
John M. Harper

Oracle Database Acceleration

DELL

1
Dell has created an
integrated system that
begins to satiate business
thirst for data-processing,
without breaking the bank.
In this white paper, we
benchmark the Dell
Integrated System for
Oracle Databases (DISOD)
and show you how to
provide extreme
performance for extreme
data.

Opportunities of the
Information Age

Challenges & Opportunities

1. Last year’s mobile data accounted for 4
Zettabytes of data.

2. The rate of date growth is expected to be 10
times greater by 2017.

3. Big-data and Relational database technologists
need to work together.

4. While the rate of data growth has never been
higher, the cost of ownership has never been
more affordable.

2

The Big-Data/Information Age
At no other time has data been more important to businesses,
and in order to stay competitive in the global market place, they
are required to sift through extreme amounts of information. In
fact, last year’s mobile data accounted for 4 zettabytes, or 4 tril-
lion gigabytes of data. It is predicted that our data may be more
than 10 times that size by the year 2017. Without a doubt, com-
panies must take full advantage of traditional and emerging
technologies to stay viable.

In our scramble to manage the sheer volume and complexity of
modern data, two camps have emerged. On one hand, tradi-
tional, Relational Database Management System (RDBMS) pro-
fessionals promote that their methodologies are superior. They
remind us of time-honored principles that keep data secure and
of high quality. On the other hand, Big Data professionals are
quick to point out that RDBMS technologies are pricy from a li-
cense point-of-view, and that they do not scale as well as mod-
ern clustered systems. This jockeying pits each camp against
the other and is a waste. Instead of working together, profes-
sionals from each camp spend considerable time lobbing criti-
cism at each other. A much better approach would be to create
hybrid solutions that help businesses thrive in the Big-Data/
Information age.

Section 1

The Current State
of Data

3

It is our opportunity to live in a time when the volume of data

and its total cost of ownership have reached critical mass. Data
volume continues to soar and the cost of data per Gigabyte has
never been lower. In addition, new all-flash technologies con-
tinue to be faster, more affordable, and reliable. For example,
the DELL Acceleration Appliance for Databases (DAAD) is an
all-flash device that is capable of more than 7 gigabytes per sec-
ond, with latencies in the microseconds, and millions of input-
output operations per second. Furthermore, physical memory
has never been cheaper allowing for gigantic memory configura-

tions for sorting and aggregation operations. Lastly, chip manu-

facturers like Intel and AMD are creating CPUs with amazing
speed and core counts not dreamed of in decades past.

Big Data
The term Big Data is a generalization for data that initially does
not fit well in predefined database structures. Good examples of
Big-Data include telephone communication, Web-traffic logs,
and Social/Political trends.

2010 2011 2012 2013 2014 2015 2016+

3.6

2.2

1.2

0.6

0.2

5+

Data Source: Cisco 2014 VNI

Data

Growth/Month Exabytes

2010 2011 2012 2013 2014 2015 2016+
IDC's Digital Universe Study, Sponsored by EMC 2012

$4.00

$2.00

$1.00

Storage

Cost Per Gigabyte

4

Big Data is difficult to place in typical RDBMS structures be-
cause of it size, variety, velocity, and complexity.

The size of Big Data is daunting because simple implementa-
tions of relational tables do no perform well when billions, tril-
lions, and even quadrillions of rows are placed in them. It is pos-
sible to create relational tables that will perform well against this
amount of data but careful architectural considerations are man-
datory.

Typical Big Data is received in adhoc fashion. Telecommunica-
tion data is a prime example. From our smart phones we send
and receive digital voice, texts, tweets, and twitters -- of which
some contain digital images taken from our cameras or copied
from online browsing. This variety changes from one moment to
the next and is difficult to store in relational tables.

The rate and complexity of Big Data also makes it difficult to
store in neatly organized transactional tables. It is true that Big
Data elements eventually make it to relational structures but in
its initial state, it is more efficient to leave the data in its original
form. Big Data technologies attempt to filter and organize data
elements based on statistical modeling and artificial intelli-
gence. They use massive parallelization with thousands of CPU
cores, terabytes of memory, and petabytes of hard drive stor-
age to accomplish that end.

Transactional Data

In the early 1960’s hierarchal and network databases were
used to gather and manage large sets of data. The Apollo
rocket required the use of a hierarchal database that stored in-
formation in a rigid structure that looked something like an up-
side down tree. Child data elements were statically dependent
on their parent components, in a complex one-to-many relation-
ship. A modern data structure similar to these is XML; however,
XML technology is much more flexible and query-able.

At the time, these databases were difficult to work with. They re-
quired complex programming to get data in and out of their data-
banks and were clunky when it came to manipulating the data
itself. Often times, data would become orphaned or out of
synch because a programmer forgot to update all of the places
where data was stored.

Doctor Edgar Frank Codd, AKA E.F. Codd, invented a new
method of storing data that did not contain the limitations of hier-
archal and network technologies. Instead, he stored data in ta-
bles and related those tables to each other by way of key fields
that uniquely identified each row. Relationships between tables
were more flexible and could evolve versus the rigid parent-
child requirements found in previous database technologies.

Codd designed a simplified language which he called Alpha,
which was founded on relational calculus; however, this lan-
guage was not fully developed as SEQUEL had already gained
support from IBM executives. SEQUEL was not a full implemen-

5

tation of Codd’s relational models but is was far superior to lan-
guages of the time and quickly became the de-facto language
for all relational database technologies.

Codd’s theories proved effective for storing large amounts of
data in neatly organized tables. When developers and archi-
tects used his normalization processes, they auto-magically pro-
tected their data against possible transactional anomalies. How-
ever, many of architects had difficulty grasping his theories be-
cause they were steeped in advanced relational algebra and cal-
culus. The result was many chaotic designs that claim to be re-
lational because they have primary and foreign keys, when in
actuality they closely resemble network and hierarchal data-
bases instead.

Relational databases are very good at storing event information
like financial transactions and should continue to be the data-
base of choice for that kind of data.

Our Objective
This white paper focuses on the Oracle ORDBMS and its capa-
bilities in transactional and warehouse scenarios. We plan to
write several follow-on articles, white papers, and books that de-
tail both relational and Big Data methodologies. It is our hope
that the results we found will properly illustrate what modern
systems are capable of and that they will inspire you.

Transactional Database Key Points

1. Transactional and warehouse databases require
different levels of the same resources

2. Transactional systems require high IOPS rates

3. Transactional systems require moderate CPU and
Memory resources

4. Transactional systems require moderate
Networking between the application server and
database but high networking between nodes
and storage

5. Parallel CPU utilization and fast IO empowered
the DELL DISOD to perform 1.2 million web
transactions per minute

6

Transactional Database Needs
It has been the privilege of the authors to work in large environ-
ments consisting of almost 1000 Oracle and 300 MSSQL in-
stances. Data centers of this size are costly to setup and main-
tain, what’s more, their sponsors have specific expectations
that require the ability to scan hundreds of gigabytes in a very
short period of time. Our experiences give us insight on what
transactional and warehouse databases need to operate at high
levels of performance and reliability.

IO Requirements
It comes as no surprise that transactional and warehouse sys-
tems have a different profile. That’s because they solve two
very different business needs. The most important factor in
transactional systems is their ability to complete many concur-
rent transactions. Moderately sized systems may only require
hundreds or thousands of transactions per second; however,
large systems can easily require the ability to complete millions
of transactions per second. Because of this requirement, trans-
actional systems lean heavily on Input Output Operations Per
Second (IOPS).

It is a mistake to think that IOPS are the only decisive factor.
Highly concurrent systems also require a large amount of band-
width and very low latency in their storage-subsystem. We sug-

Section 2

Transactional
Databases

7

gest that your design focus first satisfies IOPS requirements, fol-
lowed by latency, and then total bandwidth. To be successful,
you must implement systems that satisfy all three variables. At
no time can any one of the three (IOPS, Latency, Bandwidth)
be eliminated, nor can they be degraded in their importance.

Our stress test of the DISOD proves this point. Our goal was to
discover the limit of the system by causing database and/or op-
erating system failure. We were pleasantly surprised when we
could not cause complete failure, albeit individual web transac-

tions began failing in large chunks when we surpassed 1.2 mil-

lion web transactions per minute. Granted, 1.2 million web trans-
actions per minute is extremely large. It simulates the load of
large and active web-based companies.

The average required throughput hovered around 300 mega-
bytes per second, with peaks between 500 megabytes and
1100 Megabytes per second. Clearly, the 7 gigabyte/second
limit of the DAAD was not reached. However, the size of the
data-pipe is not the complete story.

The complete picture only comes into focus when additional sys-
tem and IO statistics are analyzed. During the one-hour endur-
ance test the following statistics stood out:

• CPU utilization on both DELL 920 RAC nodes hung around
90%

• Block gets/second maxed out at 750,000 per minute

• 374,552,538 select statements were issued

• 177,633,759 insert statements were issued

• 94,584,800 update statements were issued

• 104,826,049 commits were issued

• 15.256 Gigabytes were sent back to the SQL*Net Client

• IOPS were not maxed out but were heavily utilized

Gigabytes Per Second

300 Megabytes per second not the
whole story...

8

• Latency of each operation remained in the high micro-
second or very low millisecond range

Notice that the CPU and network were heavily used. Moreover,
the block gets per second were amazingly high. In fact, we had
to add log files and increase them to 20GB in size (per log file)
in order to achieve these results.

We determined that we had effectively discovered the DISOD
CPU limit; however, we also concluded that the system had a
very good balance of hardware as-it-stood. Our only suggestion
to DELL was to split the compute nodes into smaller chunks,
thereby providing flexibility. For example, if DELL engineers had
used 2 processor compute nodes to create a 5 node RAC clus-
ter, we would have been able to discover the IO limitations with-
out pushing the physical core count beyond 100… A factor that
is extremely important to customers who do not have enterprise
license agreements with Oracle.

Our tests at the SanDisk Data Propulsion Lab showed that indi-
vidual ION bandwidth limitations maxed out at or around 7
Gigabytes/second as shown in figure 3 (FusionIO/Infiniband
Peak Performance). Their lab was much smaller and could not
compete with the DELL DISOD. However, it was not designed
to be an enterprise-level appliance. Instead, it consisted of only
2 compute nodes with (2) 10 core processors. Our maximum
web transactions per minute topped out around 70,000 on
these servers versus the 1.2 million that the DISOD produced.

We performed other tests in both the DELL and SanDisk labs
that taxed the CPU, IOPS, and storage-subsystem. In one test,

we created a 10 Billion row fact table and supporting dimension
tables with indexes on all of their foreign and primary key col-
umns. We wanted to show the difference between creating in-
dexes in a serial manner to creating them all at once using the
dbms_scheduler, Oracle supplied package. The results were
dramatic.

The parallel process completed all index rebuilds in only 36 sec-
onds. That is because the longest running index build took only
36 seconds and all of the indexes were created at the same

9

time. Mind you, the CPU utilization was nearly 100% for those
36 seconds. You could complete this very common task within
normal maintenance windows.

CPU, & Memory Requirements
Both transactional and warehousing systems require large
amounts of CPU time. You will cripple your database if you ne-
glect this factor. It is our sad experience that database profes-
sionals blame the storage professionals when asked why a da-
tabase is not performing at expected levels. Storage profession-
als resist such notions, stating that their storage arrays are
lightly used, not even approaching their advertised limits... and
so it goes, one side blaming the other for less than satisfactory
performance. Furthermore, both teams tend to gang up on the
network team when they realize that database and storage sys-
tems are largely idle, waiting on the each other. In every case,

we have seen that the real problem consists of poorly config-
ured databases, networks, and storage arrays. No one team is
completely responsible. They equally share the blame and must
cooperate in order to reach resolution.

Aside from IO requirements, database professionals must con-
sider parallel processing, system memory, and the network.

In one scenario, the authors dealt with an organization that pur-
chased an expensive Exadata server. Then, without consider-
ing the overarching consequences, their engineers turned off all
parallelism, throughout the database (All tables and indexes
were set to NOPARALLEL). This organization essentially cut
their Exadata system off at the legs. There was no way it could
perform adequately because most of its processor cores sat un-
used. Our suggestion was to open the parallel processes up,
allowing the system to function at its highest levels. After all,
once purchased, CPUs DO NOT gain interest. On the contrary,
they quickly depreciate. It is much better to over-use the system
than to artificially limit it.

We have also seen systems that have ample processing power
but are severely limited in total System Global Area (SGA) mem-
ory. For whatever reason, database professionals affix old limita-
tions to new technology. They resist the notion of large SGAs,
instead configuring instances with no more than 2 gigabytes of
SGA by default. It is possible that the DBA is attempting to re-
duce overall licensure costs by putting as many instances on a

00:00:00 00:28:48

PARALLEL-FIO (36 Seconds)

PARALLEL-SAS (11 Minutes 35 Seconds)

SERIAL-FIO (31 Minutes 24 Seconds)

SERIAL-SAS (3 Hours 16 Minutes 30 Seconds)

00:57:36 01:26:24 01:55:12 02:24:00 03:21:3602:52:48

10

single server as possible. However, this notion is like a two-
edged sword. On one hand, the DBA takes advantage of li-
cense costs, maximizing total instances per server. On the
other hand, the DBA figuratively neuters the database, prevent-
ing it from accomplishing its main tasks. For example, modern
sorting and aggregation requirements require large amounts of
SGA, sometimes ranging in the 100’s of gigabytes.

Network Requirements
Your datacenter may have shared disk arrays capable of mil-
lions of IOPS, microsecond latency, and gigantic bandwidth. If
you are lucky, you have a Tier-0 solid state storage device like
the DAAD storage cells. Unlike spinning disks, they deliver con-
sistent read and write performance in the 1 millisecond or less
range. What’s more, the right configuration can give you
99.999% uptime that typically outperforms slower spinners by a
factor of 10x.

The DAAD device has a maximum capacity of 12TB of redun-
dant storage space, per 2-unit pair, and consists of 8 SanDisk
ioMemory devices. In our tests, each ioMemory was carefully
mapped so that it provided maximum bandwidth and conven-
ient mirroring, similar to RAID-1. The DAAD pair was inter-
connected by two InfiniBand interfaces, used by SanDisk’s mir-
roring software. Each device had (4) 16 Gigabit Fibre Channel
cards that created a network fabric capable of sustaining more

than 5 Gigabytes per second to the database. Our actual
speeds using Fibre Channel averaged 5.2 Gigabytes per sec-
ond while our InfiniBand tests peaked at 7 Gigabytes per sec-
ond, per device. We could not find any other vendor who could
compete with SanDisk’s speed; however, their architecture is
only a few steps beyond simple-storage, block devices. You
must use Oracle’s Automatic Storage Management (ASM) to
provide redundancy beyond their mirroring functionality.

DAAD devices require adequate networking and it does you no
good to carefully plan database and storage servers with oo-
dles of RAM, CPU, and high-speed disks if you skimp on net-
work connectivity.

Transactional Test Setup
The Oracle Database Solutions Group created a tool called
SwingBench, for generating realistic, web-based load tests. It’s
an extensible Java based testing tool that empowers web devel-
opers to define their own classes; however, it is a great data-
base stress testing tool right out-of-the-chute.

The tool was easy to install. We simply downloaded the zip file
provided by Dominique Giles at the following link. The only
tricky part was that we were constrained to use the text only in-
terface instead of its nifty GUI.

Install Java

http://dominicgiles.com
http://dominicgiles.com

11

Swingbench is a Java program, so you must install the Java
JRE or SDK to use it. We downloaded it here. Our method of
choice is to download the tape archive (tar) file and then to un-
zip it into a common location. You can see from the following
command that our test server has Open JDK versions 1.3
through 1.7 installed.

[root@oel64 /home/oracle 1021]# cd /usr/lib
[root@oel64 /usr/lib 1022]# ll
total 108
drwxr-xr-x. 3 root root 4096 Jul 12 2013 anaconda-runtime
drwxr-xr-x. 3 root root 4096 Jul 12 2013 bonobo
drwxr-xr-x. 5 root root 4096 Jul 12 2013 ConsoleKit
drwxr-xr-x. 9 root root 4096 Jul 12 2013 cups
dr-xr-xr-x. 2 root root 4096 Nov 1 2011 games
drwxr-xr-x 3 root root 4096 Dec 20 2012 gcc
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.3.1
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.4.0
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.4.1
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.4.2
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.5.0
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.6.0
drwxr-xr-x. 2 root root 4096 Jul 23 2010 java-1.7.0
… truncated output.

We wanted to bring our installation up-to-date so, we removed
the symbolic links created by the yum installer and placed the
Oracle JDK in the same location as shown in the next com-
mands.

[root@oel64 /usr/lib 1043]# yum remove java
[root@oel64 /usr/lib 1044]# tar xvf /home/oracle/jdk-8u31-linux-x64.tar

Then, we created symbolic links to /usr/bin like so.

[root@oel64 /usr/bin 1073]# cd /usr/bin
[root@oel64 /usr/bin 1074]# unlink java

[root@oel64 /usr/bin 1075]# ln -s /usr/lib/jdk1.8.0_31/bin/java java

The yum command removes java and gets rid of several sym-
bolic links for us. It also removed all Open JDK versions in the
same command. We could have done the same thing by remov-
ing directories and unlinking but it was easier for us to simply
run the yum command. We can show what version of Java we
are on by issuing the next command.

[root@oel64 / 1079]# java -version
java version "1.8.0_31"
Java(TM) SE Runtime Environment (build 1.8.0_31-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.31-b07, mixed mode)

If you use this method, you can have many versions of Java on
your test server at the same time. Rolling forward or backward
is as easy as changing the symbolic link.

Install Swingbench

Swingbench is easier to install than Java. It is a simple matter
of unzipping the file downloaded from Dominique Giles web
site. Once downloaded, issue the following command in your
home directory as shown below.

[oracle@oel64 /usr/bin 676]$ cd /home/oracle
[oracle@oel64 ~ 677]$ tar xvf swingbench.tar

Install the Oracle Client

Swingbench provides a thin connection to Oracle so you do not
have to install the Oracle OCI client; however, we installed the

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

12

thick client because we needed to run additional testing against
the DISOD and we wanted to use the OCI client instead of the
thin client. We simplified the installation by running the yum in-
stall oracle-rdbms-server-12cR1-preinstall command. This
setup all of the system configurations automatically. It is, by far,
the fastest way to prepare a Linux host to receive either the Ora-
cle client or database.

[root@oel64 ~ 1001]# yum install oracle-rdbms-server-
12cR1-preinstal -y

Next, we created the /u01/app/oracle directory and granted own-
ership to the Oracle user, like so.

[root@oel64 / 1003]# mkdir -p /u01/app/oracle
[root@oel64 / 1004]# chown -R oracle:oinstall /u01
[root@oel64 / 1005]# su - oracle

We like to keep all of our Oracle-related files together, so we
created a directory under the /u01 folder named admin. Then,
we placed all of our downloads, scripts, and installation files in
this directory as follows.

[oracle@oel64 ~ 721]$ mkdir -p /u01/admin/script
[oracle@oel64 ~ 722]$ mkdir -p /u01/admin/download
[oracle@oel64 ~ 723]$ mkdir -p /u01/admin/install

[oracle@oel64 ~ 730]$ cd /u01/admin/install/
[oracle@oel64 /u01/admin/install 731]$ ll
total 8
drwxr-xr-x 8 oracle oracle 4096 Dec 7 2011 cpumonitor
drwx------ 12 oracle oracle 4096 Nov 1 13:41 swingbench

[oracle@oel64 /u01/admin/install 732]$ unzip
../download/linuxamd64_12102_client.zip

[oracle@oel64 /u01/admin/install 734]$ cd client

The Oracle client install was a snap because of these steps.
We simply kicked off the runInstaller program and followed Ora-
cle’s installation steps. We were able to run all of our tests from
this machine after installing Java, Swingbench, and the Oracle
client. We made sure the server was powerful enough to start
thousands of threads.

Run OEWizard

We had to create a swing bench schema and data to test with.
There is a built-in GUI but our setup required command-line in-
stead, so we issued the following.

[oracle@oel64 ~ 749]$ cd /u01/admin/install/swingbench/bin

[oracle@oel64 /u01/admin/install/swingbench/bin 750]$./oewizard -scale 100
-cs //disodFAI1.dbase.lab:1521/hamdb -dbap oracle -ts SOE -tc 80 -nopart -u
soe -p soe -cl -df "+DATA/soe.dbf" -create

Here is a list of all the parameters that the oewizard can re-
ceive. The list is extensive and we did not use all of them in the
previous command.

parameters:

-allindexes build all indexes for schema
-bigfile use big file tablespaces
-c <filename> wizard config file
-cl run in character mode
-compositepart use a composite paritioning model if it exisits

13

-compress use default compression model if it exists
-create create benchmarks schema
-cs <connectString> connectring for database
-dba <username> dba username for schema creation
-dbap <password> password for schema creation
-debug turn on debugging output
-debugf turn on debugging output to file (debug.log)
-df <datafile> datafile name used to create schema in
-drop drop benchmarks schema
-dt <driverType> driver type (oci|thin)
-g run in graphical mode (default)
-generate generate data for benchmark if available
-h,--help print this message
-hashpart use hash paritioning model if it exists
-hcccompress use HCC compression if it exisits
-nocompress don't use any database compression
-noindexes don't build any indexes for schema
-nopart don't use any database partitioning
-normalfile use normal file tablespaces
-oltpcompress use OLTP compression if it exisits
-p <password> password for benchmark schema
-part use default paritioning model if it exists
-pkindexes only create primary keys for schema
-rangepart use a range paritioning model if it exisits
-s run in silent mode
-scale <scale> mulitiplier for default config
-sp <soft partitions> the number of softparitions used. Defaults to cpu
count
-tc <thread count> the number of threads(parallelism) used to generate
data.
-ts <tablespace> tablespace to create schema in
-u <username> username for benchmark schema
-v run in verbose mode when running from command line
-version <version> version of the benchmark to run

The parameters we chose were:

-scale 100: creates a test schema that is 100 Gigabytes in size
-cs //disodFAI1.dbase.lab:1521/hamdb: tells the oewizard to create the test
schema on the disodFAI1.dbase.lab computer, port 1521, with a SID of hamdb.
-dbap oracle: tells the oewizard that our DBA password is oracle
-ts SOE: tells the oewizard that our target tablespace name is SOE
-tc 80: tells the oewizard to create the sample data with 80 threads
-nopart: tells the oewizard not to partition sample data tables
-u soe: tells the oewizard the sample schema username

-p soe: tells the oewizard the sample schema password
-cl: tells the oewizard to execute in character mode
-df “+DATA/soe.dbf”: tells the oewizard what datafile to use
-create: tells the oewizard to create a benchmark schema as well

That’s it! All we had to do was wait for the data to be created.
Once that was done, we edited only the first portion of the
swingconfig.xml file, located in our /u01/admin/install/
swingbench/bin directory. We had to provide a connection
string and driver type. The rest of the file remained unchanged.

<?xml version = '1.0' encoding = 'UTF-8'?>
<SwingBenchConfiguration
xmlns="http://www.dominicgiles.com/swingbench/config">
 <Name>"Order Entry (PLSQL) V2"</Name>
 <Comment>""</Comment>
 <Connection>
 <UserName>soe</UserName>
 <Password>soe</Password>
 <ConnectString>//disodFAI1.dbase.lab:1521/hamdb1</ConnectString>
 <DriverType>Oracle oci Driver</DriverType>
…truncated…

We started swing bench by issuing the charbench command.
You can see from this command that many of the parameter
switches are similar to the oewizard command. You can use it
as is as long as you change the connection string and user
count. Or, you can run the program in GUI mode.

$> ./charbench -c swingconfig_1.xml -cs //disodFAI1.dbase.lab:1521/hamdb1
-dt oci -cpuloc oraclelinux -u soe -p soe -uc 500 -min 0 -max 100 -a -v us-
ers,tpm,tps,cpu

If your network and security settings will allow it, we recom-
mend the GUI mode over the command line because you can
easily start, stop, and adjust settings. On the other hand, use

http://www.dominicgiles.com/swingbench/config
http://www.dominicgiles.com/swingbench/config

14

the command line if you are resource constrained or want to get
the most out of your test server.

Data Warehouse Key Points

1. Data Warehouse systems can be successful if
they create data that enables the business to
make better decisions

2. Data Warehouse systems require a high amount
of CPU, IO, and IOPS

3. Tuning must be designed in and include data
organization, presorting, and correctly applied
indexes

4. The DISOD Full table scanned: 6 billion rows in
44 seconds with flushed buffer cache and no
tuning

15

Data Warehouse Needs
The Data Warehouse Institute (DWI) defines business intelli-
gence as a process that includes both the technology and tools
required to turn data into business knowledge. Business knowl-
edge drives profitable business actions. Moreover, Colin White,
founder of BI Research, stated that the role of business intelli-
gence is to provide, “the applications, tools, techniques, poli-
cies, and procedures for supporting analytical processes.” He
argued that, “Information in and of itself is not useful. Even un-
derstanding information in and of itself is not useful. The goal of
analysis is to enable better decisions.”

Because data warehousing efforts are so essential to business
intelligence, warehouse engineers and business leaders respon-
sible for that data must:

• Accept the leadership and responsibility to create systems
that preserve business intention and need.

• Deliver data that is timely, valuable, of high quality, useful,
and represents the enterprise common truth.

• Reduce total business intelligence costs by migrating to-
ward managed or common systems of record instead of
propagating data sources.

Section 3

Data Warehouses

16

• Discover root causes of data discrepancy and provide
proper training at the source, to remediate the need for fre-
quent data scrubbing.

• Inspire trust within all employees, encouraging creative and
innovative methods of ensuring data integrity.

• Break down barriers between business data silos and en-
courage data sharing across the organization.

Furthermore, they must not:

• Create data and data warehouses/services for the sake of
having them.

• Focus on short-term goals while neglecting long-term vision.

• Rely only on complex technology to solve business prob-
lems.

• Discount one technology over another based on current
popularity.

• Excuse itself from adoption of industry best practice be-
cause internal problems are different from the community.

Companies who do not heed this advice are bound to fail in
their data warehousing efforts because their incorrect implemen-
tations will drive the cost of data warehouse projects too high
and cause project delays.

The price associated to incorrect implementation come in two
varieties, AKA hard and soft costs. We find that accountants
love to scrutinize hard costs over soft costs because hard costs
are easy to find and quantify; however, some soft costs can eas-
ily outgrow hard costs and exhaust multiple years of effort. For
example, some companies might cringe at the hard costs asso-
ciated to licensure of technology and opt for so-called free-
ware. Then, they are required to hire many, highly specialized,
engineers to hand-code solutions that may be trivial on the li-
censed platform. On the licensure side, the hard cost affixed in-
cludes maintenance and liability on the part of the software and
or hardware vendor. On the free-ware side, companies may
spend as much in employee salary as they will on the license,
and, In some cases, they may spend much more. Even if they
break even, those companies now have technical debt. Their
homegrown product must now be maintained year-over-year.
The end-result is that the free-ware method costs well beyond
what the hard costs might have been.

On the other hand, companies that maintain correct focus on
long-term vision while delivering on short-term gains tend to
consistently deliver business value in their data warehousing ef-
forts. When they are able to deliver data that is correct and
timely, they help their executives make good business deci-
sions that keep their company agile and competitive.

17

The ability to deliver data in a timely fashion becomes increas-
ingly difficult as data volume grows into the Terabytes. For this
reason many larger companies are turning to solutions provided
via Oracle Exadata and Hadoop-Hive/Spark technologies.
That’s because both products provide for massive parallel exe-
cution of data processing.

It may be that a company cannot afford large, enterprise level
systems that can cost millions of dollars for hardware alone. For
that reason, middle-tier solutions can fill the void between small
and enterprise systems. That’s why we like the DELL DISOD so
much. It’s price point is nice and it delivers a good balance of
CPU, Memory, and IO, all of which are mandatory for timely de-
livery of data.

To be successful, none of the CPU, Memory, and IO require-
ments can be neglected. For example, some might postulate
that loading their servers with physical RAM will undoubtedly
solve all of the warehouse needs. That’s where they would be
wrong. For one, the amount of money required to load their en-
tire databases into memory is cost prohibitive. What’s more,
that data has to be loaded from physical storage to the memory
at some time. If they have starved their systems of CPU and IO,
that load will take a very-long-time. Likewise, if engineers load
their servers with CPU and IO but neglect the amount of physi-
cal RAM the server has, they will undoubtedly cause their serv-
ers to swap memory to disk. It is far better to create systems

that are well-balanced and tuned to take full advantage of CPU,
Memory, and IO.

Data Warehouse Test Setup
We had to build a dataset of considerable size in order to test
the extent of the DELL DISOD. We wanted to arrange the data
into a dimensional model commonly known as the Star
Schema. In the Star Schema, descriptive data is loaded into
very wide but short tables called dimensions. Each row in a di-
mension represents unique attributes about the items a busi-
ness wishes to measure.

For example, typical data warehouses contain descriptive di-
mensions that define customers, products, and promotions.
Very deep but narrow tables, called facts are created that hold
only measurable events or values.

In our Star Schema, we created two facts to organize events
and earnings related to our video store model. The first fact was
for sales and the second was for rentals. It is possible that
these facts could have been merged but we wanted to tax the
DISOD so we created two very deep facts. Each contained
around 3 billion records. Our customer dimension held 5 million
rows, and our product dimension held more than 800 thousand
rows. Our date and promotion dimensions were relatively small.

Data Fabrication

18

Our data fabrication efforts were fairly simple but required a
large set of seed data. Our first several scripts loaded the DI-
SOD with large lists of names, and geographical information.
We wanted to create a store the size of Blockbuster™ that con-
tained a second arm of video rentals from kiosks like Red-
Box™.

We quickly realized that standard PL/SQL loops would be a
very slow a process. This was the case even with bulk-collect
methods. Instead, we turned to the trusty Create Table As
(CTAS) method. It was the fastest way we used to create and
move data. It is possible to reach the same speed if you signifi-
cantly alter “insert /*+ append */” statements but the
CTAS method was simple.

We also found that dynamic creation of iterators significantly ef-
fected our data creation efforts. We gained a speed increase of
4x when we created our iterator tables beforehand. They were
simple to make but we were memory constrained (even with
1TB SGA). For example, we could not create iterator tables in
the billions of rows without running out of memory. So we did
the following:

CREATE TABLE iterator_1m
PARALLEL 80
NOLOGGING
COMPRESS FOR OLTP
PCTFREE 0
AS
 SELECT level i
 FROM dual

CONNECT BY level <= 1000000;

We created iterator tables like this until we hit 1 billion rows.
Then, to overcome the memory limit and to speed the process
up, our 5 and 10 Billion row iterators used the following tech-
nique:

CREATE TABLE iterator_5b
PARALLEL 80
NOLOGGING
COMPRESS FOR OLTP
PCTFREE 0
AS
WITH
 BIG_TABLE AS
 (
 SELECT * FROM iterator_1b UNION ALL
 SELECT * FROM iterator_1b UNION ALL
 SELECT * FROM iterator_1b UNION ALL
 SELECT * FROM iterator_1b UNION ALL
 SELECT * FROM iterator_1b
)
SELECT rownum i
 FROM big_table;

Once we finished making our iterator tables, we used the Ora-
cle built-in package dbms_random to create random joins be-
tween our iterator tables and the lookup tables we loaded ear-
lier, like so (this block spans two pages):

CREATE TABLE CUSTOMER_DIM AS
WITH alpha AS (
SELECT
 ROWNUM row_num
, round(dbms_random.value(1, 8000)) address_number
, round(dbms_random.value(1, 38595)) street_name
, round(dbms_random.value(1, 38853)) zip_code
, round(dbms_random.value(1000000000000000, 9999999999999999)) credit_card
, round(dbms_random.value(1, 5)) credit_card_type
, round(dbms_random.value(1,3)) credit_term

19

, round(dbms_random.value(1920, 2000)) birth_year
, round(dbms_random.value(1,12)) birth_month
, round(dbms_random.value(1,30)) birth_day
, round(dbms_random.value(1,2)) gender
, round(dbms_random.value(15000, 125000)) income
, round(dbms_random.value(1,100)) race
, round(dbms_random.value(1,4000)) first_name
, round(dbms_random.value(1,4000)) middle_name
, round(dbms_random.value(1,997)) last_name
, round(dbms_random.value(1,9999999)) cell_phone
, round(dbms_random.value(1,9999999)) home_phone
, round(dbms_random.value(1,4000), 5) dt_created
FROM iterator_40m)
SELECT
 row_num customer_key
, 'USA' address_country
, A.address_number || ' ' || b.street_value || ' ' || c.city_name || ', '
|| c.state || ' ' || c.zip address_full
, A.address_number || ' ' || b.street_value address_primary
, NULL address_secondary
, NULL address_tertiary
, c.zip address_postcode
, c.state address_region
, cast((A.credit_card) AS varchar2(50)) credit_card
, CASE WHEN A.credit_card_type = 1 THEN 'AMEX'
 WHEN A.credit_card_type = 2 THEN 'VISA'
 WHEN A.credit_card_type = 3 THEN 'DISCOVER'
 WHEN A.credit_card_type = 4 THEN 'MASTER CARD'
 WHEN A.credit_card_type = 5 THEN 'OTHER'
 END credit_card_type
, CASE WHEN A.credit_term = 1 THEN '30 Days' WHEN A.credit_term = 2 THEN
'60 Days' WHEN A.credit_term = 3 THEN '90 Days' END credit_term
, cast(A.birth_year AS varchar2(4)) || CASE WHEN A.birth_month < 10 THEN
'0' || cast(A.birth_month AS varchar2(4)) ELSE cast(A.birth_month AS var-
char2(4)) END || CASE WHEN A.birth_day < 10 THEN '0' || cast(A.birth_day
AS varchar2(4)) ELSE cast(A.birth_day AS varchar2(4)) END DEMO-
GRAPHIC_BIRTHDATE
, CASE WHEN A.gender = 1 THEN 'M'
 WHEN A.gender = 2 THEN 'F'
 END DEMOGRAPHIC_GENDER
, A.income DEMOGRAPHIC_INCOME
, CASE WHEN A.race BETWEEN 1 AND 40 THEN 'WHITE'
 WHEN A.race BETWEEN 41 AND 59 THEN 'HISPANIC'
 WHEN A.race BETWEEN 60 AND 75 THEN 'BLACK'
 WHEN A.race BETWEEN 76 AND 100 THEN 'OTHER'
 END demographic_race

, CASE WHEN A.gender = 1 THEN fmn.gn_value
 WHEN A.gender = 2 THEN ffn.gn_value
 END || '.' ||
 CASE WHEN A.gender = 1 THEN mmn.gn_value
 WHEN A.gender = 2 THEN mfn.gn_value
 END || '.' ||
 ln.NAME || '@email.com' EMAIL
, NULL name_adopted
, ln.NAME name_family
, CASE WHEN A.gender = 1 THEN fmn.gn_value
 WHEN A.gender = 2 THEN ffn.gn_value
 END || ' ' ||
 CASE WHEN A.gender = 1 THEN mmn.gn_value
 WHEN A.gender = 2 THEN mfn.gn_value
 END || ' ' ||
 ln.NAME name_full
, CASE WHEN A.gender = 1 THEN fmn.gn_value
 WHEN A.gender = 2 THEN ffn.gn_value
 END || ' ' ||
 CASE WHEN A.gender = 1 THEN mmn.gn_value
 WHEN A.gender = 2 THEN mfn.gn_value
 END name_given
, '(' || c.areacode || ')' || A.cell_phone phone_cell
, NULL phone_fax
, '(' || c.areacode || ')' || A.home_phone phone_home
, NULL phone_pager
, sysdate - A.dt_created dt_created
, sysdate - A.dt_created DT_EFFECTIVE_START
, NULL DT_EFFECTIVE_END
, NULL dt_update
FROM alpha A
JOIN street_name b ON A.street_name = b.street_id
JOIN zip_city c ON A.zip_code = c.zip_city_id
JOIN list_male_name fmn ON fmn.gn_id = A.first_name
JOIN list_male_name mmn ON mmn.gn_id = A.middle_name
JOIN list_female_name ffn ON ffn.gn_id = A.first_name
JOIN list_female_name mfn ON mfn.gn_id = A.middle_name
JOIN list_last_name ln ON ln.list_id = A.last_name;

Using methods like these allowed us to create an extremely
large amount of realistic data in a very short period of time. The
DELL DISOD had plenty of resources so we used as much as
possible. If you attempt to do the same, you must remember

20

that our DISOD was very well equipped. Our total Physical
memory was 3TB, and our physical CPU cores totaled 80.

In addition, using prebuilt iterator tables and CTAS, we exten-
sively used the Oracle built in package, dbms_scheduler, to cre-
ate 80 simultaneous jobs that took our data creation efforts
from 20 hours to around 8. We wish to impress on your mind
the marvel that it was to create more than 200 Gigabytes of
sample data in less than 8 hours. Normal systems would have
difficulty producing that amount of data in 40 to 80 hours. Some
systems may never be able to complete the task in a reason-
able time.

Table Tuning

In order to see how fast the DISOD performed under different
conditions, we created several copies of our video store
schema. Those copies were used to test the way the DISOD
handled real-world scenarios. Key variables included:

• Indexing (B-Tree & Bitmap)

• Partitioning - interval on date columns

• Compression - OLTP

• In-memory Column Storage and Compression

• Pre sorting data

• The PCTFREE parameter

• The Degree of Parallelism

Typical data warehouses are queried via AdHoc tools that
shield business analysts from the writing of large and compli-
cated SQL. These tools limit the way SQL can be written, opting
out of performance in favor of database agnosticism. For this
reason, we developed 4 queries that simulate the way that Ad-
Hoc tools perform queries against Star Schemas.

Our first query forces a full scan of the rental_item_fact. Our
second query aggregates the sales of product by genre and
state for the December 2012 time period. Our third query per-
forms a pivot and then aggregates sales by region and year
from 2004 to 2014. Finally, our fourth query aggregates sales
by product genre for a single state over the life of the product.

We could have written many more queries but we wanted to fo-
cus on these four, simple ways to clearly measure how much
work the DISOD could do, with different table and indexing con-
figurations. We used the Linux Screen tool and PL/SQL to run
all four queries while collecting system statistics. We were very
pleased with the results.

Test Results

21

Our real time statistics package came from the Oracle 11g PL/
SQL Programming Workbook, Oracle 12c PL/SQL Program-
ming Guide, and Oracle 12c PL/SQL Advanced Programming
books (particular attention to Chapter 10 of the Advanced Pro-
graming book). This package enabled us to view all of the sys-
tem statistics, including the ASM subsystem.

The DELL DISOD performed beautifully in our data warehouse
tests. We ran each test several times and then averaged the re-
sults to make sure our numbers were consistent. In all, our
warehouse tests took a little more than 8 hours to complete.
During this time the DISOD had:

• 5.7 Gigabytes per second sustained IO

• 95% CPU utilization (8 x 10c E7 processors)

• Full table scan: 6 billion rows in 44 seconds with flushed
buffer cache

• 13 second full scan from cache after tuning

• 5,800 multiblock reads per second (db_file_multi-
block_read_count=128)

• 742,400 blocks read per second

• Easily met the 7000 IOPs required for rapid query returns

We compared these results to a standard 2 Node RAC cluster,
with traditional spinning disks. The best it could do was:

• 0.5 Gigabytes per second sustained IO

• Full Table Scan: 41 million rows in 8 seconds with flushed
buffer cache

Furthermore, our tuning efforts showed that the DISOD com-
pleted the 6 billion row scan in as little as 13 seconds!

• 6 billion rows scanned in 44 seconds, buffer flushed, no tun-
ing

• 6 billion rows scanned in 25 seconds tuned, buffer flushed

• 6 billion rows scanned in 13 seconds tuned, cached

We were incredibly impressed with the DELL DISOD and would
recommend the solution to any shop wishing to span the gap
between small/medium and large systems like Oracle Exadata.
We have equal praise for Oracle’s products and have been
happy with their performance. Our experience with Exadata
spans multiple years and the purchase and configuration of
five, Exadata quarter-RAC systems. While we are happy with
Oracle, we recognize the need for a mid-range solution. We
feel that DELL nailed it and are happy to endorse their product.
Our tests demonstrate clearly that DISOD is compelling for ei-
ther transactional or data warehouse loads – or both! Hybrid de-

22

ployments are feasible If intelligently managed using Resource
Management Groups and Pluggable Databases.

xxiii

John Harper currently works for workfront.com as a
Data Architect and Sr. Database Administrator. He also
worked for the Church of Jesus Christ of Latter-day
Saints as a principal database engineer. He thoroughly
enjoys working with data warehousing, business
intelligence, and database engineers there. He has been
working with databases for the past 14 years,
specializing in Oracle administration, database
architecture, database programming, database security,
and information quality.

John’s mentors include Michael McLaughlin, Robert
Freeman, Danette McGilvary, and many others who
have spent considerable time becoming experts in their
industry. John is both awed and inspired by their abilities
and feels lucky to be associated with them.

Recently, John has had the opportunity to work closely
with some of the top-notch minds in database security.
He hopes to produce a series of publications focused on
Oracle products such as Oracle Audit Vault and
Database Firewall (AVDF) and Oracle Data Redaction.

About the Authors

xxiv

John enjoys Japanese martial arts. During his teenage
years and early adulthood, he took jujitsu, karate, judo,
and aikido. He loves aikido and hopes to teach it one
day. He would also love to learn kyudo if he can find any
spare time. John lives with his wife of 24 years in
Northern Utah County, Utah. They have two adopted
daughters, whom they cherish and thoroughly spoil.

John’s blog is at http://security.mclaughlinsoftware.com.

Brandon Hawkes is a database engineer for USANNA.
He also worked for the Church of Jesus Christ of Latter-
day Saints.

He is responsible for maintaining the principal data
warehouse. He enjoys developing business intelligence
solutions that improve database performance.

Brandon graduated from BYU–Idaho with a degree in
financial economics and a minor in computer information
technology. He currently lives in Utah with his wife and
three kids. During his free time, Brandon plays semi-pro
football in the Rocky Mountain Football League, and he
referees high-school football and basketball.

Michael McLaughlin, D.C.S., is a professor at BYU–
Idaho in the Computer Information Technology
Department of the Business and Communication
College. He is also the founder of McLaughlin Software,
LLC, and is active in the Utah Oracle Users Group. He is
the author of eight other Oracle Press books, such as
Oracle Database 12c PL/SQL Programming, Oracle
Database 11g PL/SQL Programming, and Oracle
Database 11g PL/SQL Workbook.

Michael has been writing PL/SQL since it was an add-on
product for Oracle 6. He also writes C, C++, Java, Perl,
PHP, and Python.

Michael worked at Oracle Corporation for over eight
years in consulting, development, and support. While at
Oracle, he led the release engineering efforts for the
direct path CRM upgrade of Oracle Applications 11i
(11.5.8 and 11.5.9) and led PL/SQL forward compatibility
testing for Oracle Applications 11i with Oracle Database
9i. He is the inventor of the ATOMS transaction
architecture (U.S. Patents #7,206,805 and #7,290,056).
The patents are assigned to Oracle Corporation.

http://security.mclaughlinsoftware.com
http://security.mclaughlinsoftware.com

xxv

Prior to his tenure at Oracle Corporation, Michael
worked as an Oracle developer, systems and business
analyst, and DBA beginning with Oracle 6.

Michael lives in eastern Idaho within a two-hour drive to
Caribou-Targhee National Forest, Grand Teton National
Park, and Yellowstone National Park. He enjoys outdoor
activities with his wife and children (six of nine of whom
still live at home).

Michael’s blog is at http://blog.mclaughlinsoftware.com.
His twitter handle is @MacLochlainn.

http://blog.mclaughlinsoftware.com
http://blog.mclaughlinsoftware.com

B-Tree
In computer science, a B-tree is a tree data structure that keeps data sorted and al-
lows searches, sequential access, insertions, and deletions in logarithmic time. The B-
tree is a generalization of a binary search tree in that a node can have more than two
children (Comer 1979, p. 123). Unlike self-balancing binary search trees, the B-tree is
optimized for systems that read and write large blocks of data. It is commonly used in
databases and filesystems.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

Big Data
Big data is a broad term for data sets so large or complex that traditional data process-
ing applications are inadequate. Challenges include analysis, capture, curation,
search, sharing, storage, transfer, visualization, and information privacy. The term of-
ten refers simply to the use of predictive analytics or other certain advanced methods
to extract value from data, and seldom to a particular size of data set.

Source: Wikipedia

Related Glossary Terms

Index

RDBMS

Find Term

Business Intelligence (BI)
Business intelligence (BI) is the set of techniques and tools for the transformation of
raw data into meaningful and useful information for business analysis purposes. BI
technologies are capable of handling large amounts of unstructured data to help iden-
tify, develop and otherwise create new strategic business opportunities. The goal of BI
is to allow for the easy interpretation of these large volumes of data. Identifying new op-
portunities and implementing an effective strategy based on insights can provide busi-
nesses with a competitive market advantage and long-term stability.

BI technologies provide historical, current and predictive views of business operations.
Common functions of business intelligence technologies are reporting, online analyti-
cal processing, analytics,data mining, process mining, complex event processing, busi-
ness performance management, benchmarking, text mining, predictive analytics and
prescriptive analytics.

BI can be used to support a wide range of business decisions ranging from operational
to strategic. Basic operating decisions include product positioning or pricing. Strategic
business decisions include priorities, goals and directions at the broadest level. In all
cases, BI is most effective when it combines data derived from the market in which a
company operates (external data) with data from company sources internal to the busi-
ness such as financial and operations data (internal data). When combined, external
and internal data can provide a more complete picture which, in effect, creates an "in-
telligence" that cannot be derived by any singular set of data.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

DAAD
The Dell Acceleration Appliances for Databases (DAAD) storage array is a high per-
formance, low-latency, backend, shared, storage device. Each unit contains 4 SanDisk
ioDrive2 PCI-E NAND flash storage cards, 2 dual-port 16Gb Fiber Channel cards, and
1 dual-port Mellanox ConnectX-3 40Gb iSCSI card for the dedicated mirroring interconnect.
The DAAD is an essential component in the Dell Integrated System for Oracle Databases
(DISOD) and is capable of incredible speed, low-latency, and >1M IOPS.

Related Glossary Terms

Index

DISOD, Terabyte

Find Term

DISOD
The Dell Integrated System for Oracle Database (DISOD) is a fully integrated hardware
stack that is purpose built as a high performance Oracle Database rack solution.
DISOD provides an out-of-box experience for customers where everything up to the
point of the Oracle Database software installation is pre-configured and pre-installed.
DISOD ships with pre-integrated racked, stacked and cabled hardware and with
Oracle Linux with Unbreakable Enterprise Kernel (UEK) operating system software
pre-installed and optimized. For the purpose of our testing, the DISOD was configured
with Oracle Database 12c (12.1.0.1), although the DISOD supports Oracle Database
versions back to 10g. The owner’s guide below provides the details on the DISOD
hardware components, rack and cabling information, and network and software configuration.

For detailed hardware and software configurations, please refer to:
Dell Integrated Systems for Oracle Databases: Owner’s Guide 1.1

Related Glossary Terms

Index

DAAD, Terabyte

Find Term

CAREY_DIETERT
Typewritten Text

CAREY_DIETERT
Typewritten Text

http://en.community.dell.com/techcenter/enterprise-solutions/m/oracle_db_gallery/20440521/download

Exadata
Oracle Exadata is an architecture featuring scaleout industry-standard database servers,
scale-out intelligent storage servers, and a high speed InfiniBand internal fabric that connects
all servers and storage. Unique software algorithms in Exadata implement database intelligence
in storage, PCI based flash, and InfiniBand networking to deliver higher performance and capacity.
Four sizes of the Exadata Database Machine X4-2 are available, starting from the eighth rack
system with 2 database servers and 3 Exadata Storage Servers, to the full rack system with
8 database servers and 14 Exadata Storage Servers.

Source: Oracle Exadata Database Machine X4-2 Data Sheet

Related Glossary Terms

Index

Drag related terms here

Find Term

http://www.oracle.com/technetwork/database/exadata/exadata-dbmachine-x4-2-ds-2076448.pdf

Gigabyte
One gigabyte is 1,000,000,000 bytes. This definition is used in all contexts of science,
engineering, business, and many areas of computing. However, historically, the term
has also been used in some fields of computer science and information technology to
denote the gibibyte, or 1073741824 (10243 or 230) bytes. For instance, the memory
standards of JEDEC, a semiconductor trade and engineering society, define memory
sizes in this way.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

IOPS
IOPS (Input/Output Operations Per Second, pronounced eye-ops) is a common per-
formance measurement used to benchmark computer storage devices like hard disk
drives (HDD), solid state drives (SSD), and storage area networks (SAN). As with any
benchmark, IOPS numbers published by storage device manufacturers do not guaran-
tee real-world application performance.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

JSON
JSON (/ˈdʒeɪsən/ jay-sən), or JavaScript Object Notation, is an open standard format
that uses human-readable text to transmit data objects consisting of attribute–value
pairs. It is used primarily to transmit data between a server and web application, as an
alternative to XML.

Source: Wikipedia

Related Glossary Terms

Index

RDBMS

Find Term

OLTP
Online transaction processing, or OLTP, is a class of information systems that facilitate
and manage transaction-oriented applications, typically for data entry and retrieval
transaction processing. The term is somewhat ambiguous; some understand a "trans-
action" in the context of computer or database transactions, while others (such as the
Transaction Processing Performance Council) define it in terms of business or commer-
cial transactions. OLTP has also been used to refer to processing in which the system
responds immediately to user requests. An automated teller machine (ATM) for a bank
is an example of a commercial transaction processing application. Online transaction
processing applications are high throughput and insert or update-intensive in database
management. These applications are used concurrently by hundreds of users. The key
goals of OLTP applications are availability, speed, concurrency and recoverability. Re-
duced paper trails and the faster, more accurate forecast for revenues and expenses
are both examples of how OLTP makes things simpler for businesses. However, like
many modern online information technology solutions, some systems require offline
maintenance, which further affects the cost-benefit analysis of online transaction proc-
essing system.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

One to Many
In relational data modeling a one to many relationship exists when one parent is corre-
lated with many children. For example a person can have more than one phone num-
ber. This is accomplished via unique keys called primary keys and child reference keys
called foreign keys. The PERSON table owns a PERSON_ID unique identifier, which
is referenced in the PHONE table like so:

PERSON TELEPHONE
======= ==========
person_id -||------------0< person_id
 telephone_id
 telephone_value

PERSON_ID GIVEN_NAME FAMILY_NAME
 1 FRED FLINSTONE

PERSON_ID TELEPHONE_ID TELEPHONE_VALUE
 1 1 +1 123 555-1234
 1 2 +1 123 555-2345
 1 3 +1 123 555-3456

Related Glossary Terms

Index

Drag related terms here

Find Term

RAM
Random-access memory (RAM /ræm/) is a form of computer data storage. A random-
access memory device allows data items to be read and written in roughly the same
amount of time regardless of the order in which data items are accessed. In contrast,
with other direct-access data storage media such as hard disks, CD-RWs, DVD-RWs
and the older drum memory, the time required to read and write data items varies sig-
nificantly depending on their physical locations on the recording medium, due to me-
chanical limitations such as media rotation speeds and arm movement delays.

Today, random-access memory takes the form of integrated circuits. RAM is normally
associated with volatile types of memory (such as DRAM memory modules), where
stored information is lost if power is removed, although many efforts have been made
to develop non-volatile RAM chips. Other types of non-volatile memory exist that allow
random access for read operations, but either do not allow write operations or have
limitations on them. These include most types of ROM and a type of flash memory
called NOR-Flash.

Integrated-circuit RAM chips came into the market in the late 1960s, with the first com-
mercially available DRAM chip, the Intel 1103, introduced in October 1970.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

RDBMS
Relational Database Management Systems make up the bulk of transactional data-
bases worldwide. They are based on the relational model, invented by Dr. Edgar F
Codd, of IBM’s San Jose Research Laboratory.

E.F. Codd suggested that hierarchal and network databases contained crucial flaws
that caused data to be out-of-date or orphaned due to transactional anomalies. What’s
more, legacy database systems required the creation of complex programming to both
put data in and retrieve it out of its databanks.

A modern-day example of hierarchal databases is the XML structure. Unlike databases
in the past, XML can be easily queried and is less rigid; however, the XML structure re-
mains hierarchal none-the-less.

Oracle’s current offering includes true object-oriented structures, XML, JSON, and rela-
tional database structures. This is why Oracle makes the distinction that they are an
Object Relational Database Management System (ORDBMS).

Related Glossary Terms

Index

Big Data, JSON, XML

Find Term

SGA
In the database management systems developed by the Oracle Corporation, the Sys-
tem Global Area (SGA) forms the part of the system memory (RAM) shared by all the
processes belonging to a single Oracle database instance. The SGA contains all infor-
mation necessary for the instance operation.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

SQL
SQL (i/ˈɛs kjuː ˈɛl/, or i/ˈsiːkwəl/; Structured Query Language) is a special-purpose pro-
gramming language designed for managing data held in a relational database manage-
ment system (RDBMS), or for stream processing in a relational data stream manage-
ment system (RDSMS).

Originally based upon relational algebra and tuple relational calculus, SQL consists of
a data definition language and a data manipulation language. The scope of SQL in-
cludes data insert, query, update and delete, schema creation and modification, and
data access control. Although SQL is often described as, and to a great extent is, a de-
clarative language (4GL), it also includes procedural elements.

SQL was one of the first commercial languages for Edgar F. Codd's relational model,
as described in his influential 1970 paper, "A Relational Model of Data for Large
Shared Data Banks." Despite not entirely adhering to the relational model as de-
scribed by Codd, it became the most widely used database language.

SQL became a standard of the American National Standards Institute (ANSI) in 1986,
and of the International Organization for Standardization (ISO) in 1987.Since then, the
standard has been revised to include a larger set of features. Despite the existence of
such standards, though, most SQL code is not completely portable among different da-
tabase systems without adjustments.

Source: Wikipedia

Related Glossary Terms

Index

Drag related terms here

Find Term

Terabyte
The terabyte is a multiple of the unit byte for digital information. The prefix tera repre-
sents the fourth power of 1000, and means 1012 in the International System of Units
(SI), and therefore one terabyte is one trillion (short scale) bytes. The unit symbol for
the terabyte is TB.

1 TB = 1000000000000bytes = 1012bytes = 1000gigabytes.

Source: Wikipedia

Related Glossary Terms

Index

DAAD, DISOD

Find Term

XML
Extensible Markup Language (XML) is a markup language that defines a set of rules
for encoding documents in a format which is both human-readable and machine-
readable. It is defined by the W3C's XML 1.0 Specification and by several other related
specifications, all of which are free open standards.

The design goals of XML emphasize simplicity, generality and usability across the
Internet.[5] It is a textual data format with strong support viaUnicode for different hu-
man languages. Although the design of XML focuses on documents, it is widely used
for the representation of arbitrary data structures such as those used in web services.

Source: Wikipedia

Related Glossary Terms

Index

RDBMS

Find Term

Zettabyte
A zettabyte is one sextillion bytes of contiguous information. Mark Liberman, an Ameri-
can linguist and professor in both phonetics and computer science at the University of
Pennsylvania theorizes that all human speech ever spoken would fill 43 zettabytes if it
were digitized with 16-bit audio.

Related Glossary Terms

Index

Drag related terms here

Find Term

