

T EC H D O S S I E R

CONTAINERS AND MICROSERVICES ARE
REINVENTING SOFTWARE APPLICATIONS

Modular, building-block approaches to
application development and deployment
are gaining traction.

Only a small percentage of organizations think of them-

selves as software companies. On a fundamental level,

however, almost every organization in our modern world

depends on an extensive software foundation to power

their operations. Without an underpinning of flexible,

scalable, and highly reliable software, most organizations

would have a tough time surviving, much less thriving.

INSIDE

Microservices, virtual
machines and containers

3

Containers and microservices
come with challenges

4

Sidebar: Dell EMC engineered
systems

5

Realizing the
microservices vision

8

Containers and OpenStack7
OpenStack Magnum
OpenStack Zun

Managing and
orchestrating containers

6

 with all the talk

of digital and business transformation, the infusion of software into almost all busi-

ness activities is continuing to accelerate. But it isn’t just business models that are

changing. Software itself has had to transform to keep pace with the increasing

demands it faces, and the expanding capabilities it must deliver.

TODAY,
One of the central elements of this software
transformation is to move away from mono-
lithic applications that consist of hundreds of
thousands of lines of interdependent and—as
a result—inflexible code, to service-oriented
models. In a service-oriented model, developers
create discrete, modular “microservices,” each
of which performs a specific function or small
group of functions. These building-block pieces
of code can be combined and recombined in
innumerable ways to create full-blown applica-
tions that replace—and improve upon—their
monolithic-code predecessors. This new appli-
cation model provides greater speed and agility
in meeting user needs and helps organizations
quickly respond to market changes.

While conceptually compelling, the microservices
software model is far from simple to achieve.
Beyond the challenges of creating and integrating
hundreds, if not thousands, of individual services,
the surrounding environments in which these
modules must operate are also in a state of flux.

The past decade has seen the proliferation of
virtualized environments that provide a layer of
separation between the software code and the
hardware platforms on which it runs. Another
pervasive trend, cloud computing, is provid-
ing flexible, shared, and scalable environments
that exploit virtualization, automation, resource
pooling, and other cutting-edge architectures
and technologies, including containers.

Modern containers serve as powerful vehicles
that organizations can leverage to more easily
exploit cloud infrastructure and adopt microser-
vices. In essence, containers are standards-
based wrappers that can be used to envelop
microservices, making them easier to distribute,
deploy, and orchestrate on any platform. Thanks
to containers, the long-standing software devel-

opment objective of “write once, run anywhere,”
is becoming more readily achievable.

Container technology has emerged largely
because of open source software community ef-
forts, primarily via an initiative (now a company)
called Docker®. Docker took a complicated Linux
technology that had been around for over a de-
cade and made it understandable and usable by a
broad range of application developers and opera-
tions professionals. Since Docker’s initial open
source release in 2013, the company’s containers
and tools have become de facto standards on
Linux® platforms, with Windows platform sup-
port in the works. In June 2015, in order to help
stabilize and accelerate the adoption of contain-
ers, 21 companies, including Docker, formed
the Open Container Initiative (OCI) to establish
industry standards around container formats and
runtimes. The OCI, working under the auspices of
the Linux Foundation, is basing its efforts on the
Docker container format and runC runtime.

Containers are well suited to cloud-native apps
and cloud computing as evidenced by the sup-
port provided for containers in the leading plat-
form-as-a-service (PaaS) environments such as
Cloud Foundry and Red Hat® OpenShift, and in
the leading cloud platforms such as Microsoft®
Azure, Amazon® Web Services, and OpenStack®,
the popular open source cloud infrastructure
and deployment framework. Driven by growing
interest in containers among OpenStack users,
the OpenStack community has launched several
initiatives to help organizations create and use
containers within that cloud environment.

In this Tech Dossier, we briefly explain the
functionality and the interrelationships of
microservices, containers, and the complemen-
tary technology of virtual machines. We also
describe some of the main orchestration tools


T EC H D O S S I E R

2

https://www.opencontainers.org/
https://www.opencontainers.org/

and supporting technologies for containers
available to developers, as well as outline key
OpenStack projects that support containers.
The dossier concludes with a brief assessment
of the importance of containers and microser-
vices for the future of IT.

Microservices, virtual
machines, and containers
Before exploring the current activity related to
containers and microservices, it’s important to
understand how these technologies relate to
one another and to the well-established tech-
nology of virtual machines (VMs). In practice,
microservices, containers, and VMs are largely
complementary, and can beneficially interact
with one another in a variety of ways.

VMs run on top of a hypervisor layer that sepa-
rates them from the host hardware and operat-
ing system. (Hypervisors can also run directly on
bare metal.) A virtual machine contains its own
operating system instance (which can be differ-
ent from the host platform’s OS, if desired),
applications, and support libraries. The hyper-

visor acts as a translation layer between the
underlying OS and the OS(s) in the virtual
machines, meaning that a single hardware
platform can support multiple operating system
instances, and a variety of software applications.

Application containers, by comparison, don’t
require their own OS instances or hypervisors.
Instead, they utilize features of the host’s op-
erating system to wrap resources—application
code, runtime, system tools, system libraries in
compact packages—and to isolate them from
other containers. Like VMs, application contain-
ers share the host system’s compute, network-
ing, and storage resources.

To effectively operationalize containers, a sup-
porting infrastructure is required. This infrastruc-
ture comprises several toolsets and technolo-
gies, including a container-optimized operating
system, networking and storage infrastructure,
runtime components, and image creation and
management tools. As with containers them-
selves, these toolsets are most often open
source, which facilitates rapid innovation but can
also pose challenges as there are many different
approaches to solving problems.

VIRTUAL MACHINES AND CONTAINERS:
KEY DIFFERENCES

Virtual Machine Environment Container Environment
Virtual machines run on their own operating system

instances and are managed by a hypervisor that functions
as translator between them and the host OS.

Containers do not require a hypervisor and share
resources of the host operating system, making them

much smaller and more agile than virtual machines.


T EC H D O S S I E R

Guest OS Guest OS Guest OS

Host Host

Host OS Host OS

ContainerContainer Container

3

Hypervisor

VM VM VM

Because application containers don’t include a
full OS, containers can be orders of magnitude
smaller than VMs. Making containers even
more efficient was Docker’s “invention” of con-
tainer images, which are essentially snapshots
of container file systems that can be stored on
disks. Because the container image only needs
to store the bits that are different from its par-
ent image, each image can be quite small.

The smaller size of container images—mega-
bytes vs. gigabytes, potentially—also means
containers can be created faster and started
up in milliseconds rather than the minutes it
may take to launch a VM. In addition, because
containers have direct access to device drivers
through the host OS kernel, their I/O operations
can be much faster than their VM equivalents.

Containers and microservices
come with challenges
While containers provide benefits for service-
oriented applications, this technology has
some notable challenges, security in particular.
As mentioned above, containers share much
of the underlying OS kernel along with many
libraries and binaries. This interplay introduces
dependences that, if not properly managed,
can negatively impact container portability.

This sharing of the OS kernel also means that
containers have a deep level of authorization
(usually root access in Linux environments), so
are less isolated than VMs. A bug in the kernel
affects every container, and flaws and attacks
have a much greater potential to carry down into
an underlying OS and over into other containers.

To address security concerns, containers can
be run inside a VM, which provides a greater
degree of isolation for the application from the
underlying platform. A key trade-off of this ap-
proach, however, is the loss of the lightweight
execution environment provided by containers.

Is the reverse—running a VM in a container—
advised? Theoretically, containerizing VMs
with their associated apps could be a way to
increase application portability between vari-
ous clouds. While possible, because VMs have
specific process and functional requirements
for the underlying operating system, these re-
quirements may not be effectively supported in
containers. As a result, the VMs-in-containers

scenario introduces significant complexities
and challenges.

The fact that containers are small, lightweight,
and can be created quickly can also cause
problems. These characteristics can easily lead
to container sprawl and create situations where
more data center resources are consumed than
needed. Container management and orches-
tration toolsets are evolving rapidly to address
challenges related to container sprawl.

As for microservices, they can be instantiated
as either individual services or functionally
integrated collections of several services. De-
velopers, however, must consider a number of
architecture styles and design principles when
creating microservices. A microservices archi-
tecture is an approach to developing software
applications composed from a collection of
small services, each running in its own process
and communicating with lightweight mecha-
nisms. These services are small, fine-grained,
and designed to perform a single function. Ser-
vices are built around business capabilities and
independently deployable by fully automated
deployment machinery; they are designed to
embrace failure and faults, and each service is
elastic, resilient, composable, and complete.

Microservices architectures greatly increase
the ability to iterate, scale, and make continu-
ous delivery (CD) and continuous integration
(CI) of software applications possible. CD/CI
methods accelerate software deployment and
operations by enabling software to be updated
dynamically and continuously. Similarly, soft-
ware development processes and tooling have
evolved to more agile methods that can refine
and iterate software code rapidly.

With these advances, however, comes an-
other new challenge: How can the historically
separate software operations and software de-
velopment systems and processes be coupled
without creating bottlenecks or choke points?
Creating this seamless bond between opera-
tions and development is where DevOps comes
in. DevOps is a methodology that gets devel-
opers and operations to work together and
decrease friction while increasing the velocity
of software environments.

Defining and describing DevOps is beyond
the scope of this paper, but it is important to
note that DevOps provides key operational


T EC H D O S S I E R

4

• Dell EMC Native Hybrid Cloud

A turnkey Pivotal Cloud Foundry devel-

oper platform that accelerates and

simplifies cloud-native application devel-

opment and delivery. The solution inte-

grates a marketplace of Developer and IT

Ops Services with PaaS and a choice of

infrastructure-as-a-service (IaaS) technol-

ogies to provide a complete cloud-native

solution that is supported and sustained

as one product.

IT groups are providing acceleration to their organizations with engineered systems. Examples of these

solutions include:

When evaluating any provider to be your technology partner, it’s important to weigh that provider’s ability

to meet your needs both today and in the future. Dell EMC’s ability to help you pick your best path to cloud

and new technologies like containers is founded in a deep technical understanding and management of

complexity and costs along the way. Providing a choice of integrated solution stacks and the underlying

technologies used in them is what makes Dell EMC a leader in the marketplace, and the chosen tech-

nology partner for organizations across the globe—from small startups to large hosting providers.

DELL EMC ENGINEERED SYSTEMS
SIDEBAR

• Dell EMC Red Hat OpenStack Cloud

An integrated, modular, open platform

for flexible, agile, and scalable cloud

environments. Customize your IaaS

environment and prepare for the future

with a validated core architecture and

certified options, including options for

PaaS and software-defined networking

from the OpenStack community—all

supported by the industry’s leading

cloud solution providers.

Providing a choice of integrated solution stacks and the underlying technol-
ogies used in them is what makes Dell EMC a leader in the marketplace.


T EC H D O S S I E R

aspects for modern cloud applications in areas
such as automated build and release, configu-
ration management, and performance man-
agement. In short, containers, microservices,
DevOps, and cloud go together to deliver
applications that can autoscale, be rapidly
updated and improved, and be reconfigured
dynamically to meet the changing needs of
businesses and users.

The ultimate configuration and deployment
approach selected for microservices, con-
tainers, and VMs will vary greatly depending
on several variables—performance, storage
capacity, security, interoperability, etc.—that
must be considered and assessed for any given
use case. Similarly, the roster of toolsets and
technologies deployed to create a container
environment will vary greatly from organization
to organization, making the identification and
transfer of best practices difficult.

Managing and
orchestrating containers
Some of the biggest challenges associated with
containers aren’t involved with creating individ-
ual modules. Rather, they are the challenges re-
lated to managing and orchestrating what may
be thousands of individual containers (container
sprawl)—some potentially located on different
platforms and in different geographic locations.
If you can’t rapidly and dependably aggregate
containers and the microservices they carry to
deliver the end-to-end functionality required for
any application, the entire container environ-
ment can quickly crumble.

Fortunately, there are several container orches-
tration engines and platforms available, offering
a range of capabilities and functionality. Note:
Container orchestration and management
tools are evolving very rapidly and no one tool
or platform can address all of the challenges
associated with managing containers. Some
of the best-established orchestration tools
include the following:

• Docker Swarm—As noted, Docker
spearheaded the concept and delivery
of container images, and Docker Swarm
supports native clustering for Docker
containers. This lets you turn a group
of Docker engines into a single, virtual
Docker engine.

• Kubernetes—An open source orches-
tration system for containers that handles
scheduling and manages workloads based
on user-defined parameters.

• Apache Mesos—Can be used to deploy
and manage application containers in
large-scale clustered environments.

• Cloud Foundry—An open source PaaS
for developing, deploying and running
apps in private or public clouds.

• CoreOS Fleet—Deploys Docker con-
tainers across a cluster.

• RancherOS—Deploys containers across
a cluster and simplifies the building of
container images.

• CloudSlang—An open source proj-
ect within Hewlett Packard Enterprise
intended to orchestrate container-based
solutions such as Docker and CoreOS us-
ing ready-made workflows.

• Mesosphere Marathon—Launches
long-running applications, and is applica-
tion aware and intelligent.

Beyond these focused container orchestration
engines, there are several cloud and application
environments that include container management
and orchestration capabilities as part of their
broader functionality. Among them:

• Pivotal Cloud Foundry—A complete,
developer-focused cloud-native platform
that delivers sophisticated infrastructure-
focused management controls, includ-
ing one of the most complete container
management capabilities available.

• Red Hat OpenShift—A Kubernetes-
based PaaS solution that goes beyond
native Kubernetes capabilities by offering
application staging and testing integra-
tions and a rich web user interface into
common role-based access control
(RBAC) engines.

• Red Hat CloudForms—Initially a
cloud/OpenStack-focused manage-
ment platform, the PaaS environment is
expanding to support management of
Microsoft Azure-based infrastructure
services as well as Kubernetes-based
container platforms.

Use OpenStack and containers to:

ACCELERATE
AND STABILIZE AN
OPENSTACK
ENVIRONMENT

DEPLOY
APPICATIONS ON
BARE METAL

CREATE CLOUD-
NATIVE APPS ON
VIRTUAL MACHINES

DELIVER
HIGHLY AGILE
MICROSERVICES
WITH OPENSTACK

1

2

3

4


T EC H D O S S I E R

6

4
FUNDAMENTAL
USE CASES
FOR OPENSTACK
AND
CONTAINERS

• RightScale—A well-established cloud/mul-
ticloud management platform; it was recently
announced that RightScale will support
management of Docker clusters across bare
metal and in VMs.

• Scalr—A cloud management platform,
available in open source, enterprise (on-site),
and hosted PaaS versions. The platform
can help organizations build automated
workflows that leverage Docker containers
and other container orchestrators such as
Kubernetes and Mesos.

• Platform9—An OpenStack “source as a
service” distribution that supports Kuber-
netes orchestration.

Containers and OpenStack
As mentioned previously, all leading PaaS and
cloud platforms support containers, including the
popular OpenStack initiative. Given the power and
attractiveness of containers, it was only natural
for the OpenStack community to embrace this
development and deployment technology. There
are four fundamental use cases in which Open-
Stack and containers can now interact:

1. OpenStack services can be implemented
on containers to accelerate and stabi-
lize the deployment of a highly efficient
OpenStack environment.

2. Containers can be used to deploy ap-
plications on bare metal.

3. Containers can be deployed on VMs to
create cloud-native applications.

4. Containers can be used to deliver highly
agile microservices with OpenStack.

Two of these four container use cases are likely to
prove particularly valuable to a wide range of orga-
nizations: deploying applications on bare metal and
delivering microservices. The OpenStack communi-
ty has distinct projects for each of these scenarios.

OpenStack Magnum
OpenStack Magnum is designed to offer contain-
er-specific APIs for multitenant “containers as a
service.” It provides container-specific features
that go beyond the scope of OpenStack’s core
compute API— known as Nova. Containers
started by Magnum run on top of resources called
bays (essentially, collections of Nova instances).

Given the power and attractiveness of
containers, it was only natural for the
OpenStack community to embrace this
development and deployment technology.


T EC H D O S S I E R

The containers can either run within VMs or, to
speed performance, run directly on bare metal.

Magnum’s central function is to manage so-
called container orchestration engines, which
are more fully discussed below. (You can learn
more about Magnum here.)

OpenStack Zun
For the management of individual containers—
including those functioning as microservices—
OpenStack has launched a new project called
Zun. OpenStack Zun is a container management
service that aims to provide an OpenStack API
for launching and managing containers created
with different technologies. As envisioned, Zun
will allow organizations to gain the many ben-
efits associated with a microservices architec-
ture. (You can learn more about Zun here.)

Realizing the
microservices vision
As outlined in this paper, containerizing ap-
plications is a rapidly developing and evolving

technology, and containers will play a significant
role in the future of IT. Containers, microser-
vices, and virtual machines will co-exist, as
each provides a combination of benefits and
trade-offs.

For example, VMs offer better application
runtime isolation than containers can deliver.
On the other hand, containers are lighter
weight than VMs, so can be deployed more
dynamically. Container management tool
providers have developed toolsets that help
in this process. Some organizations use PaaS
toolsets such as Red Hat OpenShift or Pivotal
Cloud Foundry that inherently produce con-
tainerized applications. It is also possible, albeit
somewhat complicated, to take an existing
application and simply “wrap” it in a container
to realize some of the IT operational benefits
containers provide.

Successful businesses are now engaging
customers through innovative applications de-
livered from the cloud and accessed by mobile
devices as well as traditional PCs. Containers
and microservices will be the foundation for

The future of IT is to serve as an on-demand, flexible, agile provider of services
to help differentiate its organization from the competition.


T EC H D O S S I E R

8

https://www.openstack.org/software/releases/newton/components/magnum
https://wiki.openstack.org/wiki/Zun


T EC H D O S S I E R

IT MUST
EMBRACE
THE MODERN
DATA
CENTER,
break down traditional
silos of complexity, and
streamline operations to
keep pace with today’s
on-demand business culture.

!

these cloud-based applications. The future of IT
is to serve as an on-demand, flexible, agile pro-
vider of services to help differentiate its organi-
zation from the competition. IT must embrace
the modern data center, break down traditional
silos of complexity, and streamline operations
to keep pace with today’s on-demand business
culture. Support for containers is a key priority
for all leading cloud and PaaS platforms, and
we can expect to see cloud, containers, and
microservices all playing significant roles in the
future of IT.

This “IT as a service” trend raises some tough
questions for IT departments. Should they
focus on integrating all the technologies and
components required to build modern infra-
structure and new cloud-native application
delivery systems? Or should they focus their

effort, time, and resources on aiding business
innovation? If the latter, IT may decide to buy
and deploy engineered solutions that provide
the speed, agility, and simplicity required to
compete in today’s digital economy. Successful
IT organizations will target investments in areas
where they can derive differentiation against
their competitors.

Clearly, containers and microservices have the po-
tential to radically transform how applications are
built, deployed, and managed. Such a fundamental
shift—from monolithic, inflexible applications to
new, granular microservices architectures—will
not happen overnight. With the maturation of
container and microservices technology, the mod-
ernization of software code is certain to acceler-
ate rapidly in the coming years.

For additional information, visit:

For details on Cloud Foundry, visit:

For details on OpenStack, visit:

For details on the Open Container Initiative, visit:

9

www.dellemc.com

www.cloudfoundry.org

https://www.openstack.org

https://www.opencontainers.org

http://www.dellemc.com
http://www.cloudfoundry.org
https://www.openstack.org
https://www.opencontainers.org

© 2017 Dell Inc. All rights reserved.

Reproduction of this material in any manner whatsoever without the express written permission of Dell Inc. is

prohibited. For more information, contact Dell. Trademarks used in this text: Dell™, the DELL logo, DELL EMC

logo are trademarks of Dell Inc. This document is for informational purposes only. Dell reserves the right to make

changes without further notice to any products herein. The content provided is as is and without express or implied

warranties of any kind.

Red Hat®, is a trademark or registered trademark of Red Hat, Inc., registered in the U.S. and other countries. Linux is

the registered trademark of Linus Torvalds in the in the U.S. and other countries. Docker® is a trademark or

registered trademark of Docker Inc., registered in the U.S. and other countries

DISCLAIMER: The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks

or trademarks/service marks of the OpenStack Foundation, in the United States and other countries, and are used

with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack

Foundation or the OpenStack community.

Other trademarks and trade names may be used in this publication to refer to either the entities claiming the marks and

names or their products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its own.

