back-end I/O being generated by the rebuild. Read latency bumped up by a maximum of 2ms during RAID rebuild.





21 Exchange 2013 reference architecture using Dell SC4020 and Windows 2012 R2 Hyper-V | 2018-M-RA-EX

# 5.2.1 Storage Center Manager results

 Table 6
 Storage Center Manager I/O usage report during disk failure test

### IO Usage for SC 31

### Volume Reporting I/O Usage

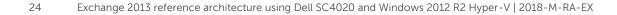
| Total IOPS  |     |     |        | Read  | IOPS |     |        | Write | IOPS |     |        |
|-------------|-----|-----|--------|-------|------|-----|--------|-------|------|-----|--------|
| Volume Name | Min | Max | Avg    | StDev | Min  | Max | Avg    | StDev | Min  | Max | Avg    |
| HV-JS1-DB1  | 35  | 41  | 37.14  | 2.41  | 25   | 29  | 26.43  | 1.51  | 10   | 12  | 10.71  |
| HV-JS1-DB2  | 35  | 41  | 37.43  | 1.99  | 25   | 29  | 26.43  | 1.51  | 10   | 12  | 11     |
| HV-JS1-DB3  | 35  | 41  | 37.29  | 2.36  | 25   | 29  | 26.29  | 1.6   | 10   | 12  | 11     |
| HV-JS1-DB4  | 35  | 42  | 37.14  | 2.73  | 25   | 29  | 26.29  | 1.6   | 10   | 13  | 10.86  |
| HV-JS1-DB5  | 34  | 42  | 37.43  | 2.51  | 25   | 30  | 26.57  | 1.81  | 9    | 12  | 10.86  |
| HV-JS1-DB6  | 36  | 41  | 38     | 2.08  | 26   | 29  | 26.71  | 1.25  | 10   | 13  | 11.29  |
| HV-JS1-DB7  | 35  | 40  | 37     | 1.91  | 25   | 28  | 26.29  | 1.25  | 10   | 12  | 10.71  |
| HV-JS1-DB8  | 35  | 41  | 37.43  | 2.23  | 25   | 29  | 26.43  | 1.51  | 10   | 12  | 11     |
| HV-JS3-DB1  | 36  | 41  | 37.71  | 1.7   | 25   | 29  | 26.57  | 1.4   | 11   | 12  | 11.14  |
| HV-JS3-DB2  | 35  | 40  | 37.57  | 1.62  | 25   | 28  | 26.43  | 1.13  | 10   | 12  | 11.14  |
| HV-JS3-DB3  | 36  | 41  | 37.29  | 1.98  | 25   | 29  | 26.57  | 1.4   | 10   | 12  | 10.71  |
| HV-JS3-DB4  | 35  | 41  | 37.14  | 1.95  | 25   | 29  | 26.43  | 1.27  | 10   | 12  | 10.71  |
| HV-JS3-DB5  | 36  | 41  | 37.43  | 2.15  | 25   | 29  | 26.57  | 1.4   | 10   | 12  | 10.86  |
| HV-JS3-DB6  | 35  | 41  | 37.29  | 2.29  | 25   | 29  | 26.57  | 1.4   | 10   | 12  | 10.71  |
| HV-JS3-DB7  | 35  | 41  | 37.57  | 2.15  | 25   | 29  | 26.57  | 1.4   | 10   | 12  | 11     |
| HV-JS3-DB8  | 35  | 41  | 37.29  | 2.06  | 25   | 29  | 26.57  | 1.4   | 10   | 12  | 10.71  |
| Total       |     |     | 598.15 |       |      |     | 423.72 |       |      |     | 174.41 |



#### Table 7 Storage Center Manager I/O latency report during disk failure test

#### I/O Usage for SC 31

### Volume Reporting I/O Latency


| Read La     |     | Latency |        |       | Write La | atency |         |       |
|-------------|-----|---------|--------|-------|----------|--------|---------|-------|
| Volume Name | Min | Max     | Avg    | StDev | Min      | Max    | Avg     | StDev |
| HV-JS1-DB1  | 16  | 18      | 17.95  | 0.98  | 0        | 1      | 1.06    | 0.09  |
| HV-JS1-DB2  | 18  | 22      | 20.62  | 1.13  | 0        | 1      | 1       | 0.08  |
| HV-JS1-DB3  | 16  | 18      | 17.8   | 0.87  | 0        | 1      | 1.04    | 0.1   |
| HV-JS1-DB4  | 16  | 18      | 17.7   | 0.85  | 0        | 1      | 0.98    | 0.06  |
| HV-JS1-DB5  | 16  | 19      | 17.89  | 0.98  | 0        | 1      | 1.02    | 0.06  |
| HV-JS1-DB6  | 16  | 18      | 17.86  | 0.79  | 0        | 1      | 0.97    | 0.06  |
| HV-JS1-DB7  | 16  | 18      | 17.9   | 1.03  | 0        | 1      | 0.96    | 0.08  |
| HV-JS1-DB8  | 16  | 18      | 17.68  | 0.85  | 0        | 1      | 0.98    | 0.06  |
| HV-JS3-DB1  | 18  | 22      | 20.25  | 1.21  | 0        | 1      | 0.99    | 0.05  |
| HV-JS3-DB2  | 16  | 18      | 17.77  | 0.8   | 0        | 1      | 1.03    | 0.03  |
| HV-JS3-DB3  | 16  | 18      | 17.88  | 0.83  | 0        | 1      | 0.99    | 0.05  |
| HV-JS3-DB4  | 16  | 18      | 17.61  | 0.88  | 0        | 1      | 1.01    | 0.06  |
| HV-JS3-DB5  | 16  | 18      | 17.96  | 0.99  | 0        | 1      | 0.99    | 0.05  |
| HV-JS3-DB6  | 16  | 18      | 17.75  | 0.85  | 0        | 1      | 1.01    | 0.03  |
| HV-JS3-DB7  | 16  | 19      | 18.06  | 1     | 0        | 1      | 0.98    | 0.03  |
| HV-JS3-DB8  | 16  | 19      | 18.28  | 0.95  | 0        | 1      | 1       | 0.04  |
| Total       |     |         | 18.185 |       |          |        | 1.00063 |       |





### 5.2.2 Analysis of workload key performance indicators (KPI)

- HV-JS1
  - IO Size average = 88K
  - DB Reads/sec = 211.44
  - Total IOPS = 298.86
- HV-JS3
  - IO Size average = 88K
  - DB Reads/sec = 212.28
  - Total IOPS = 299.29
- TOTAL
  - 598 IOPS F/E = 13.00 IOPS F/E per disk
  - 2,407 IOPS B/E = 52 IOPS B/E per disk
- On average, this configuration in RAID rebuild mode performed adequately to the necessary IOPS for the workload: 423 of 450 read IOPS.
- The key point is that I/O operations continued without any perceptible interruption by Exchange ESE engine. All IO's were satisfied.
- Read Latency on average was 18.18ms, which is under the 20ms threshold that Exchange requires for an optimal user experience.
- The higher latency instances on each server (1 database each) were previously discovered to have a smaller percentage of pages on the fast tracks of the drives, again the drive physics of seek time at slower RPMs and higher back-end IOPS due to RAID rebuild caused some higher latency, slightly higher than 20ms seek time just on those instances.



# 6 Best Practice recommendations

Refer to these best practices to plan and configure Dell Storage arrays, Exchange Server 2013 and VMs.

### 6.1 Storage best practices

- Use Multipath I/O (MPIO) on Dell Compellent to improve storage performance and reliability. This support is built into Windows Server 2008 and newer.
- Choose the most appropriate RAID policy when designing the environment according to the performance, capacity, and tolerance to failure requirements of the environment. In this reference architecture, this was RAID 6 due to the larger mailbox capacity needs and single disk tier used.

# 6.2 Hypervisor and VM best practices

- Install a Windows Server Core version in the root partition of the Hyper-V role server to reduce the software maintenance, the attack surface, the memory, and disk space footprint. Otherwise, when installing a traditional Windows Server with Hyper-V technology with the GUI, minimize the use of additional software, components and/or roles in the root partition.
- The use of Non-Uniform Memory Access (NUMA) is advised to address the management of VMs with large and very large memory settings. Verify the number of NUMA nodes available in the system, based on the number of processors, and then design and size the VMs to have their memory resources entirely contained in a single NUMA node when possible. Spanning a VM memory across multiple NUMA nodes can result in less efficient usage of the memory and can decrease performance. See <u>Appendix A</u> for additional information on NUMA.
- Exchange Server 2013 is a memory-intensive workload. Configure static memory in the settings of each VM to avoid possible resource contention created by the dynamic memory management and to comply with the current support directives from Microsoft on this matter.
- Utilize Dell Replay Manager for Microsoft Hyper-V and Exchange for VSS consistent Replay snapshots.
  - Use the Hyper-V extension to protect all of the virtual machines along with their Exchange databases with a consistent VSS-aware Replay.
  - Use the Exchange extension when the operational needs require a more granular recovery of Exchange databases. Use this for complete database restores or Replay Manger Expose in conjunction with Exchange recovery databases or other offline database tool such as Dell Software Recovery Manager for Exchange.
  - See Replay Manager documentation and demo videos on these extensions at <u>Dell Compellent Replay Manager 7.0 and Exchange 2013 Demo</u> <u>Dell Compellent Storage Center Replay Manager 7 and Microsoft Hyper-V Demo Video</u>
- Investigate the opportunity to reserve the resources assigned to the Exchange VMs by using the resource control settings.
- Plan the reserve size for the volumes hosting the hard disk files of the VMs (\*.vhdx, \*.vhd) that takes into account the extra space required for memory image files (\*.bin), saved states (\*.vsv), or snapshot files (\*.avhdx, \*.avhd).

• Consider the supportability constraints of Exchange Server 2013 when deployed in a virtualized environment around suspended state, VM snapshots and replicas, and differencing disk image files.

See Microsoft Technet - Exchange 2013 virtualization at: <u>http://technet.microsoft.com/en-us/library/jj619301(v=exchg.150).aspx</u>

- While performance of dynamically expanding disks has improved, fixed disks are preferred to deploy production environment VMs due to the risk of elevated fragmentation or high latency while disk expansion occurs. See the Technet article link above on Exchange 2013 virtualization for more information on this recommendation.
- Isolate the host management traffic from the VM traffic by using virtual switches not enabled for management.
- Design isolated LAN and iSCSI networks.

### 6.3 Exchange Server installation best practices

- Use Basic disk type for all volumes.
- Use GUID partition table (GPT) for Exchange volumes.
- Use default disk alignment provided by Windows 2008 or greater.
- Use NTFS file system with 64 KB allocation unit for Exchange database and log partitions.
- Evaluate the use of mount points for all the SAN volumes or the attached virtual disks to increase management flexibility and database portability. Mount points become necessary when the number of volumes exceeds the number of available drive letters on a server.
- When using mount points, prevent Windows Server from assigning drive letters automatically to new volumes by disabling the auto-mount option.
- Deploy Windows operating system and Exchange data on separate physical disk drives, or in separate disk folders in a Compellent storage environment.
- Database and log file isolation is not required when deployed in a DAG environment.
- Leave background database maintenance (BDM) enabled (24x7) and account for the additional load. The BDM is activated by default on every replica copy of a DAG configuration.
- Do not share the disk drives for active and replicated copies of an Exchange mailbox database in a DAG environment. If there is a failure of a set of drives with multiple copies of the same data, the resilience or the perceived availability of the applications would be affected. Dedicate separate storage arrays for each replicated instance of the data instead.

### 6.4 Know the workload

• Do not begin a deployment without having a solid understanding of the current messaging workload. In the case of a new deployment, collect estimates based on business cases matching your organization size and drive conservative figures for the average user profiles. The use of the Microsoft Exchange 2013 Server role calculator is advised to learn basic estimates for new or changing messaging environments.



• Forecast the workload gap between the current version of Exchange Server and Exchange Server 2013 when planning to design a storage solution jointly with a migration.

### 6.5 Distribution of databases and user mailbox count per database

- Carefully plan the number of databases and the mailbox count per database in the entire organization. The right balance of the number of mailbox databases to support a defined number of users is mostly based on administrative policies.
- Larger databases fitted with a high number of users have a smaller impact on the storage subsystem, but provide less flexibility because of large database files maintenance and replication.

### 6.6 Growth and overhead

- Understand the wider business requirements and company strategy to predict the organization growth instead of following it.
- Design an environment based on building blocks that are easily replicable to address sudden changes in business requirements.
- Always account for at least 20% overhead when calculating maximum sizes to address unforeseen growth.



# A Configuration details

# A.1 Hardware components

Table 8 lists the details of the hardware components used for the configuration.

| Component | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Servers   | <ul> <li>Dell PowerEdge R620 server, Firmware 2.2.2</li> <li>2x Eight Core Intel Xeon E5-2665 Processors, 2.4 Ghz, 20M Cache</li> <li>RAM 32 GB (4x 8GB)</li> <li>iDRAC7 Enterprise, Firmware 1.56.55</li> <li>PERC H710 Mini RAID controller, Firmware 21.2.0-0007</li> <li>4x 146 GB 15K SAS (2x RAID-1, stripe 1MB)</li> <li>4x Broadcom NetXtreme 5720 Quad Port 1GbE Base-T onboard, Firmware 7.8.53</li> <li>2x Broadcom NetXtreme II 57810 Dual Port 10GbE Base-T, Firmware 7.8.53</li> <li>2x QLogic QLE2532 2-port 8Gb Fibre Channel adapter</li> <li>2x Dell PowerEdge R720xd servers, Firmware 1.57.57 (Build 04)</li> <li>2x Eight Core Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz</li> <li>RAM 256 GB (16 x 16GB)</li> <li>iDRAC-7 Enterprise, Firmware 1.57.57 (Build 04)</li> <li>Intel(R) 1Gb Ethernet 4-Port 1350-t rNDC, Firmware 13.1.10</li> <li>Intel(R) 10Gb Ethernet 2-Port X520 Adapter, Firmware 13.1.10</li> <li>2x QLogic QLE2532 2-port 8Gb Fibre Channel adapter</li> </ul> |
| Network   | <ul> <li>Dell PowerConnect 5548 Ethernet switch, Firmware 5.1.1.7</li> <li>48x 1GbE interfaces &amp; 2x 10GbE interfaces</li> <li>Installed top of the rack</li> <li>Connected by 2x16GbE redundant uplinks (STACK)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 8 Hardware components



| Component | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage   | <ul> <li>2x Brocade 5100 Fiber-channel switches (SAN Fabric)</li> <li>40x 8Gb FC interfaces</li> <li>Fabric OS version 7.0.0b</li> <li>1 to 2x Dell SC4020 (2 nodes per array)</li> <li>Storage Array OS version 6.05.10</li> <li>1x Qlogic QLE2564L 4-port 8Gb Fibre Channel adapter</li> <li>1x (up to 7) SC220 2.5" SAS drive enclosure with 24 1TB disks</li> <li>Total 48x 1TB 7.2K 2.5" SAS disk drives, raw capacity 48 TB</li> <li>1x Dell SC8000 (for virtual infrastructure)</li> <li>Storage Array OS version 6.5.02</li> <li>1x QLogic QLE2562 4-port 8Gb Fibre Channel adapter</li> <li>10x 900GB 10K 2.5" SAS disk drives, raw capacity 9 TB</li> </ul> |

# A.2 Software components

The environment required to perform the simulations described in this paper included the following software components:

- Hypervisor: Windows Server 2012 R2 with Hyper-V on every physical host
- Dell OpenManage Server Administrator on every physical host
- Operating System: Windows Server 2012 R2 on every VM
- Operating System: Windows Server 2008 R2 on management VM
- Dell Compellent Multi-pathing Extension Module to provide Dell MPIO access to the back-end SAN on the hypervisor directly accessing the SAN (host initiator scenarios)
- Dell Storage Manager (formerly Enterprise Manager) to monitor the health and performance of the SAN
- Microsoft Exchange Jetstress to simulate the access to the storage subsystem from the mailboxes store simulated VM



The following software components were installed and configured to simplify the management of the environment and to support the failover cluster configuration, while they were not strictly required to accomplish the tests.

- Active Directory Domain Services and DNS Server roles for the domain controllers
- Microsoft SCVMM for the management VM (not strictly required to accomplish the tests)

Table 9 lists the details of the software components used for the configuration.

| Component            | Description                                                                                                                                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating<br>Systems | Host servers:<br>• Microsoft Windows Server 2012 R2 Datacenter Edition (build 9600) with Hyper-V<br>• MPIO enabled using built-in Compellent DSM for Windows<br>• Guest VMs:<br>• Microsoft Windows Server 2012 R2 Datacenter Edition (build 9600) |
| Applications         | Microsoft System Center 2012 Virtual Machine Manager Service Pack 1 (version 3.1.6011.0)                                                                                                                                                           |
| Component            | Description                                                                                                                                                                                                                                        |
| Monitoring tools     | Dell Storage Manager (Enterprise Manager) version 15.1.1.21<br>Microsoft Performance Monitor from the Windows operating system                                                                                                                     |
| Simulation tools     | <ul> <li>Microsoft Exchange Jetstress 2013 (build 15.00.0775.000)</li> <li>Exchange 2013 Server Database Storage Engine and Library SP1 CU6 (build 15.00.0995.021)</li> </ul>                                                                      |

Table 9Software components



# A.3 Host hypervisor and VMs configuration

A virtual infrastructure built on Windows Server with Hyper-V hosted all the components of the test infrastructure. The primary elements of the virtual infrastructure configuration were:

- Windows Server 2012 R2 with Hyper-V deployed on all hosts, managed by the Hyper-V Role Administration tools or centrally by the SCVMM server
- Two identical hypervisor hosts (R720xd) configured as member servers on the domain
- One Enterprise Manager Data Collector Server (R620) configured as member server on the domain
- All guests deployed from one image template of Windows Server 2012 R2 operating system

Table 10Configuration: guest to host placement - Lists the relation between each hypervisor host and<br/>its respective set of VMs, with a brief summary of the virtual resources allocated for each VM.

| Host  | VM      | Purpose                                                     | vCPU | Memory | Storage                                  | Network<br>adapters                                                |
|-------|---------|-------------------------------------------------------------|------|--------|------------------------------------------|--------------------------------------------------------------------|
| R620  | DC01    | Active Directory<br>Domain Controller                       | 2    | 4GB    | 250GB VHDX                               | 2x<br>VMBus<br>Net<br>Adapters<br>(NIC<br>teaming<br>with<br>LBFO) |
|       | SCVMM01 | System Center<br>Virtual Machine<br>Manager                 | 4    | 8GB    | 250GB VHDX                               | 2x<br>VMBus<br>Net<br>Adapters<br>(NIC<br>teaming<br>with<br>LBFO) |
| R720s | HV-JS#n | Exchange Server<br>mailbox server<br>simulation (Jetstress) | 4    | 98GB   | 250GB VHDX<br>+ Exchange data<br>volumes | 2x<br>VMBus<br>Net<br>Adapters<br>(NIC<br>teaming<br>with<br>LBFO) |



### A.3.1 Guest VMs memory

The memory assigned to every VM in the infrastructure is configured as static, to avoid any possible occurrence of VMs exhausting the available host server memory pool.

### A.3.2 Hyper-V configuration of NUMA

NUMA capabilities were enabled on the PowerEdge R720 physical hosts (with Node Interleaving disabled in the server BIOS) to allow memory access across CPUs. These R720s had two NUMA nodes each managing 192GB of memory. The Hyper-V NUMA Spanning setting was left enabled (the default).

### A.3.3 Guest VMs disks

The virtual disks used to host the operating system of each VM were VHDX fixed type disks. The VHDX files for the VMs hosted from the R620 hypervisor were deployed on the second pair of local RAID-1 disks, all the VMs hosted by the R720XD hypervisors were deployed on the SAN as described below:

- VHDXs for the system disks deployed on the SC8000 array
- VHDXs for the Exchange data deployed on the SC4020 arrays (host initiator scenarios)

### A.3.4 Host network adapters and virtual network configuration

The host and VM network adapters were configured as follows:

- Two physical network adapters, sourced from the onboard Intel(R) 1Gb Ethernet ports, provided connectivity for host domain access and management
- Two physical network adapters, sourced from the Intel(R) 10Gb Ethernet ports, connected independently with two virtual network switches, and provided connectivity for the VMs to both domain and intra-VM traffic
- Two (on the R620 or the R720s) physical fibre channel host adapters, sourced from the QLogic QLE2532 ports, connected independently with two Brocade switches, and provided access to the SAN from the host hypervisor environments for these use-case configurations.
- MPIO (Multi-path I/O) enabled and provided by the default Compellent DSM module.

The non-default settings implemented on all physical Ethernet network adapters included:

- Jumbo frames enabled
- Flow Control enabled
- Large send offload enabled
- Receive and transmit buffers maximized
- Virtual Machine Queues (for each network adapter used by a virtual network switch)

### A.3.5 Virtual network adapter configuration

The assignment of the virtual network adapters of the VMs was configured as listed below:

• Two virtual network adapters to access the LAN traffic with switch independent mode NIC teaming by Load Balance with Fail Over (LBFO) (for all active adapters)

The hardware acceleration settings implemented on the virtual network adapters were:

• Virtual machine queue enabled on every adapter



# B Microsoft Jetstress reports

# B.1 Jetstress considerations

Microsoft Exchange Server Jetstress 2013 is a simulation tool that is able to reproduce the database and logs I/O workload of an Exchange mailbox role server. It is usually used to verify and validate the conformity of a storage subsystem solution before the full Exchange software stack is deployed. Some elements worth considering include:

- Does not require and should not be hosted on a server where Exchange Server is running
- Performs only Exchange storage access and not host processes simulations. It does not contribute in assessing or sizing the Exchange memory and processes footprints
- Is an ESE application requiring access to the ESE dynamic link libraries to perform database access. It takes advantage of the same API used by the Exchange Server application software stack and as such it is a reliable simulation application
- Requires, and provides, an initialization step to create and populate the database(s) that will be used for the subsequent test phases. The database(s) should be the same capacity as the one(s) planned for the Exchange Server future deployment
- Its topology layout includes number and size of simulated mailboxes, number and placement of databases and log files, and number of database replica copies (it simulates only active databases)
- While carrying out a mailbox profile test, it executes a pre-defined mix of insert, delete, replace and commit operations against the database objects during the transactional step, then it performs a full database checksum
- Collects application and system event logs, performance counter values for the criteria metrics of both operating system resources and ESE instances during transactional and DB checksum phases. It then generates a detailed HTML-based report
- Throttles the disk I/O generation using the assigned IOPS per mailbox, thread count (global per all databases) and SluggishSessions threads property (fine tuning for threads execution pace)



# B.2 Jetstress report for full workload – HV-JS1

Figure 6 HV-JS1 Jetstress Performance Test Result Report

# Microsoft Exchange Jetstress 2013

# Performance Test Result Report

| Test Summary               |                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <b>Overall Test Result</b> | Pass                                                                                                                       |
| Machine Name               | HV-JS1                                                                                                                     |
| Test Description           | 2250 Users x 2 Servers = 4500 mailboxes<br>8 databases<br>.10 IOPS per mailbox<br>6144 MB (6GB) mailbox quota<br>8 threads |
| Test Start Time            | 9/30/2014 9:55:26 AM                                                                                                       |
| Test End Time              | 9/30/2014 12:08:13 PM                                                                                                      |
| Collection Start Time      | e 9/30/2014 10:07:11 AM                                                                                                    |
| <b>Collection End Time</b> | 9/30/2014 12:07:10 PM                                                                                                      |
| Jetstress Version          | 15.00.0775.000                                                                                                             |
| ESE Version                | 15.00.0995.021                                                                                                             |
| Operating System           | Windows Server 2012 R2 Datacenter (6.2.9200.0)                                                                             |
| Performance Log            | C:\Program Files\Exchange Jetstress\Performance 2014 9 30 9 55 43.blg                                                      |

#### Database Sizing and Throughput-

| Achieved Transactional I/O per Second 229.828 |                |  |  |  |  |
|-----------------------------------------------|----------------|--|--|--|--|
| Target Transactional I/O per Second 225       |                |  |  |  |  |
| Initial Database Size (bytes)                 | 14495783059456 |  |  |  |  |
| Final Database Size (bytes)                   | 14496412205056 |  |  |  |  |
| Database Files (Count)                        | 8              |  |  |  |  |

#### Jetstress System Parameters

| Thread Count                        | 8         |
|-------------------------------------|-----------|
| Minimum Database Cache              | 256.0 MB  |
| Maximum Database Cache              | 2048.0 MB |
| Insert Operations                   | 40%       |
| Delete Operations                   | 20%       |
| Replace Operations                  | 5%        |
| Read Operations                     | 35%       |
| Lazy Commits                        | 70%       |
| Run Background Database Maintenance | True      |
| Number of Copies per Database       | 2         |

#### Database Configuration

- Instance1980.1 Log path: C:\DB\JS1-DB1 Database: C:\DB\JS1-DB1\Jetstress001001.edb
- Instance1980.2 Log path: C:\DB\JS1-DB2 Database: C:\DB\JS1-DB2\Jetstress002001.edb
- Instance1980.3 Log path: C:\DB\JS1-DB3 Database: C:\DB\JS1-DB3\Jetstress003001.edb
- Instance1980.4 Log path: C:\DB\JS1-DB4 Database: C:\DB\JS1-DB4\Jetstress004001.edb
- Instance1980.5 Log path: C:\DB\JS1-DB5 Database: C:\DB\JS1-DB5\Jetstress005001.edb
- Instance1980.6 Log path: C:\DB\JS1-DB6 Database: C:\DB\JS1-DB6\Jetstress006001.edb
- Instance1980.7 Log path: C:\DB\JS1-DB7 Database: C:\DB\JS1-DB7\Jetstress007001.edb
- Instance1980.8 Log path: C:\DB\JS1-DB8 Database: C:\DB\JS1-DB8\Jetstress008001.edb

#### Transactional I/O Performance

| MSExchange<br>Database ==><br>Instances | Database<br>Reads<br>Average<br>Latency | I/O<br>Database<br>Writes<br>Average<br>Latency<br>(msec) | Database | Database<br>Writes/sec | Database<br>Reads<br>Average | Database<br>Writes<br>Average | Average | Writes |       | Writes/sec | Average | Writes    |
|-----------------------------------------|-----------------------------------------|-----------------------------------------------------------|----------|------------------------|------------------------------|-------------------------------|---------|--------|-------|------------|---------|-----------|
| Instance1980.1                          | 19.377                                  | 1.937                                                     | 20.210   | 8.598                  | 33686.343                    | 35474.248                     | 0.000   | 1.457  | 0.000 | 2.291      | 0.000   | 20917.939 |
| Instance1980.2                          | 16.950                                  | 1.851                                                     | 20.130   | 8.503                  | 33791.356                    | 35507.605                     | 0.000   | 1.427  | 0.000 | 2.238      | 0.000   | 20865.362 |
| Instance1980.3                          | 16.691                                  | 1.761                                                     | 20.190   | 8.536                  | 33821.289                    | 35481.637                     | 0.000   | 1.497  | 0.000 | 2.254      | 0.000   | 21133.103 |
| Instance1980.4                          | 16.786                                  | 1.947                                                     | 20.191   | 8.544                  | 33778.859                    | 35545.607                     | 0.000   | 1.398  | 0.000 | 2.288      | 0.000   | 20833.049 |
| Instance1980.5                          | 16.796                                  | 2.201                                                     | 20.113   | 8.522                  | 33672.760                    | 35594.566                     | 0.000   | 1.477  | 0.000 | 2.258      | 0.000   | 20931.568 |
| Instance1980.6                          | 17.069                                  | 2.330                                                     | 19.996   | 8.519                  | 33746.178                    | 35546.725                     | 0.000   | 1.436  | 0.000 | 2.242      | 0.000   | 21583.087 |
| Instance1980.7                          | 16.842                                  | 2.061                                                     | 20.366   | 8.663                  | 33784.438                    | 35300.126                     | 0.000   | 1.433  | 0.000 | 2.284      | 0.000   | 20265.440 |
| Instance1980.8                          | 16.749                                  | 1.933                                                     | 20.225   | 8.521                  | 33745.497                    | 35461.944                     | 0.000   | 1.483  | 0.000 | 2.264      | 0.000   | 20912.303 |



#### Background Database Maintenance I/O Performance

| MSExchange Database ==> Instances | Database Maintenance IO Reads/sec | Database Maintenance IO Reads Average Bytes |
|-----------------------------------|-----------------------------------|---------------------------------------------|
| Instance1980.1                    | 9.109                             | 261975.126                                  |
| Instance1980.2                    | 9.072                             | 261885.808                                  |
| Instance1980.3                    | 9.117                             | 261861.422                                  |
| Instance1980.4                    | 9.110                             | 261889.818                                  |
| Instance1980.5                    | 9.109                             | 261948.659                                  |
| Instance1980.6                    | 9.052                             | 261944.200                                  |
| Instance1980.7                    | 9.111                             | 261909.267                                  |
| Instance1980.8                    | 9.112                             | 261845.277                                  |

#### Log Replication I/O Performance

| MSExchange Database ==> Instances | I/O Log Reads/sec | I/O Log Reads Average Bytes |
|-----------------------------------|-------------------|-----------------------------|
| Instance1980.1                    | 0.201             | 79275.309                   |
| Instance1980.2                    | 0.198             | 77343.801                   |
| Instance1980.3                    | 0.199             | 77785.915                   |
| Instance1980.4                    | 0.199             | 77830.332                   |
| Instance1980.5                    | 0.200             | 79227.622                   |
| Instance1980.6                    | 0.203             | 79155.941                   |
| Instance1980.7                    | 0.196             | 76857.270                   |
| Instance1980.8                    | 0.199             | 77358.416                   |

#### Total I/O Performance

| Database ==>   | Database<br>Reads<br>Average<br>Latency | Database | Database | Database<br>Writes/sec | Database<br>Reads<br>Average | Database<br>Writes<br>Average | Reads | Average<br>Latency | Reads/sec | Writes/sec | Reads<br>Average | I/O Log<br>Writes<br>Average<br>Bytes |
|----------------|-----------------------------------------|----------|----------|------------------------|------------------------------|-------------------------------|-------|--------------------|-----------|------------|------------------|---------------------------------------|
| Instance1980.1 | 19.377                                  | 1.937    | 29.319   | 8.598                  | 104615.130                   | 35474.248                     | 3.978 | 1.457              | 0.201     | 2.291      | 79275.309        | 20917.939                             |
| Instance1980.2 | 16.950                                  | 1.851    | 29.202   | 8.503                  | 104652.078                   | 35507.605                     | 3.970 | 1.427              | 0.198     | 2.238      | 77343.801        | 20865.362                             |
| Instance1980.3 | 16.691                                  | 1.761    | 29.307   | 8.536                  | 104758.244                   | 35481.637                     | 4.219 | 1.497              | 0.199     | 2.254      | 77785.915        | 21133.103                             |
| Instance1980.4 | 16.786                                  | 1.947    | 29.301   | 8.544                  | 104700.032                   | 35545.607                     | 3.943 | 1.398              | 0.199     | 2.288      | 77830.332        | 20833.049                             |
| Instance1980.5 | 16.796                                  | 2.201    | 29.222   | 8.522                  | 104828.699                   | 35594.566                     | 3.835 | 1.477              | 0.200     | 2.258      | 79227.622        | 20931.568                             |
| Instance1980.6 | 17.069                                  | 2.330    | 29.048   | 8.519                  | 104855.520                   | 35546.725                     | 3.719 | 1.436              | 0.203     | 2.242      | 79155.941        | 21583.087                             |
| Instance1980.7 | 16.842                                  | 2.061    | 29.477   | 8.663                  | 104294.672                   | 35300.126                     | 3.713 | 1.433              | 0.196     | 2.284      | 76857.270        | 20265.440                             |
| Instance1980.8 | 16.749                                  | 1.933    | 29.337   | 8.521                  | 104594.881                   | 35461.944                     | 3.642 | 1.483              | 0.199     | 2.264      | 77358.416        | 20912.303                             |



# B.3 Jetstress report for full workload – HV-JS3

Figure 7 HV-JS3 Jetstress Performance Test Result Report

### Microsoft Exchange Jetstress 2013

# Performance Test Result Report

| Test Summary               |                                                                                                                            |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Overall Test Result        | Pass                                                                                                                       |
| Machine Name               | HV-JS3                                                                                                                     |
| Test Description           | 2250 Users x 2 Servers = 4500 mailboxes<br>8 databases<br>.10 IOPS per mailbox<br>6144 MB (6GB) mailbox quota<br>8 threads |
| Test Start Time            | 9/30/2014 9:55:24 AM                                                                                                       |
| Test End Time              | 9/30/2014 12:08:31 PM                                                                                                      |
| Collection Start Time      | e 9/30/2014 10:06:47 AM                                                                                                    |
| <b>Collection End Time</b> | 9/30/2014 12:06:38 PM                                                                                                      |
| Jetstress Version          | 15.00.0775.000                                                                                                             |
| ESE Version                | 15.00.0995.021                                                                                                             |
| <b>Operating System</b>    | Windows Server 2012 R2 Datacenter (6.2.9200.0)                                                                             |
| Performance Log            | C:\Program Files\Exchange Jetstress\Performance 2014 9 30 9 55 41.blg                                                      |

#### Database Sizing and Throughput

| Achieved Transactional I/O per Second 230.945 |  |  |  |  |  |  |
|-----------------------------------------------|--|--|--|--|--|--|
| Target Transactional I/O per Second 225       |  |  |  |  |  |  |
| Initial Database Size (bytes) 14495783059456  |  |  |  |  |  |  |
| Final Database Size (bytes) 14496454148096    |  |  |  |  |  |  |
| Database Files (Count) 8                      |  |  |  |  |  |  |

#### Jetstress System Parameters

| Thread Count                        | 8         |
|-------------------------------------|-----------|
| Minimum Database Cache              | 256.0 MB  |
| Maximum Database Cache              | 2048.0 MB |
| Insert Operations                   | 40%       |
| Delete Operations                   | 20%       |
| Replace Operations                  | 5%        |
| Read Operations                     | 35%       |
| Lazy Commits                        | 70%       |
| Run Background Database Maintenance | True      |
| Number of Copies per Database       | 2         |



#### Database Configuration

- Instance3272.1 Log path: C:\DB\JS3-DB1 Database: C:\DB\JS3-DB1\Jetstress001001.edb
- Instance3272.2 Log path: C:\DB\JS3-DB2 Database: C:\DB\JS3-DB2\Jetstress002001.edb
- Instance3272.3 Log path: C:\DB\JS3-DB3 Database: C:\DB\JS3-DB3\Jetstress003001.edb
- Instance3272.4 Log path: C:\DB\JS3-DB4 Database: C:\DB\JS3-DB4\Jetstress004001.edb
- Instance3272.5 Log path: C:\DB\JS3-DB5 Database: C:\DB\JS3-DB5\Jetstress005001.edb
- Instance3272.6 Log path: C:\DB\JS3-DB6 Database: C:\DB\JS3-DB6\Jetstress006001.edb
- Instance3272.7 Log path: C:\DB\JS3-DB7 Database: C:\DB\JS3-DB7\Jetstress007001.edb
- Instance3272.8 Log path: C:\DB\JS3-DB8 Database: C:\DB\JS3-DB8\Jetstress008001.edb

| Transactional I/O                       | Performan         | ce       |          |                        |                              |                               |                    |       |       |            |                  |                                       |
|-----------------------------------------|-------------------|----------|----------|------------------------|------------------------------|-------------------------------|--------------------|-------|-------|------------|------------------|---------------------------------------|
| MSExchange<br>Database ==><br>Instances | Database<br>Reads | Database | Database | Database<br>Writes/sec | Database<br>Reads<br>Average | Database<br>Writes<br>Average | Average<br>Latency |       | -,    | Writes/sec | Reads<br>Average | I/O Log<br>Writes<br>Average<br>Bytes |
| Instance3272.1                          | 19.327            | 1.993    | 20.359   | 8.576                  | 33716.986                    | 35581.914                     | 0.000              | 1.525 | 0.000 | 2.271      | 0.000            | 20828.158                             |
| Instance3272.2                          | 16.828            | 1.755    | 20.379   | 8.549                  | 33648.245                    | 35406.578                     | 0.000              | 1.409 | 0.000 | 2.229      | 0.000            | 20573.994                             |
| Instance3272.3                          | 16.845            | 1.790    | 20.342   | 8.731                  | 33711.945                    | 35544.559                     | 0.000              | 1.499 | 0.000 | 2.313      | 0.000            | 20782.127                             |
| Instance3272.4                          | 16.912            | 2.119    | 20.360   | 8.795                  | 33727.245                    | 35383.395                     | 0.000              | 1.491 | 0.000 | 2.325      | 0.000            | 20261.544                             |
| Instance3272.5                          | 16.782            | 2.000    | 20.272   | 8.498                  | 33648.209                    | 35515.371                     | 0.000              | 1.406 | 0.000 | 2.246      | 0.000            | 21085.758                             |
| Instance3272.6                          | 16.708            | 1.827    | 20.013   | 8.330                  | 33607.714                    | 35599.670                     | 0.000              | 1.439 | 0.000 | 2.243      | 0.000            | 21263.810                             |
| Instance3272.7                          | 16.812            | 1.944    | 20.291   | 8.663                  | 33760.628                    | 35491.976                     | 0.000              | 1.469 | 0.000 | 2.260      | 0.000            | 21200.836                             |
| Instance3272.8                          | 16.726            | 1.895    | 20.287   | 8.501                  | 33708.566                    | 35595.460                     | 0.000              | 1.472 | 0.000 | 2.257      | 0.000            | 20868.694                             |



#### Background Database Maintenance I/O Performance

| MSExchange Database ==> Instances | Database Maintenance IO Reads/sec | Database Maintenance IO Reads Average Bytes |
|-----------------------------------|-----------------------------------|---------------------------------------------|
| Instance3272.1                    | 9.105                             | 261907.417                                  |
| Instance3272.2                    | 9.115                             | 261864.865                                  |
| Instance3272.3                    | 9.108                             | 261843.032                                  |
| Instance3272.4                    | 9.111                             | 261922.414                                  |
| Instance3272.5                    | 9.109                             | 261855.315                                  |
| Instance3272.6                    | 9.110                             | 261899.007                                  |
| Instance3272.7                    | 9.106                             | 261963.342                                  |
| Instance3272.8                    | 9.111                             | 261924.853                                  |

#### Log Replication I/O Performance

| MSExchange Database ==> Instances | I/O Log Reads/sec | I/O Log Reads Average Bytes |
|-----------------------------------|-------------------|-----------------------------|
| Instance3272.1                    | 0.198             | 77934.343                   |
| Instance3272.2                    | 0.193             | 75617.140                   |
| Instance3272.3                    | 0.202             | 78495.694                   |
| Instance3272.4                    | 0.201             | 78346.785                   |
| Instance3272.5                    | 0.198             | 77505.947                   |
| Instance3272.6                    | 0.202             | 79012.823                   |
| Instance3272.7                    | 0.202             | 78495.694                   |
| Instance3272.8                    | 0.197             | 77018.396                   |

#### Total I/O Performance

| MSExchange<br>Database ==><br>Instances | Database<br>Reads<br>Average | Database | Database | Database<br>Writes/sec | Database<br>Reads<br>Average | Database<br>Writes<br>Average | Reads | Average<br>Latency | Reads/sec | Writes/sec | Reads<br>Average | I/O Log<br>Writes<br>Average<br>Bytes |
|-----------------------------------------|------------------------------|----------|----------|------------------------|------------------------------|-------------------------------|-------|--------------------|-----------|------------|------------------|---------------------------------------|
| Instance3272.1                          | 19.327                       | 1.993    | 29.463   | 8.576                  | 104230.819                   | 35581.914                     | 3.426 | 1.525              | 0.198     | 2.271      | 77934.343        | 20828.158                             |
| Instance3272.2                          | 16.828                       | 1.755    | 29.494   | 8.549                  | 104179.224                   | 35406.578                     | 4.063 | 1.409              | 0.193     | 2.229      | 75617.140        | 20573.994                             |
| Instance3272.3                          | 16.845                       | 1.790    | 29.451   | 8.731                  | 104267.266                   | 35544.559                     | 4.131 | 1.499              | 0.202     | 2.313      | 78495.694        | 20782.127                             |
| Instance3272.4                          | 16.912                       | 2.119    | 29.471   | 8.795                  | 104273.417                   | 35383.395                     | 3.885 | 1.491              | 0.201     | 2.325      | 78346.785        | 20261.544                             |
| Instance3272.5                          | 16.782                       | 2.000    | 29.381   | 8.498                  | 104398.714                   | 35515.371                     | 3.791 | 1.406              | 0.198     | 2.246      | 77505.947        | 21085.758                             |
| Instance3272.6                          | 16.708                       | 1.827    | 29.124   | 8.330                  | 105022.049                   | 35599.670                     | 3.671 | 1.439              | 0.202     | 2.243      | 79012.823        | 21263.810                             |
| Instance3272.7                          | 16.812                       | 1.944    | 29.397   | 8.663                  | 104447.826                   | 35491.976                     | 3.421 | 1.469              | 0.202     | 2.260      | 78495.694        | 21200.836                             |
| Instance3272.8                          | 16.726                       | 1.895    | 29.397   | 8.501                  | 104436.743                   | 35595.460                     | 3.217 | 1.472              | 0.197     | 2.257      | 77018.396        | 20868.694                             |



# B.4 Jetstress report disk loss test – HV-JS1

Figure 8 Jetstress report for RAID 6 disk loss test for HV-JS1

### Microsoft Exchange Jetstress 2013

### Performance Test Result Report

| Test Summary               |                                                                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Overall Test Result</b> | Fail                                                                                                                                                         |
| Machine Name               | HV-JS1                                                                                                                                                       |
| Test Description           | 2250 Users x 2 Servers = 4500 mailboxes<br>8 databases<br>.10 IOPS per mailbox<br>6144 MB (6GB) mailbox quota<br>8 threads<br>Trial 4 - disk console downing |
| Test Start Time            | 10/3/2014 9:35:42 AM                                                                                                                                         |
| Test End Time              | 10/3/2014 12:23:35 PM                                                                                                                                        |
| Collection Start Time      | e 10/3/2014 9:47:10 AM                                                                                                                                       |
| <b>Collection End Time</b> | 10/3/2014 11:46:56 AM                                                                                                                                        |
| Jetstress Version          | 15.00.0775.000                                                                                                                                               |
| ESE Version                | 15.00.0995.021                                                                                                                                               |
| Operating System           | Windows Server 2012 R2 Datacenter (6.2.9200.0)                                                                                                               |
| Performance Log            | C:\Program Files\Exchange Jetstress\Performance 2014 10 3 9 36 0.blg                                                                                         |

#### Test Issues

Fail The process has average database read latencies higher than 20.000 msec. Fail The process failed to meet target IOPS (base: 225.0 and margin: 5.0 %).

#### Database Sizing and Throughput

| Achieved Transactional I/O per Second | 199.332        |
|---------------------------------------|----------------|
| Target Transactional I/O per Second   | 225            |
| Initial Database Size (bytes)         | 14501831245824 |
| Final Database Size (bytes)           | 14502502334464 |
| Database Files (Count)                | 8              |
|                                       |                |

#### Jetstress System Parameters

| Thread Count                        | 8         |
|-------------------------------------|-----------|
| Minimum Database Cache              | 256.0 MB  |
| Maximum Database Cache              | 2048.0 MB |
| Insert Operations                   | 40%       |
| Delete Operations                   | 20%       |
| Replace Operations                  | 5%        |
| Read Operations                     | 35%       |
| Lazy Commits                        | 70%       |
| Run Background Database Maintenance | True      |
| Number of Copies per Database       | 2         |



| Detabase Configuration                      |
|---------------------------------------------|
| Database Configuration                      |
| Instance1548.1 Log path: C:\DB\JS1-DB1      |
| Database: C:\DB\JS1-DB1\Jetstress001001.edb |
|                                             |
| Instance1548.2 Log path: C:\DB\JS1-DB2      |
| Database: C:\DB\JS1-DB2\Jetstress002001.edb |
|                                             |
| Instance1548.3 Log path: C:\DB\JS1-DB3      |
| Database: C:\DB\JS1-DB3\Jetstress003001.edb |
|                                             |
| Instance1548.4 Log path: C:\DB\JS1-DB4      |
| Database: C:\DB\JS1-DB4\Jetstress004001.edb |
|                                             |
| Instance1548.5 Log path: C:\DB\JS1-DB5      |
| Databago Ci\DB\161 DBE\1atatrage00E001 adb  |

Database: C:\DB\JS1-DB5\Jetstress005001.edb

Instance1548.6 Log path: C:\DB\JS1-DB6 Database: C:\DB\JS1-DB6\Jetstress006001.edb

Instance1548.7 Log path: C:\DB\JS1-DB7 Database: C:\DB\JS1-DB7\Jetstress007001.edb

Instance1548.8 Log path: C:\DB\JS1-DB8 Database: C:\DB\JS1-DB8\Jetstress008001.edb

| Transactional I/O Per                   | rformance                                             |                                                        |                              |                        |           |                                            |       |                                                   |       |            |                  |                                       |
|-----------------------------------------|-------------------------------------------------------|--------------------------------------------------------|------------------------------|------------------------|-----------|--------------------------------------------|-------|---------------------------------------------------|-------|------------|------------------|---------------------------------------|
| MSExchange<br>Database ==><br>Instances | I/O Database<br>Reads<br>Average<br>Latency<br>(msec) | I/O Database<br>Writes<br>Average<br>Latency<br>(msec) | I/O<br>Database<br>Reads/sec | Database<br>Writes/sec |           | I/O Database<br>Writes<br>Average<br>Bytes | Reads | I/O Log<br>Writes<br>Average<br>Latency<br>(msec) |       | Writes/sec | Reads<br>Average | I/O Log<br>Writes<br>Average<br>Bytes |
| Instance1548.1                          | 21.428                                                | 2.029                                                  | 17.435                       | 7.422                  | 34032.219 | 36434.385                                  | 0.000 | 1.586                                             | 0.000 | 1.830      | 0.000            | 20999.560                             |
| Instance1548.2                          | 18.463                                                | 1.899                                                  | 17.363                       | 7.329                  | 34326.260 | 36440.772                                  | 0.000 | 1.613                                             | 0.000 | 1.824      | 0.000            | 21098.408                             |
| Instance1548.3                          | 18.568                                                | 1.883                                                  | 17.618                       | 7.768                  | 34178.129 | 36328.098                                  | 0.000 | 1.532                                             | 0.000 | 1.873      | 0.000            | 21011.175                             |
| Instance1548.4                          | 18.467                                                | 1.947                                                  | 17.507                       | 7.470                  | 34150.379 | 36182.825                                  | 0.000 | 1.553                                             | 0.000 | 1.862      | 0.000            | 20918.545                             |
| Instance1548.5                          | 18.709                                                | 2.128                                                  | 17.375                       | 7.452                  | 34064.503 | 36309.906                                  | 0.000 | 1.561                                             | 0.000 | 1.864      | 0.000            | 21067.293                             |
| Instance1548.6                          | 18.643                                                | 2.090                                                  | 17.424                       | 7.498                  | 34149.492 | 36298.774                                  | 0.000 | 1.548                                             | 0.000 | 1.820      | 0.000            | 21483.264                             |
| Instance1548.7                          | 18.648                                                | 2.053                                                  | 17.514                       | 7.412                  | 34377.247 | 36636.074                                  | 0.000 | 1.565                                             | 0.000 | 1.826      | 0.000            | 21225.332                             |
| Instance1548.8                          | 18.715                                                | 1.972                                                  | 17.391                       | 7.352                  | 34209.585 | 36480.856                                  | 0.000 | 1.557                                             | 0.000 | 1.827      | 0.000            | 20929.957                             |

#### Background Database Maintenance I/O Performance

 MSExchange Database ==> Instances
 Database Maintenance IO Reads/sec
 Database Maintenance IO Reads/sec

 Instance1548.1
 9.105
 261761.408

| Instance1540.1 | 9.103 | 201/01.400 |
|----------------|-------|------------|
| Instance1548.2 | 9.115 | 261862.141 |
| Instance1548.3 | 9.109 | 261854.268 |
| Instance1548.4 | 9.111 | 261882.184 |
| Instance1548.5 | 9.113 | 261921.980 |
| Instance1548.6 | 9.110 | 261906.646 |
| Instance1548.7 | 9.111 | 261874.274 |
| Instance1548.8 | 9.113 | 261743.087 |
|                |       |            |

#### Log Replication I/O Performance

| MSExchange Database ==> Instance | I/O Log Reads/sec | I/O Log Reads Average Bytes |
|----------------------------------|-------------------|-----------------------------|
| Instance1548.1                   | 0.161             | 62834.911                   |
| Instance1548.2                   | 0.159             | 62453.266                   |
| Instance1548.3                   | 0.166             | 64829.624                   |
| Instance1548.4                   | 0.162             | 64268.272                   |
| Instance1548.5                   | 0.164             | 63869.167                   |
| Instance1548.6                   | 0.164             | 63869.167                   |
| Instance1548.7                   | 0.161             | 62406.515                   |
| Instance1548.8                   | 0.158             | 62433.100                   |

#### Total I/O Performance

| MSExchange<br>Database ==><br>Instances | Reads<br>Average<br>Latency |       |        | I/O<br>Database<br>Writes/sec | Reads Average<br>Bytes |           | I/O Log<br>Reads<br>Average<br>Latency<br>(msec) | I/O Log<br>Writes<br>Average<br>Latency<br>(msec) |       | Writes/sec | I/O Log<br>Reads<br>Average<br>Bytes | I/O Log<br>Writes<br>Average<br>Bytes |
|-----------------------------------------|-----------------------------|-------|--------|-------------------------------|------------------------|-----------|--------------------------------------------------|---------------------------------------------------|-------|------------|--------------------------------------|---------------------------------------|
| Instance1548.1                          | 21.428                      | 2.029 | 26.540 | 7.422                         | 112156.333             | 36434.385 | 4.084                                            | 1.586                                             | 0.161 | 1.830      | 62834.911                            | 20999.560                             |
| Instance1548.2                          | 18.463                      | 1.899 | 26.478 | 7.329                         | 112653.224             | 36440.772 | 3.342                                            | 1.613                                             | 0.159 | 1.824      | 62453.266                            | 21098.408                             |
| Instance1548.3                          | 18.568                      | 1.883 | 26.728 | 7.768                         | 111776.559             | 36328.098 | 4.348                                            | 1.532                                             | 0.166 | 1.873      | 64829.624                            | 21011.175                             |
| Instance1548.4                          | 18.467                      | 1.947 | 26.618 | 7.470                         | 112101.416             | 36182.825 | 5.068                                            | 1.553                                             | 0.162 | 1.862      | 64268.272                            | 20918.545                             |
| Instance1548.5                          | 18.709                      | 2.128 | 26.488 | 7.452                         | 112456.539             | 36309.906 | 3.487                                            | 1.561                                             | 0.164 | 1.864      | 63869.167                            | 21067.293                             |
| Instance1548.6                          | 18.643                      | 2.090 | 26.534 | 7.498                         | 112344.942             | 36298.774 | 2.838                                            | 1.548                                             | 0.164 | 1.820      | 63869.167                            | 21483.264                             |
| Instance1548.7                          | 18.648                      | 2.053 | 26.625 | 7.412                         | 112224.743             | 36636.074 | 3.631                                            | 1.565                                             | 0.161 | 1.826      | 62406.515                            | 21225.332                             |
| Instance1548.8                          | 18.715                      | 1.972 | 26.504 | 7.352                         | 112442.407             | 36480.856 | 3.947                                            | 1.557                                             | 0.158 | 1.827      | 62433.100                            | 20929.957                             |

# B.5 Jetstress report disk loss test – HV-JS3

Figure 9 Jetstress report for RAID 6 disk loss test for HV-JS3

### Microsoft Exchange Jetstress 2013

### Performance Test Result Report

| Test Summary               |                                                                                                                                                              |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Overall Test Result</b> | Fail                                                                                                                                                         |
| Machine Name               | HV-JS3                                                                                                                                                       |
| Test Description           | 2250 Users x 2 Servers = 4500 mailboxes<br>8 databases<br>.10 IOPS per mailbox<br>6144 MB (6GB) mailbox quota<br>8 threads<br>Trial 4 - disk console downing |
| Test Start Time            | 10/3/2014 9:35:40 AM                                                                                                                                         |
| Test End Time              | 10/3/2014 12:24:34 PM                                                                                                                                        |
| Collection Start Time      | e 10/3/2014 9:47:05 AM                                                                                                                                       |
| <b>Collection End Time</b> | 10/3/2014 11:46:53 AM                                                                                                                                        |
| Jetstress Version          | 15.00.0775.000                                                                                                                                               |
| ESE Version                | 15.00.0995.021                                                                                                                                               |
| Operating System           | Windows Server 2012 R2 Datacenter (6.2.9200.0)                                                                                                               |
| Performance Log            | C:\Program Files\Exchange Jetstress\Performance 2014 10 3 9 35 58.blg                                                                                        |

#### Test Issues

Fail The process has average database read latencies higher than 20.000 msec. Fail The process failed to meet target IOPS (base: 225.0 and margin: 5.0 %).

#### Database Sizing and Throughput

| Achieved Transactional I/O per Second 201.188 |                |  |  |  |  |  |
|-----------------------------------------------|----------------|--|--|--|--|--|
| Target Transactional I/O per Second 225       |                |  |  |  |  |  |
| Initial Database Size (bytes)                 | 14501697028096 |  |  |  |  |  |
| Final Database Size (bytes)                   | 14502376505344 |  |  |  |  |  |
| Database Files (Count)                        | 8              |  |  |  |  |  |

#### Jetstress System Parameters -

| Thread Count                        | 8         |
|-------------------------------------|-----------|
| Minimum Database Cache              | 256.0 MB  |
| Maximum Database Cache              | 2048.0 MB |
| Insert Operations                   | 40%       |
| Delete Operations                   | 20%       |
| Replace Operations                  | 5%        |
| Read Operations                     | 35%       |
| Lazy Commits                        | 70%       |
| Run Background Database Maintenance | True      |
| Number of Copies per Database       | 2         |
|                                     |           |



### Database Configuration

| Instance432.1 |           |                                   |
|---------------|-----------|-----------------------------------|
|               | Database: | C:\DB\JS3-DB1\Jetstress001001.edb |
|               |           |                                   |

Instance432.2 Log path: C:\DB\JS3-DB2 Database: C:\DB\JS3-DB2\Jetstress002001.edb

Instance432.3 Log path: C:\DB\JS3-DB3 Database: C:\DB\JS3-DB3\Jetstress003001.edb

- Instance432.4 Log path: C:\DB\JS3-DB4 Database: C:\DB\JS3-DB4\Jetstress004001.edb
- Instance432.5 Log path: C:\DB\JS3-DB5 Database: C:\DB\JS3-DB5\Jetstress005001.edb
- Instance432.6 Log path: C:\DB\JS3-DB6 Database: C:\DB\JS3-DB6\Jetstress006001.edb
- Instance432.7 Log path: C:\DB\JS3-DB7 Database: C:\DB\JS3-DB7\Jetstress007001.edb

Instance432.8 Log path: C:\DB\JS3-DB8 Database: C:\DB\JS3-DB8\Jetstress008001.edb

| Transactional I/O Performance |                             |        |        |          |           |                         |                             |       |       |            |                  |                                       |
|-------------------------------|-----------------------------|--------|--------|----------|-----------|-------------------------|-----------------------------|-------|-------|------------|------------------|---------------------------------------|
| Database ==><br>Instances     | Reads<br>Average<br>Latency | Writes |        | Database |           | Writes<br>Average Bytes | Reads<br>Average<br>Latency |       |       | Writes/sec | Reads<br>Average | I/O Log<br>Writes<br>Average<br>Bytes |
| Instance432.1                 | 21.112                      | 2.008  | 17.619 | 7.483    | 34044.094 | 36345.076               | 0.000                       | 1.667 | 0.000 | 1.864      | 0.000            | 20727.972                             |
| Instance432.2                 | 18.682                      | 1.999  | 17.588 | 7.466    | 34144.404 | 36582.373               | 0.000                       | 1.501 | 0.000 | 1.826      | 0.000            | 21106.132                             |
| Instance432.3                 | 18.812                      | 1.972  | 17.619 | 7.510    | 34092.070 | 36340.863               | 0.000                       | 1.553 | 0.000 | 1.866      | 0.000            | 20988.918                             |
| Instance432.4                 | 18.872                      | 2.067  | 17.682 | 7.560    | 34085.262 | 36429.355               | 0.000                       | 1.630 | 0.000 | 1.878      | 0.000            | 21005.638                             |
| Instance432.5                 | 18.485                      | 2.037  | 17.566 | 7.606    | 34017.657 | 36432.660               | 0.000                       | 1.649 | 0.000 | 1.892      | 0.000            | 20958.096                             |
| Instance432.6                 | 18.440                      | 2.016  | 17.674 | 7.493    | 33957.573 | 36385.703               | 0.000                       | 1.633 | 0.000 | 1.851      | 0.000            | 20485.741                             |
| Instance432.7                 | 18.538                      | 1.991  | 17.609 | 7.485    | 34055.616 | 36429.374               | 0.000                       | 1.638 | 0.000 | 1.866      | 0.000            | 21033.480                             |
| Instance432.8                 | 19.090                      | 1.986  | 17.760 | 7.468    | 33928.917 | 36405.830               | 0.000                       | 1.655 | 0.000 | 1.866      | 0.000            | 20330.414                             |

#### Background Database Maintenance I/O Performance

MSExchange Database ==> Instances Database Maintenance IO Reads/sec Database Maintenance IO Reads Average Bytes

| Instance432.1 | 9.104 | 261858.966 |
|---------------|-------|------------|
| Instance432.2 | 9.115 | 261845.652 |
| Instance432.3 | 9.110 | 261857.133 |
| Instance432.4 | 9.110 | 261875.530 |
| Instance432.5 | 9.113 | 261857.203 |
| Instance432.6 | 9.113 | 261891.525 |
| Instance432.7 | 9.111 | 261855.744 |
| Instance432.8 | 9.022 | 261767.116 |

#### Log Replication I/O Performance

| MSExchange Database ==> Instances | I/O Log Reads/sec | I/O Log Reads Average Bytes |
|-----------------------------------|-------------------|-----------------------------|
| Instance432.1                     | 0.163             | 63381.617                   |
| Instance432.2                     | 0.162             | 63232.707                   |
| Instance432.3                     | 0.164             | 63869.167                   |
| Instance432.4                     | 0.166             | 64873.847                   |
| Instance432.5                     | 0.166             | 65302.529                   |
| Instance432.6                     | 0.161             | 62406.515                   |
| Instance432.7                     | 0.163             | 63915.919                   |
| Instance432.8                     | 0.159             | 61987.421                   |

#### Total I/O Performance

| MSExchange<br>Database ==><br>Instances | I/O Database<br>Reads<br>Average<br>Latency<br>(msec) | I/O Database<br>Writes<br>Average<br>Latency<br>(msec) | Database | Database | Reads Average<br>Bytes | Average   | I/O Log<br>Reads<br>Average<br>Latency<br>(msec) |       |       | Writes/sec | I/O Log<br>Reads<br>Average<br>Bytes | I/O Log<br>Writes<br>Average<br>Bytes |
|-----------------------------------------|-------------------------------------------------------|--------------------------------------------------------|----------|----------|------------------------|-----------|--------------------------------------------------|-------|-------|------------|--------------------------------------|---------------------------------------|
| Instance432.1                           | 21.112                                                | 2.008                                                  | 26.723   | 7.483    | 111658.322             | 36345.076 | 3.114                                            | 1.667 | 0.163 | 1.864      | 63381.617                            | 20727.972                             |
| Instance432.2                           | 18.682                                                | 1.999                                                  | 26.703   | 7.466    | 111870.684             | 36582.373 | 3.277                                            | 1.501 | 0.162 | 1.826      | 63232.707                            | 21106.132                             |
| Instance432.3                           | 18.812                                                | 1.972                                                  | 26.729   | 7.510    | 111723.784             | 36340.863 | 3.433                                            | 1.553 | 0.164 | 1.866      | 63869.167                            | 20988.918                             |
| Instance432.4                           | 18.872                                                | 2.067                                                  | 26.792   | 7.560    | 111538.446             | 36429.355 | 4.104                                            | 1.630 | 0.166 | 1.878      | 64873.847                            | 21005.638                             |
| Instance432.5                           | 18.485                                                | 2.037                                                  | 26.680   | 7.606    | 111842.836             | 36432.660 | 3.420                                            | 1.649 | 0.166 | 1.892      | 65302.529                            | 20958.096                             |
| Instance432.6                           | 18.440                                                | 2.016                                                  | 26.787   | 7.493    | 111503.707             | 36385.703 | 2.975                                            | 1.633 | 0.161 | 1.851      | 62406.515                            | 20485.741                             |
| Instance432.7                           | 18.538                                                | 1.991                                                  | 26.720   | 7.485    | 111731.353             | 36429.374 | 4.738                                            | 1.638 | 0.163 | 1.866      | 63915.919                            | 21033.480                             |
| Instance432.8                           | 19.090                                                | 1.986                                                  | 26.782   | 7.468    | 110679.408             | 36405.830 | 5.119                                            | 1.655 | 0.159 | 1.866      | 61987.421                            | 20330.414                             |

# C Additional resources

Support.dell.com is focused on meeting your needs with proven services and support.

DellTechCenter.com is an IT Community where you can connect with Dell Customers and Dell employees for the purpose of sharing knowledge, best practices, and information about Dell products and installations.

Referenced or recommended Dell publications:

| Title                                                                                                         | Published/Updated | Туре                       |
|---------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| Sizing and Best Practices for Deploying Microsoft Exchange<br>Server 2013 with Dell Compellent Storage Arrays | August 2014       | Deployment<br>Sizing Guide |
| Microsoft ESRP - Dell Compellent SC4020 v6.5 10,000 Mailbox<br>Exchange 2013 Mailbox Resiliency Solution      | June 2014         | Technical<br>Report        |
| Microsoft ESRP - Dell Compellent SC4020 v6.5 4,500 Mailbox<br>Exchange 2013 Mailbox Resiliency Solution       | June 2014         | Technical<br>Report        |
| Microsoft ESRP - Dell Compellent Storage Center 6.4 / 25,000<br>mailboxes                                     | January 2014      | Technical<br>Report        |
| Microsoft ESRP - Dell Compellent Storage Center 6.4 / 50,000<br>mailboxes                                     | January 2014      | Technical<br>Report        |
| Dell Compellent Jetstress Overview - Testing Best Practice<br>Requirements                                    | November 2013     | Solutions Guide            |
| Dell Compellent Microsoft Exchange Server 2013 Best Practices                                                 | January 2014      | Best Practices             |
| Dell Compellent SC8000 Controller Details – Data Center SAN                                                   | 2014              | Product Specs              |
| Dell Storage SC4020 all-in-one array                                                                          | June 2014         | Product Specs              |

Referenced or recommended Microsoft publications:

 Microsoft Technet article, Exchange 2013 storage configuration options: http://technet.microsoft.com/en-us/library/ee832792(v=exchg.150).aspx

