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Executive Summary 
 

This white paper demonstrates analysis of large datasets using three different tools that are 

part of the Hadoop ecosystem – MapReduce, Hive and Pig. The application used is a 

geographic and temporal analysis of Apache web logs. The problem is explained in depth 

and then solutions are shown for the three tools. Complete code is included in the 

Appendices, along with a description of the GeoWeb Apache Log Generator tool (available 

from http://github.com/DaveJaffe/BigDataDemos) as well as the R methods used to 

analyze and plot the results. Results are shown for all three tools with a 1TB set of log files 

and a 10TB set of log files. 
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1 Introduction 
 

The Apache Hadoop ecosystem (see http://hadoop.apache.org) includes many open 

source utilities for analyzing large datasets. The choice of a particular tool depends on the 

needs of the analysis, the skillset of the user, and the tradeoff between development time 

and execution time. Three popular tools for analyzing data resident in the Hadoop 

Distributed File System (HDFS) include MapReduce, Hive and Pig. MapReduce requires a 

computer program (often written in Java) to read, analyze and output the data. Hive 

provides a SQL-like front end for those with a database background. Pig provides a high-

level language for data processing that also enables the user to exploit the parallelism 

inherent in a Hadoop cluster. Hive and Pig generate MapReduce code to do the actual 

analysis. 

 

In this paper the three approaches are contrasted using a popular use case for Hadoop: 

Apache web log analysis. While many enterprises are employing very sophisticated analysis 

algorithms to wring useful information from these logs (to deduce customer buying habits 

for example), the example shown here focuses on understanding where the web site’s 

users are coming from and when. 

 

The MapReduce, Hive and Pig programs shown here parse Apache web logs for the 

remote IP address (the IP address of the user’s web browser) and time of day and then join 

the IP address to a table of web addresses to generate the country of origin and hour of 

the web access.  They will work with any Apache web log files in the standard format. 

 

The web logs analyzed in these tests were generated by a MapReduce program, the 

GeoWeb Apache Weblog Generator (available from author) that rapidly creates in HDFS 

synthetic Apache web logs with a realistic distribution of remote IP addresses and access 

times. Using these web logs as input, it is easy to check the output of the analysis 

programs for accuracy. 

 

The problem is defined further in the next section, followed by sections on the 

MapReduce, Hive and Pig solutions, and then the results. 

http://hadoop.apache.org/
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2 The Problem – Geographical Web Analysis 
Detailed analysis of website logs is a common Big Data task. Depending on the type of 

website, these logs may contain information about customer shopping habits, social 

media networks, or web advertisement effectiveness. A typical web log is on the order of 

100 bytes per click so large websites handling millions of simultaneous users can generate 

100s of gigabytes or even terabytes of weblogs per day. To ferret out the nuggets of 

valuable information from this mass of data can require very sophisticated programs. 

 

The solutions demonstrated in this paper tackle a simpler weblog analysis task: using the 

remote IP address and timestamp collected with each weblog to measure the amount of 

traffic coming to the website by country of origin on an hour-by-hour basis during the 

average day. The remote IP address is the first component of the standard Apache weblog 

and the hour may be extracted from the timestamp, which is the second component of 

most weblogs (see Figure 1). Our solutions need to extract these items, and look the IP 

address up in a table mapping IP addresses to host countries (for simplicity we will look at 

only the first two octets of the IP address and look them up in a table listing all the two-

octet or Class B addresses that are used solely by a single country). 

 

Figure 1. A Standard Apache Web Log and its Components 
 

 
 

The data used in these tests was generated by a MapReduce program, the GeoWeb 

Apache Log Generator, available from the author (see Appendix 6). This program produces 

realistic sequential Apache web logs for a specified month, day, year and number of clicks 

per day. The remote hosts are distributed geographically among the top 20 Internet-using 

countries (see Table 1) and temporally so that each region is most active during their local 

evening hours (simulating a consumer or social web site), as shown in Table 2. The web 

site is assumed to be in the Central US time zone and each of the countries is assigned a 

single offset from that for simplicity. 

 

Note that although the log format used by the Apache web server was used in these tests, 

the algorithms used in these solutions can easily be adapted to other formats. 
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Table 1.  Top Twenty Internet-using Countries 

Country Percent  Country Percent 
China 31  Iran 3 
US 13  Korea 3 
India 7  Mexico 3 
Brazil 5  Nigeria 3 
Japan 5  Turkey 3 
Germany 4  Italy 2 
Russia 4  Phillipines 2 
France 3  Pakistan 1 
UK 3  Spain 1 
Indonesia 3  Vietnam 1 
Source: Wikipedia 2011 Data 

 

Table 2. Hourly Distribution of Web Accesses in Local Time 

 

Hour Percent  Hour Percent 
00 4  12 3 
01 3  13 3 
02 1  14 2 
03 1  15 2 
04 1  16 3 
05 1  17 4 
06 2  18 6 
07 2  19 8 
08 2  20 12 
09 2  21 12 
10 2  22 12 
11 2  23 10 
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3 The MapReduce Solution 
The Hadoop MapReduce framework provides a flexible, resilient and efficient mechanism 

for distributed computing over large clusters of servers. The framework supports map 

tasks that read data stored in the Hadoop Distributed File System (HDFS) and emit key-

value pairs, combine tasks that aggregate the values for each key being emitted by a 

mapper, and reduce tasks that process the values for each key. Writing a MapReduce 

program is the most general way to exploit the capabilities of this framework for data 

manipulation and analysis. See http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html 

for a good introduction to writing MapReduce code. 

 

The design of the MapReduce program to solve the geographical web analysis is fairly 

straightforward: the Mapper will read log files from HDFS one line at a time, parse the first 

two octets of the remote IP address as well as the hour of the web access, look up the 

country corresponding to that IP address in a table, and emit a key composed of the 

country code and hour, with a value of 1. The Combiner and Reducer (actually the same 

program) will add up all the values per key and write 24 keys per country detected to 

HDFS, each with a value corresponding to the total number of hits coming from that 

country in that hour across the whole set of log files. The flow is shown in Figure 2. 

 

The table of Class B (first two octets) IP addresses was derived from GeoLite data created 

by MaxMind (http://www.maxmind.com). The GeoLite dataset of IP ranges and host 

country was unrolled and all Class B addresses used exclusively by a single country were 

listed along with the country code in a space-separated file, all_classbs.txt (see Table 3). 

This file is distributed to all mappers using the distributed cache feature of the MapReduce 

ToolRunner class. The file (first six lines) looks like: 

 
1.3 CN 
1.5 JP 
1.6 IN 
1.7 IN 
1.8 CN 
1.9 MY 

 

The MapReduce program is implemented in three Java classes: the GeoWeb.java driver 

program, the GeoWebMapper.java mapper, and the SumReducer.java combiner and 

reducer (all code is included in the appendices). 

 

The GeoWeb.java driver program is a standard ToolRunner-style MapReduce driver 

program. A Job object is created and then used to set input and output paths, as well as 

the Mapper, Combiner and Reducer classes. The final output key and value classes are set 

as Text and IntWritable, respectively. Finally, the ToolRunner run method is used to 

execute the job. 

  

http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
http://www.maxmind.com/
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Figure 2. MapReduce Solution Flow Diagram (Simple Example) 
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Most of the action occurs in the GeoWebMapper.java mapper class. First a hash map, 

ip_locs, is created to contain the IP addresses and their associated country codes. Next, 

static objects for the output key and value are created to avoid the overhead of creating 

new objects for each emitted key-value pair. The code to read the all_classbs.txt file into 

the hash map is placed in the setup method so that this read will occur just once for each 

mapper created. The MapReduce framework hands out single web log lines to the map 

tasks in the form of key-value pairs where the key (not used) is the offset of that line in the 

file and the value is the line text. In the map task this text is parsed, with the first two octets 

of the remote IP address used to look up the corresponding country using the hash map’s 

get method. Finally the country code and hour are joined in a string and emitted as the key 

along with value 1. Note that no assumptions can be made about the accuracy of the log 

format so that each step of the line parsing is checked. Any malformed log entry is simply 

discarded. 

 

The combiner and reducer both use the SumReducer.java class. This is standard 

MapReduce code to add up all the values for a given key. When used in the Combiner, this 

adds all the 1 values emitted for each key emitted by a given mapper, generating a total 

number of hits per country and hour for the log files consumed by that mapper. The keys 

from each mapper are then shuffled and sorted and sent to the reducers, where the 

overall totals for each country-hour key are added and then written to HDFS. The use of 

the combiner to aggregate values for each key at the mapper significantly cuts down on 

network traffic during the shuffle and sort phase. 

 

The three Java classes are compiled into a jar file, GeoWeb.jar.  The first argument is the 

location in HDFS of the log files to be analyzed. The second argument is the location in 

HDFS where the final country code-hour/number of hits key-value pairs are to be written 

(this directory must not exist prior to running the program). The –files option is used to 

load the all_classbs.txt file into the distributed cache (if the file is not local then the full 

path must be included) and the –D option  is used to set execution parameters such as 

number of reduce tasks. In these tests the following command was used to analyze 1TB of 

web log files previously generated by the GeoWeb Apache Log Generator  program: 

 
hadoop jar GeoWeb.jar GeoWeb -files all_classbs.txt -D \  
  mapred.reduce.tasks=200 /user/test/weblogs/access_logs_1TB  \  
  /user/test/weblogs/w1TB_mr_out 
 

Since the synthetic web logs created for this test represent just the top 20 internet-using 

countries the output consists of 480 keys (20 countries x 24 hours), each associated with a 

value representing the total number of hits from that country during that hour. Note that 

since the same IP address data was used to generate the remote IP addresses as was used 

to analyze them, 100% of the log entries were successfully matched to a country in this 

test but in general the coverage will be lower. 

 

The HDFS output may be collected, sorted, and stored in a file for further processing with: 

 
hadoop fs -cat /user/test/weblogs/w1TB_mr_out/part* | sort > r_1TB_mr 
 

In this test, the output file will have 480 lines of the form 
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 BR00 2184017 
  BR01 2177154 

etc. 
 

with each line representing the country of origin and time of the web accesses, in this case 

hits coming from Brazil at midnight and 1:00 AM Central US time. 
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4 The Hive Solution 
The Apache Hive tool (http://hive.apache.org), part of the Hadoop ecosystem, projects 

structure onto data stored in HDFS and provides HiveQL (HQL), a Structured Query 

Language (SQL) interface, to query that data. It is well suited for data analysts coming from 

a database background with SQL skills, who view data in terms of tables and joins. Hive 

creates a query plan that implements the HQL in a series of MapReduce programs, 

generates the code for these programs, and then executes the code. 

 

The first step in a Hive program (see Appendix 4 for complete code) is to define the HDFS 

data in terms of SQL tables. For the GeoWeb problem both the web logs as well as the file 

mapping IP addresses to countries, all_classbs.txt, are turned into HQL tables (the 

all_classbs.txt file must be copied to HDFS first). The tables are created with the EXTERNAL 

keyword to point to the location in HDFS of the data, rather than using the Hive default 

location. For the web logs a serde (serializer-deserializer) provided by Hive, RegexSerDe is 

used to parse the data. This function requires the specification of an additional jar included 

in the Hive distribution, hive-contrib, using the ADD JAR command. Note that imparting 

the table structure on the HDFS data does not cause another copy of the data to be 

generated. 

 

Once the data tables have been defined, the rest of the work is straightforward: the web 

log data is read in and parsed using the RegexSerDe and a temporary table containing the 

first two octets of the remote IP address and the hour of each web access is created. That 

temporary table is then joined to the table of Class B IP addresses to generate the country 

code for each row. The results are grouped by country code and hour, and the count of 

each combination is printed out. 

 

To execute the code contained in file geoweb.q, the following command is run: 

 
 hive –f geoweb.q > hive1TB.out 

 
 

Since the final SELECT statement of Hive outputs tab-separated values containing the 

country, hour and count, it is necessary to delete the first tab to put the data in a form 

similar to the output of the MapReduce program: 

 
sed 's/\t//' hive1TB.out | sort > r_1TB_hive 

 

When run against the same 1TB dataset of Apache web logs as used in the MapReduce 

program, the results are identical.   

http://hive.apache.org/
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5 The Pig Solution 
Apache Pig (http://pig.apache.org), is another data analysis tool in the Hadoop ecosystem. 

Pig provides a data flow language, Pig Latin, which enables the user to specify reads, joins, 

and other computations without the need to write a complete MapReduce program. Like 

Hive, Pig generates a sequence of MapReduce programs to implement the data analysis 

steps. 

 

As in our Hive solution, our Pig solution (see Appendix 5) uses web log parsing 

functionality that must be loaded from a jar provided with the distribution, piggybank.jar. 

The web logs are loaded into a Pig data bag or relation called weblogs and Class B IP 

address data is loaded into one called classbs. At this point the solution works much like 

the other two: the web logs are parsed to pull out the first two octets of the remote IP 

address and the hour from the timestamp using the FOREACH weblog GENERATE 

command. The two items, or tuple, is saved in a data bag labeled “A”. This relation is then 

joined with the classbs IP address information and stored in B. B is then grouped by the 

country  code, hour tuple and the number in each group counted using another 

FOREACH/GENERATE command. The result is ordered by country code and hour and then 

stored back into HDFS. 

 

Pig compiles the dataflow into MapReduce, resulting in a multi-pass MapReduce program. 

As shown in the code, for each of the key steps – JOIN, GROUP, ORDER – a PARALLEL 

option may be specified as a hint to MapReduce to determine the number of map or 

reduce tasks to deploy for that step. 

 

To execute the code: 

 
pig geoweb.pig 

 

Since the output consists of tab-separated fields for the three items (country, hour and 

count), removing the first tab with sed will yield a result identical to that obtained from the 

MapReduce and Hive solutions: 

 
hadoop fs -cat /user/test/weblogs/w1TB_pig_out/part* | sed 's/\t//' | 
  sort > r_1TB_pig 

 

The output from the Pig program is identical to those from MapReduce and Hive. 

 

http://pig.apache.org/
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6 Results 
The three solutions were tested on a 20-datanode Hadoop cluster in Dell’s Round Rock, 

Texas, Solution Center using the Intel Distribution for Hadoop (IDH) version 2.4.1.  The IDH 

namenodes and edgenode ran on PowerEdge R720 servers with dual 2.0 GHz 8-core Intel 

E5-2650 processors, 128 GB of memory and six 600 GB SAS disks in a RAID 10 

configuration. The 20 datanodes were PowerEdge R720XD servers with the same 

processors, 64 GB of memory and 24 500 GB SATA disks, each in a RAID0 configuration.  

The total raw disk space on the cluster was over 200TB. The systems were connected 

through Dell Force10 S60 switches and 1GbE network interface cards. The implementation 

of IDH on Dell PowerEdge servers including generalized cluster configuration parameters 

is described in 

http://en.community.dell.com/techcenter/extras/m/white_papers/20412222.aspx. 

 

A set of 366 Apache web log files, one for each day of 2012, was created by the GeoWeb 

Apache Weblog Generator tool and stored in HFDS. Each day consisted of 11,900,000 

weblog entries. The total size occupied by the log files was 1TB. A second set of log files 

was created with 119,000,000 entries per day, for a total size of 10TB. 

 

The MapReduce, Hive and Pig codes were run sequentially against the 1TB set of log files 

(see Table 3 for version information). The results, 480 lines representing the number of hits 

from each of the 20 countries modeled for each hour of the day, were identical for the 

three solutions. The total number of hits per country over the year were totaled and 

shown in Table 4 and Figure 3, along with the calculated percentage of overall use. That 

these percentages match the input distribution indicates that the log parsing and joining 

with the IP address table is working perfectly in all three solutions. 

Table 3. Software Version Information 

Hadoop 1.0.3 
Hive 0.9.0 
Pig 0.11.1 

 

Table 4. Number of Hits by Country 

Country Number of Hits %  Country Number of Hits % 
China 1350141892 31  Korea 130638316 3 

US 566091664 13  Mexico 130627379 3 
India 304873967 7  Iran 130618729 3 
Brazil 217811610 5  UK 130607961 3 
Japan 217799723 5  France 130586314 3 
Russia 174375623 4  Italy 87128606 2 

Germany 174268918 4  Philippines 87104881 2 
Indonesia 130718174 3  Pakistan 43560124 1 

Nigeria 130691403 3  Vietnam 43559447 1 
Turkey 130645786 3  Spain 43549483 1 

 

http://en.community.dell.com/techcenter/extras/m/white_papers/20412222.aspx
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Figure 3. Number of Hits by Country 

 
Next, looking at the total hits from a given country over the course of a 24-hour period, 

the sum over the year of web accesses per hour for the US is shown in Table 5 and Figure 

4. Since the web log creator program assumed that the web site was a consumer-oriented 

enterprise located in the Central US time zone the hits are maximized in the evening hours 

(for simplicity the entire US is considered to be in the Central time zone). As in the case of 

the geographical distribution, the temporal distribution in the output results equals that 

used in the web log generator program, indicating that the parsing and processing of the 

time stamp in each web log is working correctly. 

Table 5. Number of Hits per Hour for US  

Hour Number of Hits %  Hour Number of Hits % 
00 22635602 4  12 16989183 3 
01 16990891 3  13 16990705 3 
02 5661930 1  14 11329712 2 
03 5663820 1  15 11331251 2 
04 5652084 1  16 16965389 3 
05 5646139 1  17 22641141 4 
06 11330209 2  18 33946208 6 
07 11329415 2  19 45278373 8 
08 11321714 2  20 67946618 12 
09 11314793 2  21 67942229 12 
10 11311546 2  22 67949826 12 
11 11332635 2  23 56590251 10 
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Figure 4. Number of Hits Per Hour for US 

 
The three solutions were then run against the 10TB set of log files. The performance, in 

terms of elapsed time to analyze the log data is shown in Table 6. As might be expected 

the MapReduce program performs the best of the three solutions for both sets of log files 

since it is a single program explicitly written for the MapReduce framework. Hive and Pig, 

which generate multiple MapReduce programs to accomplish the same task, take longer. 

However, the difference narrows with the larger dataset size, indicating that the overhead 

of running multiple batch jobs in Hive and Pig becomes less of a factor for longer-running 

batch jobs. The scalability of all three solutions is excellent and is better for Hive and Pig 

than MapReduce. As shown in the last column it takes less than 10x the time to analyze a 

10x larger dataset. 

Table 6. Performance Results 

Tool Time to 
Analyze  

1TB of web 
logs 

Time 
Relative to 

MapReduce 

Time to 
Analyze 

10TB of web 
logs 

Time 
Relative to 

MapReduce 

Scaling 
10TB vs 1TB 

workload 

MapReduce 7 m 40 s 1x 69 m 54 s 1x 9.12x 
Hive 9 m 34 s 1.25x 74 m 59 s 1.07x 7.4x 
Pig 20 m 57 s 2.73x 183 m 54 s 2.63x 8.78x 

 

These results illustrate the tradeoff between development time and execution time. Hive 

and Pig solutions are usually quicker to develop but take longer to run than MapReduce, 
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with less of a disadvantage for larger workloads. All three approaches are excellent big 

data analysis solutions. 
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Appendix 1 GeoWeb.java 
/* 
GeoWeb.java: GeoWeb application driver 
  
Last Updated 10/17/13 
 
Dave Jaffe, Dell Solution Centers 
 
Distributed under Creative Commons with Attribution by Dave Jaffe 
(dave_jaffe@dell.com).  Provided as-is without any warranties or conditions. 
 
Analyzes Apache web logs  
* Determines remote location from IP address 
* Reports number of clicks per country per hour 
 
Syntax: 
hadoop jar GeoWeb.jar GeoWeb -files all_classbs.txt <HDFS Apache web log 
directory> <HDFS output directory> 
   
Input: Apache web logs 
Output: Number of clicks in logs per country per hour 
   
File all_classbs.txt must exist in local directory 
all_classbs.txt: a list of class B IP addresses for all countries from the GeoLite 
dataset 
  Only those class B's that come from a single country are used.  
  Example line: 23.242 US 
 
This product includes GeoLite data created by MaxMind, available from 
http://www.maxmind.com 
 
Example weblog line: 
172.16.3.1 - - [27/Jun/2012:17:48:34 -0500] "GET /favicon.ico HTTP/1.1" 404 298 "-
" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)" 
 
Remote host/-/-/Date-timestamp/Request line/status/size/-/Referer/User agent 
 
See http://httpd.apache.org/docs/current/logs.html 
*/ 
 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.conf.Configured; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.util.Tool; 
import org.apache.hadoop.util.ToolRunner; 

 
public class GeoWeb extends Configured implements Tool 
  { 
  @Override 
  public int run(String[] args) throws Exception 
    { 
    if (args.length != 2) 
      { 
      System.out.println("Usage: GeoWeb <input dir> <output dir>\n"); 
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      return -1; 
      } 

 
    Job job = new Job(getConf()); 
    job.setJarByClass(GeoWeb.class); 
    job.setJobName("GeoWeb"); 
 
    FileInputFormat.setInputPaths(job, new Path(args[0])); 
    FileOutputFormat.setOutputPath(job, new Path(args[1])); 
 
    job.setMapperClass(GeoWebMapper.class); 
    job.setReducerClass(SumReducer.class); 
    job.setCombinerClass(SumReducer.class); 
 
    job.setOutputKeyClass(Text.class); 
    job.setOutputValueClass(IntWritable.class); 
 
    boolean success = job.waitForCompletion(true); 
    return success ? 0 : 1; 
    } 
 
  public static void main(String[] args) throws Exception 
    { 
    int exitCode = ToolRunner.run(new Configuration(), new GeoWeb(), args); 
    System.exit(exitCode); 
    } 
  } // End Class GeoWeb 



 

19 Three Approaches to Data Analysis with Hadoop  
 

Appendix 2 GeoWebMapper.java 
/* 
GeoWebMapper.java: mapper for GeoWeb application 
 
Last Updated 10/17/13 
 
Dave Jaffe, Dell Solution Centers 
 
Distributed under Creative Commons with Attribution by Dave Jaffe 
(dave_jaffe@dell.com).  Provided as-is without any warranties or conditions. 
 
See documentation in GeoWeb.java driver program 
*/ 
 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileReader; 
import java.io.IOException; 
import java.util.HashMap; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Mapper; 
 
public class GeoWebMapper extends Mapper<LongWritable, Text, Text, IntWritable> 
  { 
  HashMap<String,String> ip_locs = new HashMap<String, String>(); 
  private final static IntWritable one = new IntWritable(1); 
  private Text textObject = new Text(); 
 
  @Override 
  public void setup(Context context) 
    throws IOException, InterruptedException 
    // Read in file of class B IP addresses and corresponding country codes  
    // (eg. 113.204 CN) 
    // from distributed cache, store in hashmap 
    { 
    BufferedReader br; 
    String classb_line; 
    try 
      { 
      File f = new File("all_classbs.txt"); 
      br = new BufferedReader(new FileReader(f)); 
      while ((classb_line = br.readLine()) != null) 
        { 
        //System.out.println("classb line: " + classb_line); 
        String[] fields = classb_line.toString().split(" "); 
        if (fields.length == 2) ip_locs.put(fields[0], fields[1]); 
        } 
      } 
    catch (IOException e) 
      {e.printStackTrace();} 
    //System.out.println("N= " + ip_locs.size()); 
    } 
 
  @Override 
  public void map(LongWritable key, Text value, Context context) 
    throws IOException, InterruptedException 
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    { 
    // Processes Apache logs of form: 
    // 39.44.210.129 - - [01/Jan/2012:00:11:14 -0500] "GET /ds2/dsbrowse.php?\ 
    // browsetype=category HTTP/1.1" 200 2147 "http://72.8.133.189/"\ 
    // "Mozilla/5.0 (Windows; U; Windows NT 5.1; ja; rv:1.9.2.3) Firefox/3.6.3" 
 
    String line = value.toString(); 
    String[] fields = line.split(" "); 
    //if (fields.length <= 3) System.out.println(line); 
    // Split log line by spaces, proceed if 4 or more fields found 
    if (fields.length > 3) 
      { 
      String ip_address = fields[0]; 
      String time_stamp = fields[3]; 
      String[] octet = ip_address.split("\\.");  
      if (octet.length > 1) 
        { 
        // Concatenate first two octets, use to look up ctry code in hashmap 
        String ctry_code = ip_locs.get(octet[0] + "." + octet[1]); 
        if (ctry_code != null) 
          { 
          // If timestamp is correctly formatted put out hour 
          if (time_stamp.length() <15)  
            {System.out.println("line= " + line + " time_stamp= " +  
            time_stamp);return;} 
          String hour = time_stamp.substring(13,15); 
          if (hour != null) 
            { 
            // If everything is parsed correctly emit key=ctry_code+hour, value=1 
            textObject.set(ctry_code + hour); 
            context.write(textObject, one); 
            } // End if (hour != null) 
          } // End if (ctry_code != null) 
        } // End if (octet.length > 1) 
      } // End if (fields.length > 3) 
    } // End Map 
  } // End Class GeoWebMapper 
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Appendix 3 SumReducer.java 
 

import java.io.IOException; 
 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Reducer; 
 
/* 
SumReducer 
*/  
public class SumReducer extends Reducer<Text, IntWritable, Text, IntWritable> 
  { 
  @Override 
  public void reduce(Text key, Iterable<IntWritable> values, Context context) 
    throws IOException, InterruptedException 
    { 
    int wordCount = 0; 
    for (IntWritable value : values) 
      { 
      wordCount += value.get(); 
      } 
    context.write(key, new IntWritable(wordCount)); 
    }  
  } 
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Appendix 4 The Hive Code – geoweb.q 
-- geoweb.q: Hive commands to analyze Apache web logs for location and hour 
-- Last Updated 11/1/13 
-- Dave Jaffe, Dell Solution Centers 
-- Distributed under Creative Commons with Attribution by Dave Jaffe  
-- (dave_jaffe@dell.com).  Provided as-is without any warranties or conditions. 
 
ADD JAR /usr/lib/hive/lib/hive-contrib-0.9.0-Intel.jar;  
 
-- specify number of reduce tasks 
SET mapred.reduce.tasks=200;  
 
-- read web logs with Regex serde  
-- (from https://cwiki.apache.org/confluence/display/Hive/ 
-- GettingStarted#GettingStarted-ApacheWeblogData) 
DROP TABLE weblogs; 
CREATE EXTERNAL TABLE weblogs ( 
  host STRING,   identity STRING,  user STRING,  time STRING,  request STRING,   
 status STRING,   size STRING,  referer STRING,  agent STRING) 
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' 
WITH SERDEPROPERTIES ( 
  "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ \ 
\"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \ 
\"]*|\"[^\"]*\"))?", 
  "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s" 
) 
stored as textfile 
-- Location of access logs to be analyzed 
location '/user/test/weblogs/access_logs_1TB'; 
 
--read file containing all class B IP addresses and country (eg: 184.78 US) 
DROP TABLE classbs; 
CREATE EXTERNAL TABLE classbs ( 
  IP_B STRING,   ctry_code STRING) 
row format delimited 
fields terminated by ' ' 
stored as textfile 
location '/user/test/weblogs/classbs'; 
 
-- Create temporary table with first two octets of host IP and hour  
DROP TABLE t2;  
CREATE TABLE t2 AS SELECT REGEXP_EXTRACT(host,"^([0-9]{1,3})\.([0-9]{1,3})",0) AS 
host_ip_b, SUBSTRING(time,14,2) AS hour FROM weblogs; 
 
-- Join temporary table to list of Class B addresses 
SELECT classbs.ctry_code, t2.hour, COUNT(*) FROM t2 JOIN classbs ON (t2.host_ip_b 
= classbs.ip_b) GROUP BY classbs.ctry_code, t2.hour; 
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Appendix 5 The Pig Code – geoweb.pig 
-- geoweb.pig: Pig script to analyze Apache web logs, counting hits 
-- by country and hour 
-- Last Updated 11/1/13 
-- Dave Jaffe, Dell Solution Centers 
-- Distributed under Creative Commons with Attribution by Dave Jaffe  
-- (dave_jaffe@dell.com).  Provided as-is without any warranties or conditions. 
 
 
REGISTER /usr/lib/pig/lib/piggybank.jar 
 
-- Load apache web logs from HDFS 
weblog = LOAD '/user/test/weblogs/access_logs_1TB/*' USING \ 
org.apache.pig.piggybank.storage.apachelog.CombinedLogLoader AS (remoteAddr, \ 
remoteLogname, user, time, method, uri, proto, status, bytes, referer, userAgent); 
 
-- Load file of Class B IP addresses - each line consists of IP address  
-- and ctry, eg.  184.78 US 
classbs = LOAD '/user/test/weblogs/classbs/all_classbs.txt' USING PigStorage(' ') 
\ AS (ip_b:chararray, ctry_code:chararray); 
 
-- Pull first two octets of IP address and hour from web log 
A = FOREACH weblog GENERATE \ 
REGEX_EXTRACT((chararray)remoteAddr,'^([0-9]{1,3})\\.([0-9]{1,3})',0) \ 
AS host_ip_b, SUBSTRING((chararray) time,12,14) AS hour; 
 
-- Join with table of IP addresses, group by country code and hour, 
-- order and store result back to HDFS 
B = JOIN A by host_ip_b, classbs by ip_b PARALLEL 200; 
C = GROUP B BY (ctry_code, hour) PARALLEL 200; 
D = FOREACH C GENERATE FLATTEN($0), COUNT($1) as count; 
E = ORDER D BY ctry_code, hour PARALLEL 200; 
STORE E into '/user/test/weblogs/w1TB_pig_out' USING PigStorage; 
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Appendix 6 The GeoWeb Apache Log Generator 
The GeoWeb Apache Log Generator generates synthetic yet realistic Apache web logs 

with specified geographic and temporal distributions of web accesses. The program 

produces sequential web logs for a specified month, day, year and number of web 

accesses per day. Sessioning is simulated with the average number of clicks per user 

configurable in the code. 

 

The program uses a table matching IP addresses to countries derived from GeoLite data 

from MaxMind (http://www.maxmind.com) to generate geographically realistic remote IP 

addresses in the logs. The GeoLite IP ranges were unrolled, and every Class B IP address 

(first two octets of IP address) that corresponds to a single country was included in the 

table. The remote IP addresses generated by the program are distributed geographically 

among the top 20 Internet-using countries according to their number of users. The 

distribution can be readily changed in the code if desired. 

 

The Log Generator models a consumer or social web site operating in the US Central time 

zone so that usage from each country peaks during their local evening hours. For 

simplicity a single time zone is assigned to each country.  

 

The web request (such as a GET command), referrer (referring web site if present), and 

user agent (web browser used) fields are randomly selected from input files containing lists 

of each item. The user can thus tailor the weblogs to their particular application. In the 

current code these fields are randomized but with some development the program could 

be used to generate meaningful log sequences for clickstream analysis. 

 

Implemented as a Map-only MapReduce program, the program reads input files with lines 

containing the year, month, day and number of web accesses per day, and creates a file in 

the specified output HDFS directory with the name access_logs-yyyymmdd, containing 

that number of web accesses. 

 

Because it is a MapReduce program the Log Generator is extremely scalable. The 1TB set 

of web logs used in this paper was generated in 10 minutes on the 20-datanode cluster 

described in the Results section. 

 

To run the program, create the input files and copy to an HFDS directory, then place the 

Class B IP address file and the referrer, request and user agent files in the local directory 

and: 

 
hadoop jar CreateWeblogs.jar CreateWeblogs –files \ 
  all_classbs.txt,referrers.txt,requests.txt,user_agents.txt \ 
  <HDFS input directory> <HDFS output directory> 

 

Code is available from http://github.com/DaveJaffe/BigDataDemos. 

 

 

http://www.maxmind.com/
http://github.com/DaveJaffe/BigDataDemos
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Appendix 7 Analysis and Plotting with R 
The R open source data analysis and plotting language (available from   

http://cran.r-project.org) was used to work up the data used in this paper. 

 

The code to generate and plot the hits-by-country data: 

 
> d<-read.delim("r_1TB_mr", header=FALSE, colClasses = "character") 
> d3<-cbind(substr(d[,1], 1, 2), substr(d[,1], 3, 4), d[,2])   # Pull apart the 
ctry code from hour 
> m<-matrix(as.numeric(d3[,3]),24,20) 
> rownames(m) <- d3[1:24,2] 
> colnames(m) <- d3[1+24*0:19,1] 
> format(sum(m), sci=F) # Overall total number of web accesses 
[1] "4355400000" 
> 11900000*366  # Equal to the number of accesses in the input access logs 
[1] 4355400000 
> pct<-sort((colSums(m)/sum(m)),decreasing=TRUE)   # Sum by country and sort 
> pct<-round(100.0*pct) 
> pct 
CH US IN BR JP RU DE ID NG TR KR MX IR GB FR IT PH PK VN ES  
31 13  7  5  5  4  4  3  3  3  3  3  3  3  3  2  2  1  1  1  
> lbls<- 
c("China","US","India","Brazil","Japan","Russia","Germany","Indonesia","Nigeria","
Turkey","Korea","Mexico","Iran","UK","France","Italy","Philippines","Pakistan","Vi
etnam","Spain") 
> lbls <- paste(lbls, pct) # add percents to labels  
> lbls <- paste(lbls,"%",sep="") # add % to labels  
> pal <- colorRampPalette(c("white","blue")) 
> pie(pct, lbls, main="Distribution of Web Requests by Country", radius=1, 
col=pal(21)[2:21], cex=0.7, clockwise=TRUE, init.angle=180) 

 

 

The code to generate and plot the hits-by-hour for the US: 

 
> hour_pct<-round(100*m[,'US']/sum(m[,'US'])) 
> hour_lbls<-d3[1:24,2] 
> hour_lbls <- paste(hour_lbls, hour_pct) # add percents to labels  
> hour_lbls <- paste(hour_lbls,"%",sep="") # add % to labels  
> pal <- colorRampPalette(c("white","blue")) 
> pie(hour_pct, hour_lbls, main="Distribution of Web Requests by Hour - US", 
radius=1, col=pal(25)[2:25], cex=0.7, clockwise=TRUE, init.angle=180) 

 

 

http://cran.r-project.org/
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