
Authors:

Anand Joshi

Kurt Gillespie

UEFI on Dell BizClient Platforms

This document is for informational purposes only and may contain typographical errors and
technical inaccuracies. The content is provided as is, without express or implied warranties of any
kind.

© 2011 Dell Inc. All rights reserved. Dell and its affiliates cannot be responsible for errors or omissions
in typography or photography. Dell, the Dell logo, and PowerEdge are trademarks of Dell Inc. Intel and
Xeon are registered trademarks of Intel Corporation in the U.S. and other countries. Microsoft,
Windows, and Windows Server are either trademarks or registered trademarks of Microsoft Corporation
in the United States and/or other countries. Other trademarks and trade names may be used in this
document to refer to either the entities claiming the marks and names or their products. Dell disclaims
proprietary interest in the marks and names of others.

January 2013 | Rev 1.0

Brief History .. 4
What is UEFI? ... 4
What does UEFI have to offer over traditional BIOS? 5
Drawing Parallels Between Legacy & UEFI ... 6
UEFI Platform Classification .. 7
Booting UEFI .. 8

Automatic and Manual Boot Options ... 8
Booting to a Removable Media Device ... 8

Taking advantage of state of the art… running as UEFI only 9
Optimized POST times .. 9
Seamless Boot experience ... 10
Secure boot .. 10
Impact on the legacy cards .. 11

Boot mode .. 13

Brief History
In 2005 several leading tech companies came together to create the UEFI Forum. Based on Intel’s
earlier EFI architecture, the UEFI Forum’s mission was to create the first ever industry standard
firmware interface specification - UEFI (Unified Extensible Firmware Interface). Dell is represented on
the UEFI board of directors of the UEFI Forum.

What is UEFI?
The UEFI (Unified Extensible Firmware Interface) specification defines an interface between operating
systems and platform firmware. The interface consists of data tables that contain platform-related
information, plus boot and runtime service calls that are available to the operating system and its
loader. Together, these provide a standard, modern environment for securely booting an operating

system and running pre-boot applications.

In addition to the services UEFI defines, there are various
protocols/APIs to access various hardware and the boot devices
in the system. The UEFI spec also defines a generic framework
and can be adapted to any type of bus or device, knowing that
computer hardware is constantly evolving. Visit
http://www.uefi.org for more information on the UEFI Forum
that controls the UEFI specifications or to download the UEFI
specifications.

There are 3 types of entities that can execute under UEFI environment:

• Applications: Some examples of common UEFI applications include the UEFI shell, UEFI shell
commands, flash utilities, and diagnostic utilities. It is perfectly acceptable to invoke UEFI applications
from inside other UEFI applications. Applications can reside inside firmware shipped on a system, or
can be located/installed on storage media, such as a SSD/HDD, PCI card internal memory, or USB Key.

• OS Loader: A special type of UEFI application, called an OS boot loader, provides the necessary
initialization routines until the OS loader has set up enough of the OS infrastructure to be ready to
assume complete ownership of the platform resources. OS Loaders, usually installed as part of the
Operating System and usually located on the same storage media the Operating System is stored on,
have the vital role of transitioning the system into Runtime mode, including coordinating virtual
memory mapping to firmware code/data that will continue to be utilized during/after the OS has
booted.

• Drivers: UEFI drivers differ from UEFI applications in that the driver stays resident in memory unless an
error is returned from the driver's entry point. The UEFI core firmware, the boot manager, or other
UEFI applications may load drivers. The PCI spec refers to code on an external card or add-in device
as an “Option ROM” or “oprom”, and therefore a UEFI driver may also be referred to as a “UEFI Option
ROM” or “UEFI oprom” by some in the industry. UEFI drivers, like UEFI applications, can be found
inside the system’s firmware, or on storage media, such as a SSD/HDD, PCI card internal memory, or
USB Key.

What does UEFI have to offer over traditional BIOS?
The primary goal of UEFI is to define an architecture that can scale with time, and offer a structured
coding environment that allows easy enablement of newer technologies. Some of the distinguishing
characteristics of UEFI, when compared to a traditional BIOS, are:

• Abstraction for the OS. The UEFI specification provides the interface between the platform firmware
and the OS. The interfaces/API/protocols mark a clear boundary between the firmware and the OS.

• Abstraction for devices and related code. UEFI abstracts interfaces that make it possible to build
code that works on a range of underlying hardware devices without having explicit knowledge of the
specifics for each device in the range. This specification defines interfaces to platform capabilities
including standard bus types such as PCI, USB, and SCSI. The list of supported bus types may grow over
time, allowing code to utilize newer hardware through standard protocols without being rewritten.

• Scalable platform environment. The specification defines a complete solution for the firmware to
describe all platform features and surface platform capabilities to the OS during the boot process.
These definitions cover a range of the contemporary platform designs and the simple enough to be able
to extend in the future.

• OS Agnostic Rich Pre-Boot environment. The UEFI spec defines extensible interfaces that enable
creation of platform drivers. The UEFI drivers, analogous to OS drivers, provide support for new devices
and may provide enhanced platform capabilities, such as firmware update, platform configuration,
diagnostics and deployment services. The existence of networking, USB and file system capabilities
adds to the richness of the pre-boot environment.

• Consistent Configuration Infrastructure. The UEFI spec defines a methodology of describing the
platform configuring data in a standard way. The rendering of the data is left to the platform vendor.
This allows UEFI to bring all the platform configurations like BIOS, Storage and Network options under a
single setup application with a consistent navigation and look/feel.

• GUID Partition Table. The UEFI defines a new standard layout for the partition table known as GUID
Partition Table (GPT). GPT provides a more flexible mechanism for partitioning disks than the older
Master Boot Record (MBR) partitioning scheme that has been common to PCs. MBR disks support only
four partition table entries and the partition size is limited to 2TB (2.20 × 1012 bytes). GPT scheme
allows up to 128 primary partitions and can support partitions up to 9.4 Zettabytes (9.4 × 1021 bytes).
There are some near-term limitations to 2 terabyte support due to device support, but once devices
fully support GPT/UEFI, this will no longer be an issue (explained in more detail in the “Limitations”
section). For more info on GPT, see http://en.wikipedia.org/wiki/GUID_Partition_Table.

• Secure Boot. The UEFI 2.2 (or later) specification brings security to the boot process by only loading
the driver or OS loaders that are signed by a known/trusted digital signature. Secure boot keys are

managed by the BIOS and OS. Secure boot can also be placed in a "Custom" mode, where additional

public keys can be added by the platform administrator to allow execution of custom code or
restriction of code that may be trusted by some, but not by the platform’s owner.

Drawing Parallels Between Legacy & UEFI
Below are some parallels to help distinguish between UEFI and legacy in how they exist and work.

 Legacy BIOS UEFI Firmware

Programming
Language

Assembly C

Processors
Supported

Intel Architecture Intel Architecture, Itanium, and ARM officially
supported by UEFI Spec

Processor Mode
Used

Mostly 16-bit,
Single CPU, Single Threaded

Native (64-bit or32-bit),
Single CPU, Single Threaded

Expansion Card
Firmware

Legacy Option ROMs UEFI Drivers or
UEFI Option ROMs

Provided
Services

Interrupts Protocols

Video Support Int10h & VBIOS Graphics Output Protocol (GOP)

Storage Support Int13h,
Master Boot Record (MBR)
Partitioning

BlockIO Protocol,
GUID Partition Table (GPT) and Master Boot Record
(MBR) Partitioning

Peripheral &
Feature Setup

F2 Setup, Ctrl-M, Ctrl-A
No Industry Standard

UEFI Human Interface Infrastructure (HII) Protocol
as Industry Standard

OS Boot Loader Int19h loads 16-bit boot sector
in MBR
One boot loader per device

UEFI loads boot loader executable file(s) per
priority/ordering defined by UEFI Spec.
Multiple boot loader files, unique names/paths, can
co-exist on the same partition/device.

OS Handoff No clear definition ExitBootServices() function defined by UEFI Spec.

UEFI Platform Classification
For better understanding the technology context and UEFI adaption progression the platforms can be
classified in 4 classes.

• Class 0: Non UEFI platforms, the set of platforms based on traditional legacy BIOS. These platforms are
not UEFI aware.

• Class 1: In the earlier days of EFI/UEFI when all the leading OSs were not EFI/UEFI aware a special
Compatibility Support Module (CSM) was used to present the traditional BIOS like interface. These
platforms only booted to traditional, legacy OSs,

• Class 2: These platforms came about when EFI was adapted as UEFI industry standard and OS started
adding support for UEFI. These platforms support booting using the traditional method of int19h, where
in BIOS loads the boot sector and hands of execution to the boot loader, as well as loading a UEFI boot
loader application. Majority of platforms shipping today are Class 2 platforms.

• Class 3: These platforms support booting only using the UEFI defined method of loading the boot loader
application from a specific location. Class 3 platforms do not sport a Compatibility Support Module. In
fact any class 2 platform with CSM turned off functions like a Class 3 platform.

Booting UEFI

The way boot options work in UEFI mode differs from that of the legacy BIOS greatly. The UEFI boot
option:

• Specifies a file name/path on a storage device as a boot target (vs. a drive as in legacy BIOS).

• Is automatically created by the operating system during installation and points to its own unique file.

• Is not tied to 1:1 to a partition and/or drive, and a partition can hold more than one boot loader.

• Removable media can utilize a default boot file path/file name (defined by the UEFI spec) to boot a
file/OS previously unknown or installed on a system. This allows behavior like OS install from CD.

• Can be manually added as a file name/path by the user via the UEFI Boot Manager.

Automatic and Manual Boot Options
In UEFI boot mode, options are automatically added for removable devices (described in further detail
below). OS installation also automatically adds a boot option that points to the OS Boot loader. The
Boot options can also be manipulated manually by the user via the UEFI Boot Manager.

Multiple boot options per device, or per file, are allowed. One may want to have two boot options for
the same file with different input parameters, such as a debug parameter.

Booting to a Removable Media Device
To make a removable device bootable the UEFI application simply needs to be renamed to BOOTx64.EFI
(case insensitive) and placed in the \EFI\BOOT directory in a FAT32 partition.

When a removable device such as a USB key is detected in UEFI Boot Mode, a boot option at the end of
the current boot list is automatically added to point to the following location:

\EFI\BOOT\BOOTx64.EFI

Taking advantage of state of the art… running as UEFI only
As UEFI is gaining more acceptance, Operating Systems like Win8 are capable of running in UEFI only
mode without having to rely on any of the legacy OPROM or the abstraction based on those OPROM.

Figure 1 Selecting UEFI Boot mode

On the Dell systems this can be achieve by selecting UEFI boot mode and turning of legacy OPROM
support.

Figure 2: Enable/Disable Legacy Option ROMs

Optimized POST times
When platform is targeted to boot only in UEFI mode, the firmware can skip initialization of the
devices that do take direct part in the boot process. Instead these devices get initialized inside the OS.
What previously required up to 10 seconds to do inside the firmware and now be done in as little as
two seconds. Operating Systems, like Win8, take advantage of reduced operations when loading the OS
through UEFI and are also able to provide must faster boot speeds.

Figure 3: BIOS Fast Boot Setting

Seamless Boot experience
In the UEFI only mode video initialization is done by the UEFI drivers that support Graphics Output
Protocol. This allows BIOS to enable video in the native mode and because BIOS does not have to break
the flow to give control to any of the legacy oproms the video remains in the same mode all throughout
the boot process.

Since the BIOS POST is now capable of native graphics in the UEFI only
mode the OSs like Win8 are able to render the boot loader application in
graphics mode.

Secure boot
Running UEFI only enables platform with more secure boot process by only loading the driver or OS
loaders that are signed by a known/trusted digital signature. Secure Boot is managed by both the UEFI
BIOS and a UEFI aware OS by storing settings/data/keys in signed/secure storage controlled by the UEFI
BIOS. When Secure Boot is enabled, which is the default state on Win8, the platform has already set
certain keys in the signed/secure storage. Turning on secure boot also enforces UEFI only booting by
disabling legacy OPROM.

Figure 4: Seamless Boot Splash Screen

Figure 5: Secure Boot Enable

To change/add/remove keys from the platform from outside the UEFI BIOS, or to sign a driver/loaded
so that it can run on the platform, access to the private key for one of the already trusted public keys
is required.

Secure boot can also be placed in a "Custom" mode, where additional public keys can be
added/changed/removed by the user (only from an expert interface within the UEFI Setup Menu) to
allow the owner of the machine to allow/restrict execution of custom drivers/apps/OSs as the owner
sees fit.

Figure 6: Custom Key Management

Secure Boot is a groundbreaking evolution in bringing powerful security to pre-boot execution. Yet at
the end of the day, the customer is control of their PC, empowering IT departments to make the
choices that are right for their environment. Secure Boot is not required to have the machine operate.
Any platform owner can turn Secure Boot off (if it was shipped with it on) and easily install a Secure
Boot non-aware OS (ex: Windows XP). The security that Secure Boot brings is a benefit that, if
possible, should be left on to help protect your platform.

Impact on the legacy cards
Running UEFI only means all the peripheral device/card in the platform needs to support UEFI pre-boot
drivers. Otherwise that card would not be available during POST and the boot process with boot mode

set to UEFI and legacy OPROM disabled. Enabling secure boot enforces boot mode to UEFI and disables
legacy OPROM

If a platform features a non-UEFI aware storage card then platform would not boot from the storage
devices connected to the card. Similarly a video device that does not have support for the UEFI driver
cannot be used as a primary video during POST.

Boot mode
With platform capable of booting to legacy or UEFI, and with features like secure boot that put
restrictions on the way platform could boot there are certain rules that govern the boot mode
selection. Following table

Secure Boot Secure Boot Off Secure Boot ON

Boot Mode Legacy Boot Mode UEFI Boot Mode UEFI Boot Mode
Required

Option Roms Being
Loaded

Legacy Oproms
Always Legacy Oproms UEFI drivers UEFI drivers

Required

Type of PXE
Network Boot
Supported
(Default: NIC
“Enabled+PXE”,
UEFI Network
Stack Disabled)

Legacy PXE Only Legacy PXE Only UEFI PXE Only UEFI PXE Only

What’s Shown in
F12 Boot Menu
(with Factory
Default)

Legacy and UEFI
OS’s,
and Legacy PXE

Legacy and UEFI
OS’s,
and Legacy PXE **

UEFI OS’s Only
(No PXE) *

UEFI OS’s Only
(No PXE) *

What’s in the
Normal Boot Order
(with Factory
Default)

Legacy OS’s &
Legacy PXE (if on)

UEFI OS’s
(No PXE) ***

UEFI OS’s
(No PXE) *

UEFI OS’s
(No PXE) *

Example OS’s that
Can Run In This
Configuration

Windows
XP/Vista/7/8,
Linux, DOS

Windows
Vista/7/8,
Some Linux
Versions

Windows 8,
Some Linux
Versions

Windows 8,
Linux Support
Limited

* Until “UEFI Network Stack” is Enabled, UEFI PXE is not active and therefore the NIC acts as though
the setting was just “Enabled”.

** PXE is supported from an Oprom, therefore the type of PXE supported is directly related to the type
of option roms currently being loaded.

*** The boot list used for normal booting is allowed to only consist of the boot options from the current
boot mode the machine is in. In “UEFI Boot Mode”, no automatic booting to Legacy PXE, but other
methods through DA tokens and F12 can result in Legacy PXE boot in this configuration.

© 2013 Dell Inc. All rights reserved. Dell and its affiliates cannot be responsible for errors or omissions in typography or
photography. Dell and the Dell logo are trademarks of Dell Inc. Microsoft, Windows, and the Windows logo are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Intel and Xeon are registered
trademarks of Intel Corporation in the U.S. and other countries. Other trademarks and trade names may be used in this
document to refer to either the entities claiming the marks and names or their products. Dell disclaims proprietary interest in
the marks and names of others.

January 2013 | Rev 0.1

	Brief History
	What is UEFI?
	What does UEFI have to offer over traditional BIOS?
	Drawing Parallels Between Legacy & UEFI
	UEFI Platform Classification
	Booting UEFI
	Automatic and Manual Boot Options
	Booting to a Removable Media Device

	Taking advantage of state of the art… running as UEFI only
	Optimized POST times
	Seamless Boot experience
	Secure boot
	Impact on the legacy cards

	Boot mode

