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Executive summary 
Dell™ PowerEdge™ 12th generation servers that use either 2- or 4-processor sockets are NUMA-capable (Non-
Uniform Memory Access) by default. Memory on these systems is broken up into “local” and “remote” memory, 
based on how near the memory is to a specific core executing a thread. Accessing remote memory is generally more 
costly than local memory from a latency standpoint, and can negatively impact application performance if memory 
is not allocated local to the core(s) running the workload. Therefore to improve performance, some efforts must be 
made in Linux environments to ensure that applications are run on specific sets of cores and use the memory closest 
to them.  

With the correct tools and techniques, considerable performance gains can be achieved on memory-intensive 
applications that may not be completely NUMA-aware. This white paper showcases these tools and gives examples 
of performance impacts to illustrate how important fine tuning NUMA locality can be in terms of overall 
performance for some workload types. In addition to the performance uplift of correctly affinitizing applications to 
specific cores and memory, this paper discusses the concept of NUMA in relation to the PCIe bus, also known as 
NUMA I/O. 

Introduction  
Starting in 2003 with the introduction of the 64-bit AMD Opteron™ server processor and followed with 
introduction of the Intel® Xeon® processor 5500 series, NUMA systems have grown to dominate the x86 server 
market. The NUMA architecture revolves around the concept that subsets of memory are divided into “local” and 
“remote” nodes for systems with multiple physical sockets. Because modern processors are much faster than 
memory, a growing amount of time is spent waiting on memory to feed these processors. Since local memory is 
faster than remote memory in multi-socket systems, ensuring local memory is accessed rather than remote memory 
can only be accomplished with a NUMA implementation. The relative locality of a NUMA node depends on which 
core in a specific processor socket is accessing memory. Accesses to the local NUMA node are normally lower 
latency and higher bandwidth than memory accesses to remote NUMA node(s).  

Linux NUMA awareness has improved dramatically from the early days of adoption in the 2.4 kernel tree, and the 
2.6 and 3.0 kernels providing increasingly robust NUMA capabilities. Today, schedulers with the latest Linux 
kernels, device drivers, and many applications have substantial NUMA awareness, and it is increasingly rare to 
encounter applications to suffer significant performance penalties without explicit affinity direction from the user. 
However corner cases still exist and this white paper focuses on the toolset needed to analyze the NUMA topology 
of a given Dell server and manually apply affinity to achieve optimal workload performance. 

Test methodology for non-I/O NUMA characterization  
For the purposes of this white paper, we measured NUMA characteristics in a variety of ways. To examine the 
performance characteristics of the memory subsystem itself, memory bandwidth and memory latency were 
measured. Memory bandwidth represents the rate at which memory can be read from or written to by a processor. 
Memory latency is the time it takes to initiate a 64-byte message transfer. Both metrics are important for evaluating 
memory subsystem performance.  

  

http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access
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To measure the impact of NUMA on actual workloads, a set of processor intensive benchmarks were chosen to 
characterize binding impacts on performance. SPEC CPU2006 was primarily chosen for this role, due to the fact that 
the benchmark is comprised of fully-multithreaded integer and floating point workloads that show a variety of 
impacts of NUMA localization. 

Memory bandwidth was measured using a version of the common STREAM benchmark, which is the industry 
standard tool for measuring memory bandwidth. The version used for this test was compiled with OpenMP (parallel) 
support and optimized for the new generation of Intel Xeon processors. When testing overall system memory 
bandwidth, optimal results are achieved by running the STREAM benchmark with one thread per physical core. 
Although STREAM uses four separate vector kernels during the course of measurement (Add, Scale, Copy, and 
Triad), the Triad value is used for the purposes of this white paper. STREAM results are returned in values of 
MB/sec. 

Latency measurements were taken using the lat_mem_rd subtest, part of the LMBENCH benchmark. Lat_mem_rd 
measures memory-read latency for varying memory sizes and strides. The results are reported in nanoseconds per 
load. The entire memory hierarchy is measured, including onboard cache latency and size, external cache latency 
and size, and main memory latency. Both local and remote NUMA node main memory latency is explored with 
lat_mem_rd, localizing the process and forcing memory access to local or remote using the numactl tool in Linux. 
The last 20 lines of output from main memory measurements of lat_mem_rd are averaged, and each test executed 
for three iterations. The median average result for each test type was selected to report latency results for this white 
paper. 

In addition, the concept of “loaded latency” is explored for some configurations. This is intended to represent 
average memory latencies when the NUMA node is already under heavy load. The workload chosen to provide the 
heavy memory load is STREAM, and n-1 real cores on a single socket were tasked with separate single-threaded 
STREAM processes to load the local NUMA node targeted for latency experiments. The single free core on the 
physical processor under test was tasked to run the latency measurement, measuring memory latency to the local 
NUMA node. As with other latency measurements, the last 20 lines of output were averaged to produce the final 
loaded latency value. Each loaded latency test was run three times, and the median loaded latency average was used 
for the official result. 

SPECrate metrics from SPEC CPU2006 (hereafter referred to as SPECint_rate_base2006 and 
SPECfp_rate_base2006) were also chosen for performance characterization, as they are the leading industry 
standard CPU-centric benchmarks that use all available processor cores and threads. Each benchmark is comprised 
of multiple sub-benchmarks, each tailored to model different common computing tasks or scientific workloads, 
broken out into either integer or floating point. Both int_rate and fp_rate are throughput-based benchmarks. The 
“base” portion of the benchmark name indicates that a standardized set of compiler options were used to create the 
benchmark binaries. The SPECfp_rate_base2006 benchmark in particular can be used as a proxy for scientific 
workloads, and tends to be more sensitive to memory frequency and bandwidth differences than 
SPECint_rate_base2006. All CPU2006 measurements were conducted with the Red Hat® Enterprise Linux® (RHEL) 
6.2 operating system. The effects of explicit thread binding to cores per NUMA nodes were measured. 

NUMA I/O was explored using a specialized set of tools; see the NUMA I/O section on pg. 26 for details. 
  

http://www.cs.virginia.edu/stream/
http://www.bitmover.com/lmbench/lat_mem_rd.8.html
http://www.bitmover.com/lmbench/lmbench.8.html
http://www.spec.org/cpu2006/
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Introduction to NUMA topology 
When assessing a NUMA system for the first time, it is important to be able to visualize the NUMA topology. One 
way to think about this is to picture the physical processors in relation to the populated memory. For systems that 
have more than one physical processor (NUMA capable systems, the focus of this white paper), memory can be 
either remote or local. 

Figure 1 illustrates the highest level 2-socket Intel NUMA topology. In this example, CPU 0 and CPU 1 represent 
the physical processor package, not individual cores, and a corresponding number of NUMA memory nodes 
assuming memory modules are populated in DIMM slots adjacent to each processor. 

Figure 1. 2-socket Intel NUMA node architecture 

 

For Intel Xeon E5-4600-based systems such as the PowerEdge R820 and M820, the highest level NUMA topology 
becomes more complex due to the nature of the 4-socket design. For these systems, if there are four populated 
processor sockets, there are a corresponding number of NUMA nodes. Figure 2 illustrates this example. 

Figure 2. 4-socket Intel E5-4600 NUMA node architecture 
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For 4-socket processor AMD Opteron-based systems, such as the PowerEdge R815 and M915, the NUMA layout 
becomes considerably more complex due to the fact that each physical processor package has two NUMA nodes. 
For these systems, if there are four populated processor sockets, there are eight NUMA nodes.  Refer to Figure 3 for 
4P AMD example topology. 

Figure 3. 4-socket AMD NUMA node architecture 

 

Figure 4 illustrates an introduction to NUMA node locality (in which NUMA node is considered local to a given 
core). In this example, for core 0 in physical processor CPU 0, the memory immediately adjacent to that processor 
socket is considered the local NUMA node. For core 1, which is part of physical processor CPU 1, the NUMA node 
considered local is the one hanging off of CPU 1. Each physical processor can have up to eight physical cores with 
the Intel Xeon E5-2600 family of processors, and up to 16 total logical processors (with Hyper-Threading enabled) 
per socket. For the purposes of illustration, only the first physical core on each processor socket is shown. 

Figure 4. NUMA locality relative to individual cores 

 

  

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html


NUMA Best Practices for Dell PowerEdge 12th Generation Servers 

8 
 

 

Figure 5 represents another way to visualize relative NUMA node locality. Here, we are looking at another 
simplified example where each example top-bin E5-2600 series physical processor in a socket (represented as CPU 
0 and CPU 1) has eight cores each. For the purposes of this illustration, each processor core is numbered from one 
through eight although that core numbering strategy changes post-boot. We can see that the first core on CPU 0, 
colored in green, is local to NUMA node 0. This means that the DIMM slots populated closest to CPU 0 are local, 
and the DIMM slots populated closest to CPU 1 (NUMA node 1 in red) are remote.  This is due to the fact that to 
reach NUMA node 1 from Core 1 on CPU 0, the memory request must traverse the inter-CPU QPI link and use CPU 
1’s memory controller to access this remote node. The addition of “extra hops” incurs latency penalties on remote 
NUMA node memory access. 

Figure 5. NUMA node/core locality example – node 0 
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Figure 6 shows another similar example, but this time we are looking at the first core on the second physical 
processor (CPU 1). Again, for the purposes of this example, we are looking at a simplified numbering structure of 
cores where each physical processor has eight cores, numbered one through eight. This illustration shows that for the 
first core in the second physical processor (colored in green); the NUMA node considered local to it is NUMA node 
1.  For this specific core, any memory accesses to NUMA node 0 are considered remote and will incur some latency 
penalties. These examples are building blocks in our understanding of NUMA topology, but we must examine the 
concept of core enumeration to get a fuller understanding of how to apply these concepts on a running Linux system. 

Figure 6. NUMA node/core locality example – node 1 

 

Core enumeration in Linux 
As useful as the examples above are for visualizing basic NUMA topology, it is critical to understand how to 
translate this understanding to being able to determine which logical processor in a running Linux operating system 
is on a given socket or local to any particular NUMA node. When the Linux kernel is booting, processor cores on 
each physical processor package are translated to operating system CPUs (OS CPUs) with a particular order dictated 
by the BIOS ACPI table. It is crucial to understand that different vendor server platforms will enumerate 
cores in Linux differently due to different ACPI presentations. Each server platform should be evaluated for 
core enumeration separately, especially if adopting tuning strategies originally developed on another vendor’s 
system. All Dell PowerEdge Intel Xeon-based platforms enumerate cores in the same manner.  
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 In Figure 7, we again see a basic representation of a 2-socket, 16-core Intel Xeon-based system, where each 
physical processor package contains eight processor cores. For the purposes of this illustration, each processor 
core is numbered from one through eight although that core numbering strategy changes post-boot. Although 
we have seen an illustration similar to this, the progression of high to low level topology illustrations will help the 
reader successfully visualize their own system’s NUMA topology and make informed decisions on choosing manual 
affinity strategies.   

Figure 7. High-level 2P Intel core ordering (pre-Linux boot) 

 

In Figure 8, we see the same system represented, but now Linux has enumerated the cores. Note that each core is 
now represented as a different “OS CPU”, which is how Linux refers to logical processors. It is also important to 
note that the first OS CPU (0) is the first core on the first physical processor package. Now note that OS CPU 1 is 
the first core on the second physical processor package. The pattern continues across all available cores, so for an 
Intel 2P system, all even numbered OS CPUs are on the first physical processor package, and all odd 
numbered OS CPUs are on the second physical processor package. It is also important to note which cores are 
local to any particular NUMA node, and that OS CPUs and NUMA nodes are numbered starting from 0. 

Figure 8. 2P Intel Linux core enumeration – Hyper-Threading disabled 
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For Intel Xeon-based systems, there can be up to two logical processors per physical core when Hyper-Threading is 
enabled. The two logical processors represent one “real core” and one “Hyper-Threaded sibling”. When Hyper-
Threading is disabled in BIOS Setup (typically represented as the Logical Processor option), only one logical 
processor will be presented to the operating system per physical core (as illustrated in Figure 8). The Logical 
Processor option is enabled by default on Dell server platforms. 

The core enumeration pattern represented in Figure 9 shows the same 2-socket processor Intel Xeon-based system 
with Hyper-Threading enabled. The first number before the “/” character represents the OS CPU number assigned to 
the real core. The second number after the “/” character represents the OS CPU number assigned to the Hyper-
Threaded sibling. During the core enumeration phase of the Linux kernel boot, all real cores are enumerated first in 
a round-robin fashion between populated physical processor packages. Once all real cores are enumerated, the 
Hyper-Threaded siblings are enumerated in a similar fashion, which round-robin between populated processor 
packages. For the example of a 2P 16-core system with Intel Xeon 8-core processors, 32 total logical processors are 
enumerated when Hyper-Threading is enabled.  

Figure 9. 2P Intel Linux core enumeration – Hyper-Threading enabled 
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For PowerEdge systems such as the R820 and M820 that support the Intel Xeon E5-4600 family of processors, 
systems can have up to four physical processors populated. If we examine the core enumeration of a 4P system with 
32 total cores, where each physical processor package contains 8 cores we find that 64 total logical processors are 
present in the Operating System when Hyper-Threading is enabled. In Figure 10, the core enumeration is shown for 
this platform. Note that real cores are again enumerated first in a round robin fashion between physical processor 
packages. After all of the real cores are enabled, the Hyper-Threaded siblings are enabled in the same round robin 
pattern. 

Because of the fact that a given core can be up to two QPI hops away from one of the four NUMA nodes based on 
the “box” topology, it can be more important to aggressively affinitize workloads for this architecture. Users are 
encouraged to experiment with manual affinity for these platforms for optimal performance. 

Figure 10. 4P Intel Linux core enumeration – Hyper-Threading enabled 

 

AMD Opteron-based systems do not utilize the concept of Hyper-Threading. Instead, with the introduction of the 
Interlagos processor, pairs of real cores retain independent integer schedulers and pipelines, but share floating point 
schedulers and pipelines. Figure 11 shows the core enumeration of an AMD Opteron 6400-series (Abu Dhabi) 4P 
system with 64 total cores. As we can see in the illustration, the core enumeration strategy for this system is 
drastically different than Intel platforms.  
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Note that each physical processor package has two NUMA nodes associated with it. In addition, each physical 
processor is broken up into two sets of 8 cores each. The cores associated with a single NUMA node are enumerated 
in order. In Figure 11 we see OS CPU 0 – 8 are part of NUMA node 0. The second set of cores on the same physical 
processor package numbered OS CPU 9 – 15 are local to NUMA node 1.  It is critical to note that shifting to the 
next socket has the cores enumerated starting with 32.  The fourth physical processor package starts core 
enumeration with OS CPU 16 and carries onward.  

This representation depicts a 4P PowerEdge R815, but it is important to examine each AMD-based Dell platform for 
core enumeration strategy, as subtle differences do exist between Dell PowerEdge AMD Opteron-based systems 
dependent upon how the HyperTransport links are laid out on the system board. 

Figure 11. 4P AMD Abu-Dhabi Linux core enumeration 
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Examining NUMA topology in Linux 
There are several commands typically available in more modern server-oriented 64-bit Linux distributions, such as 
Red Hat Enterprise Linux (RHEL) and Novell® SuSE® Linux Enterprise Server (SLES) that provide tools for 
examining a platform’s NUMA topology. These tools include the following commands: 

 

• numactl --hardware: This command shows the NUMA node count, the individual logical processors 
associated with each node, and the node distances. This command is greatly useful for determining which cores 
are local to an individual NUMA node for later use in process affinitization. Figure 12 shows the output of this 
command on an example E5-2600 series dual-processor 16- total core system with 8 real cores per physical 
processor package. Hyper-Threading is disabled, and so 16 logical processors are represented.  

o The available line indicates the total number of NUMA nodes, in this case 2. They are numbered 0 and 1. 

o Node 0 cpus: This line describes the logical processors that are "local" to NUMA (memory) node 0. This 
means that all of these cores and Hyper-Threaded siblings are on a single physical processor. Remember, 
this list includes both physical cores and Hyper-Threaded siblings, so the count is double to the number of 
physical cores in a given processor. 

o Node 0 size: This is the total amount of memory contained in this NUMA node. Since the example 2P Intel 
Xeon system has a memory configuration of 16 x 8GB DIMMs, 8 DIMMs are populated per CPU. The 
node size of 32690MB correlates to the fact that 8 DIMMs x 8GB = 64GB. 

o Node 0 free: This is the amount of currently unallocated memory in NUMA node 0. This is important to 
keep in mind when deciding which process should go where when evaluating manual affinitization options. 
In some circumstances, it can be helpful to alternate different bindings between nodes for different separate 
processes such that you don't exhaust the memory in one NUMA node while leaving the other untouched. 

o Node 1 lines: Refer to the above statements for general understanding. Node 1 information describes cores, 
memory, and so on, and is local to the second physical processor in the example system. 

o Node Distances: This is a table that shows the relative distances between NUMA nodes. The distances 
represented can be classified as near (10), remote (20), and very remote (20+). The distances are provided 
through a BIOS provision, and the values are dependent on CPU topology and inter-CPU link constraints. 

Figure 12. Numactl –hardware example (Hyper-Threading disabled) 
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• numastat: This command displays NUMA allocations statistics from the kernel memory allocator. Each 
process has NUMA policies that specifies which node pages are allocated. The numastat counters keep track on 
what nodes memory is finally allocated. Figure 13 shows the output of the numastat command on a system that 
has been running for some time and has had several benchmarks run that were explicitly affinitized to one 
NUMA node or the other. 

The counters are separated for each node. Each count event is the allocation of a page of memory. 

o numa_hit is the number of allocations which were intended for that node and succeeded there. 

o numa_miss shows the count of allocations that were intended for this node, but ended up on another node 
due to memory constraints. 

o numa_foreign is the number of allocations that were intended for another node, but ended up on this node. 
Each numa_foreign event has a numa_miss on another node. 

o interleave_hit is the count of interleave policy allocations which were intended for a specific node and 
were successful. 

o local_node is a value that is incremented when a process running on the node allocated memory on the 
same node. 

o other_node is incremented when a process running on another node allocated memory on that node. 

Figure 13. Numastat example 

 

• numactl --show: This command displays the current memory allocation policy and preferred NUMA node (see 
Memory allocation scopes and policies), as well as a list of valid OS CPUs and node numbers for other numactl 
flags such as --physcpubind, --cpubind, and --membind. 

 

Figure 14. Numactl --show example 
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Linux Resources for NUMA management 
There are a growing number of resources available in Linux to examine NUMA memory allocation, change default 
behaviors, and force specific logical processor and memory affinity upon new and running applications.  Linux 
allows for several memory allocation policies that can affect memory allocation behavior.  The default choices for 
memory management can have potential drawbacks in heavily loaded environments or particular computing 
scenarios.  To get a complete understanding of underlying mechanisms which can impact how memory pages are 
allocated in a running environment, general Linux memory management should be understood. Due to the 
complexity of this topic, many low level details are not discussed in this whitepaper.  For a deeper understanding of 
memory management concepts in Linux Operating Systems, please read this primer. 

Memory allocation scopes and policies 
For recent NUMA-aware Linux distributions, a set of configurable memory policies allow the user to change 
memory allocation strategies.  There are several components of a Memory Allocation Policy:  scope, mode, mode 
flags and specific nodes provided as an argument.  The scope governs the inheritance patterns and may limit the 
types of memory regions certain policy modes may operate on.  Memory Allocation Policy mode is the specific 
strategy to allocate memory, and is controlled by optional flags and a node list.  Many of the available Memory 
Allocation Policy scopes and modes are primarily utilized by specific application design techniques to enable 
NUMA-awareness.  However, some elements are useful for user-level memory allocation tuning, especially for non-
NUMA aware applications.  As such, only the policies of particular interest for user-level tuning here.  The use of 
shared memory policies and scopes are of potential interest for user-level tuning under some circumstances, but are 
not in the scope of this whitepaper.  Detailed information on Linux Memory Allocation Policies, scopes and modes 
can be found here. 

Memory policy scopes 

• The System Default Policy is called local allocation. This policy dictates memory allocation for tasks that 
take place on the NUMA node closest to the logical processor where the task is executing. This policy is a 
reasonable balance for many general computing environments, as it provides good overall support for 
NUMA memory topologies without the need for manual user intervention. However, under a heavy load, 
the scheduler may move the task to other cores and leave the memory allocated to a NUMA node now 
remote from where the task is executing.  Tools to prevent the scheduler from migrating workloads are 
described in the NUMA affinity tools in Linux section. The scope of this default memory allocation policy 
is set system-wide, and all tasks will inherit this behavior unless set by a NUMA-aware application or by 
manual user intervention.    

• The Task/Process Policy is the policy scope is selected when defined for a specific task, generally through 
manual user intervention.  This policy scope applies to the task’s entire address space, and is inherited 
across fork() and exec() calls.  This scope is particularly useful for user-level tuning, as calls to the numactl 
command for binding purposes can use this allocation policy.  The Task/Process policy scope is utilized 
when explicitly affinitizing a shell scripts or executables that spawn applications. 

Memory policy modes  

• Bind mode:  This policy mode requires that all memory allocation must come from the supplied NUMA 
node numbers supplied as arguments.  This policy does not allow for memory allocation outside of the 
specified NUMA nodes, so there are hard limits to its use.  The use of numactl with the --membind or --
localalloc option use the Bind mode. 

• Preferred mode:  This policy mode requires that memory allocated will first be directed to the specified 
single node supplied as an argument.  If this node is full and memory allocation fails, the memory will be 
allocated to adjacent nodes based on node distance.   

http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.mjmwired.net/kernel/Documentation/vm/numa_memory_policy.txt
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• Interleave mode:  This memory policy mode forces that each page allocation is interleaved between a set 
of node numbers specified as an argument.    This mode is useful in scenarios where there is not enough 
available logical processors local to a node, or there is not enough memory in one NUMA node for a large 
workload to obtain sufficient resources.  

 

Other useful Linux options and tools 

• zone_reclaim_mode: Another helpful Linux feature is the ability to help Linux retain memory pages on 
local NUMA nodes by aggressively freeing up pages on the Node under contention. This is primarily useful 
where a particular NUMA node is in danger of being over-subscribed, and subsequent memory allocation is 
in danger of being forced onto an alternate node. The location of the kernel tunable is 
/proc/sys/vm/zone_reclaim_mode. Echoing a value of 1 to this file will enable aggressive page 
reclamation. More information regarding this feature can be found here.   

• numa_maps: Another interesting Linux feature that exposes information about NUMA memory allocation 
for a running process is the /proc/<process id>/maps file. The kernel keeps track of memory allocation 
information for each process running on the system. Much information can be gleaned from these files, but 
one of the more interesting elements from a NUMA localization perspective is the ability to examine on 
which NUMA node particular memory pages have been allocated for the constituent objects. In addition, 
the memory policy of a process can be obtained by analyzing this file. Care should be used when operating 
on this file, as it is generally not recommended to query processes in a production environment, especially 
at a high rate. More information on this valuable analytic tool can be found here. 

• Cpusets and Cgroups: Processors and memory may also be allocated manually into sets of resource 
groups known as cpusets or cgroups, depending on the interface used. The usage of these features falls 
outside of the scope of this white paper, but much additional control of system resources can be leveraged 
by the use of this feature and its usage in confining specific application processor and memory utilization to 
a selected subset of available processors and memory. Running processes can be moved between cpusets, 
and memory migration and allocation can be fine-tuned with the use of this feature. More details can be 
found here and here. 

• The numad Daemeon:  New for RHEL6.3, this daemon is intended to discover the system’s NUMA 
topology and monitor processes that utilize significant processor and memory resources.  The daemon can 
provide automatic NUMA alignment for such processes, and additionally will provide access to NUMA 
advice via command line or an API to query for pre-placement.  This daemon holds considerable promise 
to lighten the burden of manual affinitization in the future, but is too new to have been characterized fully.   

 
NUMA affinity tools in Linux 
Linux has several tools that allow you to explicitly affinitize a process to particular cores and potentially localize 
memory allocation to specific NUMA nodes. Before the advent of common NUMA aware systems, commands such 
as taskset were used to bind a process or command to a particular core. The taskset command is not NUMA-aware, 
so memory allocations are not locked to any particular NUMA node. However, the default memory policy in recent 
Linux distributions will ensure initial allocation to node(s) local to the logical processors specified in the affinity 
mask. Taskset has lost some of its usefulness in a NUMA environment, but still has some capability in allowing 
non-NUMA-aware processes or command binding. One of the more useful features of taskset is the capability to 
show the affinity mask of a process already running. 

 

  

http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://linux.die.net/man/5/numa_maps
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://www.suse.com/documentation/slerte_11/slerte_tutorial/data/slerte_tutorial.html


NUMA Best Practices for Dell PowerEdge 12th Generation Servers 

18 
 

Useful features of taskset 
To determine the OS CPU affinity mask for a running process, use: 

taskset -p <process id> 

This command returns a hex mask that you can use to determine which OS CPUs are bound.  If the mask returned is 
all Fs, this means no explicit affinity has been provided and the scheduler is free to move the process around to any 
available logical processor. 

You can also use this taskset command to change the affinity mask of a running process, which will also enforce 
new pages allocated to the process to be mapped to the new local NUMA node (based on the CPU mask provided). 
However, previously allocated memory is not automatically migrated. 

taskset –p <cpu mask> <process id> 

Taskset can also be used to start an executable with non-NUMA-aware binding to one or more specified logical 
processors.  

taskset <cpu mask> <application executable> 

The flexible numactl command 
In order to provide for optimal performance on a NUMA aware system, it can be important to pin performance-
sensitive workload threads to specific cores local to one physical processor, and ensure that all memory allocation 
for that process occurs on the local NUMA node. This provides for two potential performance enhancements. By 
executing a particular workload on specific OS CPUs, you can prevent the operating system scheduler from 
shuffling processes around to different cores during execution, as can occur under heavy load. By fixing the cores 
for process execution, you can target multiple threads on processors that share the same L3 cache. The workload can 
also be affinitized to a particular NUMA node to maximize local memory access.  

Using the numactl --hardware command, we see the following pertinent information in Figure 15 from a 2P Intel 
platform with 16 real cores, Hyper-Threading enabled, 32 total logical processors. Note that under a running system 
with some workloads already running, some NUMA nodes may not have enough memory available to allocate to a 
new application. It is important to scrutinize the node free lines to ensure sufficient free memory is available for 
allocation. If a likely NUMA node has been located with enough free memory, examine the node cores for the 
identified NUMA node for subsequent use. 

Figure 15. Numactl --hardware example (Hyper-Threading enabled) 
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Figure 16 shows the output of the “top” command, with a subsequent key press of the “1” key. This will display 
current usage statistics for all available logical processors instead of the default averaged processor utilization view. 
The top command samples the processors every few seconds and updates the display continuously until exited by 
pressing the “Q” key.  

When attempting to locate free cores to bind a new workload to, make sure OS CPUs of interest are not already 
heavily tasked with other work. This is accomplished by noting the idle level for specific cores by looking for the 
xx.x% id column and matching this to the corresponding OS CPU row. Figure 16  shows a system almost 
completely idle, with all but one logical processor showing 100% idle. 

The top command has many other uses than this example, and is a valuable tool for performance diagnostics. Please 
consult the top man page for a great variety of additional features that can be leveraged. 

Figure 16. Example of top command output 
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Binding a workload using numactl 
The command to bind a single threaded workload to a single specified logical processor and to local memory is as 
follows: 

numactl -l --physcpubind=2 <application executable>  

The "-l" flag tells Numactl to allocate only to local memory, which is dependent upon the logical processors that the 
application starts on. 

The "--physcpubind=2" flag in this example tells numactl to bind this application only to OS CPU 2. 

For a multi-threaded application example running with 4 threads, assuming OS CPUs 2,4,6 and 8 are on the same 
NUMA Node: 

numactl -l --physcpubind=2,4,6,8 <application executable>  

Or, assuming there are at least four logical processors available on the same NUMA node, this command will bind 
the application to cores available on a single NUMA node and ensure local memory allocation: 

numactl -l --cpunodebind=0 <application executable>  

Note that all the specified OS CPUs are on the same physical processor, and local to the same memory node. If you 
specified “2,3,4,5” for the --physcpubind flag, this would likely be suboptimal as these are a mix of OS CPUs from 
two separate NUMA nodes, and will incur caching and memory latency penalties. Note that using the -l flag in 
conjunction with a list of logical processors specified with the --physcpubind flag that are not on the same NUMA 
node normally causes an error.  

In cases where an application must be affinitized to a set of cores that are not all on the same NUMA node due to 
existing resource constraints, the memory may be allocated to more than one NUMA node with the -m <nodes> 
flag, where <nodes> is a comma separated numeric node list.  In cases such as this, it may be advisable to evaluate 
whether the --interleave <nodes> flag may produce superior results, since this ensures even distribution of memory 
allocation to the specified NUMA nodes.   

It is sometimes advisable to leave at least one core on the system free for the OS kernel to run in situations where 
application affinitization has targeted most of the available logical processors. Commonly the choice is OS CPU 0, 
but this is not mandated. Some customers may benefit from keeping one core per physical processor free from 
explicitly affinitized applications (usually the first OS CPU in each NUMA node), but it depends on the 
environment and the nature of the workload(s). 

Some other valuable flags available for the numactl command include the following. 

--membind=<Node> or -m <NUMA Node> 

Use this option to specify the numbered NUMA node to force memory allocation when starting a new process. More 
than one NUMA node may be specified, but will not be optimal unless facing free memory constraints. 

--physcpubind=<OS CPU list> or –C <OS CPU list> 

This option forces the workload to be bound to a particular OS CPU or set of OS CPUs. To specify more than one 
OS CPU, the list can be specified as a range (1-4), or specified as a comma-separated list. The latter is preferred for 
Dell systems as it is not common for a NUMA system to have contiguous OS CPUs enumerated on the same core. 
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--cpunodebind=<NUMA Node> or -N <NUMA Node> 

Use this option to specify that the process starting be allocated to any logical processor local to the named NUMA 
node. More than one NUMA node may be specified, but a single node is typically optimal for performance if 
enough free logical processors exist associated with a NUMA node. 

--interleave=<NUMA Nodes> 

The interleave option is useful for distributing an application’s memory allocation across multiple NUMA nodes. 
Scenarios where this might be useful would be for applications whose total memory requirements are larger than a 
total memory in a single NUMA node. Other situations envisioned might be for 4P systems where two of the four 
processor sockets are local to targeted I/O devices, and application performance may be advantaged by keeping 
memory allocated to Nodes closest to the PCIe devices. By interleaving memory allocation between NUMA nodes, 
memory latency and bandwidth should be averaged between the local and remote node(s) identified for memory 
allocation. 

Manually migrating memory pages between NUMA nodes 
It is possible under some environments that it may be beneficial to move memory allocation from one NUMA node 
to another for a running application. The migratepages command contained in the numactl package allows the user 
to force all allocated memory pages associated with a particular process id from one or more NUMA nodes to other 
NUMA Node(s). This can be useful on a running system to manually balance memory usage, but does carry risks of 
disrupting target NUMA node memory allocation if the pages to be moved from the source node are larger than the 
available free space in the target node. More detail can be found in the migratepages() man page. 

The form of the command is as follows: 

migratepages <process id> <current NUMA Node list> <target NUMA Node list> 

NUMA affinity performance measurements 
The following section demonstrates measured performance deltas between local and remote NUMA nodes.  The 
importance of proper NUMA affinity cannot be effectively defined without data showing best and worst case 
scenarios.  Although the default memory management policy will attempt to allocate memory local to the logical 
processors executing the workload, under many scenarios the memory may end up running remotely due to load 
balancing between available logical processors.  Without explicit NUMA affinity, the end user may still experience 
remote memory allocation.  In order to quantify these performance deltas, memory bandwidth and latency are 
characterized from a local and remote NUMA allocation perspective.  The effects on fully-multithreaded workloads 
such as SPEC CPU2006 int_rate and fp_rate are used as a proxy for the varying NUMA allocation effects that can 
be expected when running disparate workload types. 
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Measuring memory bandwidth and latency across NUMA nodes  
In Figure 17, we see that in terms of memory bandwidth, there is an approximately 50% decline going to a remote 
NUMA node compared to the local NUMA node. For the purposes of this illustration, cores initiating the STREAM 
test were on socket 0 only, and the NUMA node target was toggled between local and remote to measure the 
difference. 

The following assumptions are made for the environment using a 2P Intel system with 8 real cores per socket, but 
with Hyper-Threading disabled for this particular example. Examining the output of numactl –hardware, we would 
focus on three specific lines of output for this binding example. 

available: 2 nodes (0-1) 

node 0 cpus: 0,2,4,6,8,10,12,14 

node 1 cpus: 1,3,5,7,9,11,13,15 

Figure 17 shows an example STREAM command for this example system to measure local NUMA node memory 
bandwidth. This example specifies memory allocation to NUMA node 0 using the –m 0 flag. This is considered 
local to cores 0,2,4,6,8,10,12,14 (assuming 8 threads for STREAM, one per physical core on socket 0, bound to 
cores local with NUMA node 0 with the --cpunodebind option): 

numactl –m 0 --cpunodebind=0 stream 

An example STREAM command to measure remote NUMA node memory bandwidth is shown in Figure 17. It 
specifies memory allocation to NUMA node 1 using the –m 1 flag. This is considered remote to cores associated 
with NUMA node 0 (assuming 8 threads for STREAM, one per physical core on socket 0, bound with the --
cpunodebind option): 

numactl –m 1 --cpunodebind=0 stream 

Figure 17. Local vs. remote NUMA node memory bandwidth (higher is better) 
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In Figure 18, the relationship between local and remote NUMA node access is examined from the perspective of 
memory latency. In this case, remote memory latency is over 50% higher (worse) than local memory latency.  

In the following example, the lat_mem_rd command is used to measure local NUMA node memory latency 
(NUMA node 0 is local to OS CPU 0) by specifying “–m 0”. The -l flag could be used interchangeably with “-m 0” 
in this scenario. 

numactl –m 0 –physcpubind=0 lat_mem_rd <size in MB> <stride size> 

In the following example, lat_mem_rd command is used to measure remote NUMA node memory latency (NUMA 
node 1 is remote from OS CPU 0) by specifying “-m 1”: 

numactl –m 1 –physcpubind=0 lat_mem_rd <size in MB> <stride size> 

Figure 18. Local vs. remote NUMA node memory latency (lower is better) 
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SPEC CPU2006 NUMA measurements 
In Figure 19, we see various fully-multithreaded integer workloads run with explicit affinity using numactl. All 
workloads were part of SPECint_rate, and were initially executed explicitly bound to the correct logical processors 
and local NUMA nodes. The workloads were run again, and numactl was used to explicitly bind to same set of 
logical processors, but force memory allocation to the remote NUMA node for each thread. Examining the 
illustration, we can see that the impact of running a fully multithreaded workload with all remote memory access 
ranges from a negative impact of 3% with 400.perlbench to a high of 40% with the 429.mcf workload. Given the 
wide range of negative impacts, it can be concluded that being forced to run an application with all remote memory 
allocations will very likely result in a performance reduction. How much of a reduction depends on the workload 
and the sensitivity to increased memory latencies. These experiments were conducted on a 2P Intel platform, and 
care should be taken not to extrapolate these effects for 4P systems, which have different NUMA characteristics. 

Figure 19. Local vs. remote NUMA binding – integer workloads 
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Figure 20 compares the effects of local and remote NUMA node affinity on floating point workloads contained in 
the SPECfp_rate benchmark. This benchmark’s workloads are primarily scientific in nature, and tend to be more 
sensitive to memory bandwidth and memory latency. We can see a wide range of impacts in this comparison. 
Interestingly, three workloads experienced no performance loss when memory allocation was forced to the remote 
NUMA node. Other workloads were much more sensitive, and experienced up to 50% reduction in performance. 

Based on the integer and floating point workloads explored, we can conclude that your mileage may vary in terms of 
potential performance loss when forcing memory to run remotely.  Based on the limited subset of workloads 
comprising these two benchmarks, it appears that the effects are generally negative in nature and it should be 
inferred that local memory allocation is always preferred if available.  There are conceivable situations where a new 
process or application must be started, but there is no free memory in the NUMA node local to the free logical 
processors intended to be utilized. The numactl --hardware command can be helpful in planning memory and core 
allocations for situations of this nature.  

Figure 20. Local vs. remote NUMA binding – floating point workloads 
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NUMA I/O concepts 
NUMA I/O is the idea of being able to localize memory access for I/O devices that are of varying distances away 
from processors and memory. The concept of NUMA I/O is relatively new to the x86 server architecture; Dell 
PowerEdge 12th generation servers supported NUMA I/O from the first day of launch for these platforms, which was 
not the case for all competitor server offerings.  

The server BIOS provides information to the operating system to allow it to determine each PCIe device’s NUMA 
node locality. The benefit of NUMA I/O most directly impacts heavy I/O or latency-sensitive computing 
environments. As this is a relatively new concept, several tools have been used to attempt to characterize NUMA 
I/O and establish some minimum best practices. However, this is an evolving field and considerable change can be 
expected in I/O driver NUMA awareness and additional tool features that may modify the best practices in the 
future. 

Sample NUMA I/O topologies 
In Figure 21, we see a sample high-level NUMA I/O topology for a PowerEdge R720 with two E5-2600 8-core 
processors. The individual PCIe lanes are mapped to specific PCIe slots, and the relative NUMA node locality is 
described. All PCIe slots colored light green are part of NUMA node 0 in this example, and those in dark green are 
part of NUMA node 1. 

Figure 21. 2P PowerEdge R720 NUMA I/O topology 
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In Figure 22, we see the NUMA I/O high-level topology for a PowerEdge R820 with four processors. We see the 
familiar CPU/core enumeration layout for a 4P E5-4600, but additionally we see particular PCIe lanes connected to 
CPU 0 and CPU 1; note that no PCIe lanes are immediately adjacent (local) to CPU 2 or 3.  

Figure 22.  4P PowerEdge R820 NUMA I/O topology 
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Determination of PCIe NUMA locality 
The first step to determine what NUMA node is local to a particular PCIe device is to examine the output of the 
lspci -v command.  You can either redirect the output to a file or pipe it to the command “less”, and search for the 
controller you are trying to identify. Note the PCI device number associated with the controller of interest. Figure 23 
shows a snippet of the lspci –v output where two controllers of interest are located. 

In Figure 23, we see two adapters snipped from a much larger list of PCI devices. The two devices are a PowerEdge 
RAID Controller H810 and a Mellanox high-speed Ethernet adapter. We can glean important information for these 
two adapters. The PCI device number for each adapter is listed at the upper left portion of the output for each PCI 
device entry. The PCI device number for the H810 in this specific example is 41:00.0, and the Mellanox is 42:00.0. 
The name of the device driver can be determined for each adapter from the same output at the bottom of each PCI 
device entry. The kernel driver for the H810 is megaraid_sas and the Mellanox Ethernet adapter uses mlx4_core 
and mlx4_en. 

Figure 23. Example of lspci –v output 

 

Another method of locating the PCIe device number to use is searching by slot number.  This can be accomplished 
using the following: 

dmidecode -t slot: Look for slots “In Use”, and obtain the Bus Address. 

lspci -s <Bus Address>: This command gives you the PCIe device number for the selected slot obtained with the 
previous command. 
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Next, the PCI device identified must be located in /sys/devices/pci*, and the numa_node file must be examined to 
determine the local NUMA node for this device. Figure 24 shows an example where the PERC is identified and the 
local NUMA node is noted. As we can see from the output, this PCIe device is associated with NUMA node 1 (local 
to the second processor socket in a 2P Intel platform). 

Figure 24. Example of deriving PCIe device NUMA locality 

 

It is also important to be aware of where the device driver is handling interrupts for a given adapter. In Figure 25, we 
see sample output from the command “cat /proc/interrupts”. The leftmost column is the IRQ number, the middle 
columns are interrupt counts from each OS CPU, and the rightmost column shows the kernel module generating the 
interrupts for a particular row. As a driver generates interrupts, the corresponding interrupt count will increase for a 
given CPU.   

Figure 25. /proc/interrupts example 

 

For a system with many logical processors and PCI devices, it may be preferable to run the command “cat 
/proc/interrupts | grep <driver name>” to pull only IRQ lines of interest. 
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irqbalance is a Linux daemon (running by default in many cases) that distributes interrupts for devices across cores 
to prevent particular logical processors from being overrun with work. However, it may be advisable under 
extremely heavy I/O conditions to manually affinitize a particular device’s interrupts to a specific core.  Note that 
more recent drivers often use the MSI-X interrupt model by default, which provides a larger number of 
interrupt vectors.  Each vector is capable of being individually bound.  These examples are from an adapter 
set to use the standard IRQ model.  To manually affinitize an IRQ to a specific core, one must stop the irqbalance 
daemon from running.  

service irqbalance stop stops a running irqbalance daemon 

chkconfig irqbalance off prevents the irqbalance daemon from starting at next boot 

For additional information regarding the process for manually setting interrupt affinity, please look here and here.  

Multiple I/O devices under heavy load – Netcat 
One method to characterize I/O characteristics in a NUMA environment for this white paper was to configure two 
Dell PowerEdge R720 systems, each with an external RAID adapter connected to a separate 1TB storage array. Both 
systems also contained a Mellanox® 40Gb Ethernet adapter, which was directly connected from one system to the 
other. The purpose of this exercise was to evaluate the impact of IRQ binding and I/O worker thread affinity on 
throughput characteristics.  

A series of files ranging in size from 512MB to 500GB were timed as they were transferred from one server to 
another across the 40Gb Ethernet link and written to external storage on the other end. Experiments were conducted 
to evaluate the efficacy of irqbalance in determining the appropriate core as well as the impact of binding worker 
threads on both systems in various configurations to determine the impact on file transmission. The Linux netcat 
tool was used to transmit the files across the Ethernet from the sender system and write them on the receiver system. 
Figure 26 describes the hardware configuration for this test. 

Figure 26.  Netcat workload diagram 

 

During the course of testing, the version of irqbalance that was distributed with RHEL 6 was updated to the newest 
version available, which provided equivalent performance to manual IRQ binding of the Mellanox and PERC 
interrupts. Although in some circumstances it may still be better to manually affinitize IRQs to particular cores, this 
test suggested that in that the new irqbalancer was sufficient, even under heavy I/O conditions for this test. However, 
manual interrupt binding should always be considered when maximum performance or lowest latency is required. 

http://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Performance_Tuning_Guide/s-cpu-irq.html
https://cs.uwaterloo.ca/~brecht/servers/apic/SMP-affinity.txt
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Several experiments were conducted with netcat to time the transmission various files as they were read from the 
sender system, sent across the Ethernet link to the receiver system, and written out to the remote disk array. Both 
systems were configured with 40Gb Ethernet and external RAID adapters in PCIe slots local to processor socket 1.  
IRQs for both devices were manually bound to cores on socket 1, and the netcat worker on sender and receiver were 
switched between binding to memory and cores local to socket 0, socket 1, and run without affinity.  Each test was 
run for three iterations, and the median times for each file size were reported in Figure 27. As you can see, binding 
to the local NUMA node using cores on the same socket that the IRQ was bound provided consistently shorter 
transmission times than either not affinitizing the worker processes or binding them to remote memory and cores. 

Figure 27. Netcat workload affinity comparison 
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In Figure 28, we see a similar experiment where local affinity of worker threads was compared to no specified 
affinity. In this case, not affinitizing sender and receiver threads resulted in consistently slower transmission times, 
up to twice as long for some file sizes. 

Figure 28. Normalized netcat comparison – local vs. no affinity 

 

Maximum IOPS scenarios using Vdbench 
Vdbench is a Java-based I/O measurement tool that is growing in popularity in the Linux world due to its ease of use 
and repeatability of results. This tool was used to measure the impact of affinitizing the worker JVMs and memory 
to the same or different NUMA nodes relative to the fixed IRQ assignment for the RAID adapter. For this 
experiment, a system was configured with 8 x SAS SSD drives in a RAID 0 array. This storage configuration 
offered the highest possible IOPS to be driven to simulate an I/O-bound environment. Most real world storage 
configurations and workload patterns will not approach this configuration, but for the purposes of this test it was an 
interesting example of the effects of I/O worker affinity and memory allocation relative to the IRQ. 
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Figure 29 illustrates the performance impact of affinitizing the workers and memory allocation to the local versus 
remote NUMA nodes. The configuration that bound worker JVMs and memory allocation to the same NUMA node 
as the IRQ achieved significantly higher IOPS, as opposed to being bound to a remote NUMA node, which was only 
able to achieve 63% of the optimal IOPS. 

Figure 29. IRQ/workload location comparison - Vdbench 
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Figure 30 shows the effects of binding the Vdbench I/O worker JVMs to cores and NUMA nodes independent of 
one another. Manually affinitizing the worker JVMs to the same socket and NUMA node that the IRQ is bound 
provided the highest overall IOPS. Keeping the JVMs bound to the same socket but forcing allocation to the remote 
NUMA node achieved only 90% of the total IOPS of the ideal configuration. Worker JVMs were then bound to the 
opposite socket and NUMA node to where the RAID adapter was bound, which only yielded 65% of the IOPS that 
the optimum binding/affinity combination. The JVMs were then forced to allocate memory to the opposite NUMA 
node, and performance in this case dropped to only 63% of the optimum affinitization. 

Figure 30. Core and memory affinity effects - Vdbench 
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Conclusion 
Although Linux server-oriented operating systems have become increasingly NUMA-aware, complete NUMA 
awareness has not penetrated every level of the application, kernel, driver, and tool stack.  Modern Linux 
distributions provide acceptable performance for many general computing environments without forcing the user to 
manually affinitize every element. However, for heavily loaded systems or for systems where maximum throughput 
or minimum latency is a focus, the process of manual affinitization can be beneficial. 

NUMA I/O will be of increasing importance as I/O devices evolve to higher speed interconnects with storage and 
networking. For maximum I/O throughput scenarios, you should be aware of where I/O worker threads are running 
in relation to the IRQ, and attempt to force memory allocation to local NUMA nodes for maximum throughput or 
latency characteristics. 
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