

MIRANTIS
525 Almanor Ave, 4th floor
Sunnyvale, CA 94085
+1-650-963-9828 Phone
+1-650-968-2997 Fax

www.mirantis.com 1

http://www.mirantis.com/

Table of Contents
1 Document Management

1.1 Trademarks

2 Overview
2.1 Executive Summary
2.2 Business Drivers for Compact Cloud
2.3 High-Level Requirements
2.4 Sample Use-Cases for Compact Cloud

3 Compact Cloud Components and Node Roles
3.1 Control Plane

3.1.1 Controller Role
3.1.2 Database Role
3.1.3 Messaging System Role
3.1.4 Storage Controller Role
3.1.5 Highly Available Control Plane

3.2 Data Plane
3.2.1 Compute Role
3.2.2 Network Role
3.2.3 Ceph OSD Role

3.3 Cloud Networks
3.4 Monitoring Component

3.4.1 Monitoring Role

4 Compact Cloud Reference Architecture
4.1 Sizing
4.2 Core Network Configuration
4.3 High Level Network Diagram
4.4 Node to Network Interconnections

4.4.1 Controller VM Network Connections
4.4.2 Compute Node Network Connections
4.4.3 Storage Controller VM Network Connections
4.4.4 Ceph OSD Network Connections
4.4.5 Monitoring and MongoDB Node VM Network Connections

www.mirantis.com 2

http://www.mirantis.com/

4.4.6 Infrastructure Node Network Connections
4.5 Cloud Networking

4.5.1 Controller Node Networking
4.5.2 Compute Node Networking
4.5.3 Storage Controller VM Networking
4.5.4 Ceph OSD Node Networking
4.5.5 Monitoring and Database Node Networking
4.5.6 Infrastructure Node Networking

4.6 Node Role VM Distribution Across Infrastructure Nodes
4.6.1 Minimal Footprint
4.6.2 Recommended Footprint

4.7 Recommended Hardware and VM Configuration
4.7.1 Ceph OSD Nodes
4.7.2 MongoDB Node
4.7.3 Monitoring Node
4.7.4 Infrastructure Node
4.7.5 Hardware Summary - Servers

Dell EMC PowerEdge R630
Dell EMC PowerEdge R730xd
Dell Networking

4.7.6 Intel Solid State Storage
4.8 Cloud Limits

5 Deployment Guide
5.1 Hardware Specification
5.2 Deployment Overview

5.2.1 Fuel Plugin & Component Overview
5.2.2 Additional Extensions and Integrations

5.3 Network Layout
5.4 Fuel Master Node Installation
Proceed with installation as described in the Fuel Installation Guide.
5.5 Post Installation Customization
5.6 OpenStack Environment Deployment

5.6.1 Network Settings
5.6.2 Upload network template
5.6.3 Add Infrastructure Nodes for Control Plane
5.6.4 Creating VMs to Host Controller Components

www.mirantis.com 3

http://www.mirantis.com/

5.6.5 Attach SSDs to MongoDB and Monitoring Nodes
5.6.6 Assign Roles to Cluster Nodes
5.6.7 Environment Settings
5.6.8 Additional Settings

Nodes Network Allocation
HDD Allocations for Controller, Compute and Storage Nodes
Ceph Nodes HDD Allocation

5.6.9 Common Settings
5.6.10 TLS Settings
5.6.11 LDAP Plugin Settings
5.6.12 Standalone Ceph Plugin Settings
5.6.13 StackLight Plugin Settings
5.6.14 Deploy the Environment

6 Post-Deployment Customizations
6.1 Recreate OSDs on SSDs
6.2 Distribute SSDs and SAS Drives to Different Pools
6.3 Migrate Fuel Master Node to the Deployed Cloud
6.4 Adding and Removing Compute and Storage Nodes

Testing the Deployed Cloud

Resources

Appendix A
Ceph CRUSH Map Example
Component Configuration Details

OpenLDAP-backed Keystone
Using Ceph Block Devices with Nova
Using Ceph Block Devices with Glance
Using Ceph Block Devices with Cinder

Ceilometer Meters and Events
Recommended Ceilometer Meters
Recommended Ceilometer Events

Reference Information - OpenStack
OpenStack Components
OpenStack API Versions

Appendix B - Mirantis Software

www.mirantis.com 4

http://www.mirantis.com/

Tables
Table 1. Compact Cloud Requirements and Specifications, Summary
Table 2. Compact Cloud - Recommended VM configuration
Table 3. Compact Cloud - Recommended hardware configuration
Table 4. Compact Cloud - Switches
Table 5. Compact Cloud - Capacity/utilization upper limits
Table 6. Compact Cloud - Hardware node configuration
Table 7. Compact Cloud - Deployment specification
Table 8. Compact Cloud - Fuel plugins and components required
Table 9. Compact Cloud - Additional integrations required
Table 10. Compact Cloud - Network configuration detail
Table 11. Compact Cloud - Settings used in deployment
Table 12. Compact Cloud - OpenStack basic environment settings
Table 13. OpenStack core projects
Table 14. OpenStack optional services
Table 15. OpenStack API versions supported in Mirantis OpenStack

www.mirantis.com 5

http://www.mirantis.com/

Figures

Figure 1. Compact Cloud core network diagram
Figure 2. Compact Cloud high level network diagram
Figure 3. Compact Cloud controller to network interconnections
Figure 4. Compact Cloud - compute node to network interconnections
Figure 5. Compact Cloud - storage controller to network interconnections
Figure 6. Compact Cloud - Ceph OSD node to network interconnection
Figure 7. Compact Cloud - MongoDB and monitoring node to network interconnection
Figure 8. Compact Cloud - infrastructure node to network interconnection
Figure 9. Compact Cloud - controller networking
Figure 10. Compact Cloud - compute node networking
Figure 11. Compact Cloud - storage controller nodes
Figure 12. Compact Cloud - Ceph OSD node networking
Figure 13. Compact Cloud - monitoring node networking
Figure 14. Compact Cloud - infrastructure node networking
Figure 15. Compact Cloud - Node layout, minimal footprint
Figure 16. Compact Cloud - Node layout, recommended footprint
Figure 17. Modifying Fuel boot parameters
Figure 18. Enabling Fuel Advanced Features
Figure 19. Changing Fuel network, boot and other settings
Figure 20. Network settings
Figure 21. Network settings (continued 1)
Figure 22. Network settings (continued 2)
Figure 23. Network settings (continued 3)
Figure 24. Network settings (continued 4)
Figure 25. Adding infrastructure nodes with Virtual role
Figure 26. Configuring infrastructure node disks
Figure 27. Add VM configuration details
Figure 28. Environment settings summary
Figure 29. Environment settings summary (continued 1)
Figure 30. Allocating drive space on Ceph nodes
Figure 31. Common settings
Figure 32. Common settings (continued 1)
Figure 33. Common settings (continued 2)
Figure 34. Common settings (continued 3)
Figure 35. Common settings (continued 4)

www.mirantis.com 6

http://www.mirantis.com/

Figure 36. TLS settings
Figure 37. Ceph plugin settings
Figure 38. StackLight plugin settings
Figure 39. StackLight plugin settings (continued 1)
Figure 40. StackLight settings (continued 2)
Figure 41. StackLight settings (continued 3)
Figure 42. Compact Cloud - OpenLDAP backed Keystone, HA diagram

www.mirantis.com 7

http://www.mirantis.com/

1 Document Management

1.1 Trademarks
Trademarks used in this text: Dell EMC™, the Dell EMC logo and PowerEdge™ are trademarks of
Dell EMC, Inc. Intel® and Xeon® are registered trademarks of Intel Corporation in the U.S. and
other countries. Linux® is the registered trademark of Linus Torvalds in the U.S. and other
countries.

DISCLAIMER: The OpenStack® Word Mark and OpenStack Logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the
United States and other countries, and are used with the OpenStack Foundation's permission. We
are not affiliated with, endorsed or sponsored by the OpenStack Foundation or the OpenStack
community.
Other trademarks and trade names may be used in this publication to refer either to the entities
claiming the marks and names, or to their products. Mirantis, Inc., disclaims any proprietary
interest in trademarks and trade names other than its own.

www.mirantis.com 8

http://www.mirantis.com/

2 Overview

2.1 Executive Summary
This document provides a complete reference architecture and deployment guide for Compact
Clouds with Mirantis OpenStack 9.1 (Mitaka) on Dell EMC compute and network hardware.

The Compact Cloud architecture is engineered to satisfy requirements for a small-scale, extensible
OpenStack cloud platform for agile software development/QA/test, Continuous
Integration/Continuous Delivery (CI/CD) and DevOps, with four-nines (99.99%) control plane
uptime. To do this, Compact Cloud employs a virtualized, 'reduced footprint' control plane
architecture — where OpenStack controller, OpenStack database, storage controller and
monitoring components (on VMs) share a single hardware node ('infrastructure node'), and are
made highly available with load balancing, clustering and messaging technologies.

The Compact Cloud specification includes OpenStack-native tools (e.g., Murano, Heat, etc.) for
deployment automation, and specifies a complete toolchain (StackLight) for operations and
performance data logging, monitoring, alerting, visualization and analysis.

2.2 Business Drivers for Compact Cloud
The Compact Cloud architecture for Mirantis OpenStack 9.1 on Dell EMC Hardware offers
significant benefits to organizations developing software:

● Reduction of IT capital costs
○ Use of open source software (OpenStack and all other components) eliminates

licensing fees, providing savings that grow with scale.
○ Application of virtualized, distributed storage technology (Ceph) permits use of

standard servers instead of purpose-dedicated storage hardware.
○ Use of software-defined networking (OpenVSwitch (OVS) SDN) constrains need for

hardware switches, routers, and physical gateways.
○ Simple rack architecture, comprising Dell EMC top-of-rack (TOR) switches, server

hardware powered by Intel, and select Intel mass storage devices, is easy to order,
configure, and expand.

● Increased IT agility - reduced IT operating costs
○ Automated full-stack provisioning for rapid deployment of new clusters and nodes.
○ Integrated monitoring, alerting and analytics simplify resource usage accounting,

help ensure cloud performance and SLA compliance, and accelerate MTTR for
issues.

○ Application catalog (Murano) enables rapid, self-service retrieval and deployment

www.mirantis.com 9

http://www.mirantis.com/

of conventional and containerized apps and development environments.
○ OpenStack APIs, Heat orchestration and other tools accelerate cloud operations

and make them repeatable.
● Faster software cycle times

○ Software-defined cloud data center enables easy composition of reliable,
repeatable, readily-accessible sandbox environments for development, QA and
test.

○ DevOps (CI/CD) software pipeline, particularly when it exploits containers for
service isolation and dependency management, accelerates release cadence by up
to 4x (e.g., 6 releases per year vs. 24 releases per year). Deliver new features faster.

2.3 High-Level Requirements
The Compact Cloud architecture is engineered to:

● Accelerate pipelined development (from code check-in to go-live production) by 4X for
applications and infrastructure (i.e., infrastructure as code, configuration as code).

● Provide 99.99% ('Four Nines') uptime — including high availability and disaster recovery
(HA/DR) — for cloud-native apps, as well as monitoring, billing, backup/recovery,
non-disruptive patching, and upgrades.

● Enforce IT security and regulatory compliance — including configuration management,
identity management, and the ability to apply constraints automatically in the software
build/test/deploy pipeline.

2.4 Sample Use-Cases for Compact Cloud
A Compact Cloud might be used to provide/enable:

Developer/QA Sandboxes - Custom, standardized virtual (or containerized) environment
configurations, stored as code (e.g., deployment scripts, OpenStack HEAT templates, Vagrantfiles,
Dockerfiles, Salt formulas, etc.) with associated, curated binary components, in multifunctional
local or secure public repos. Sandboxes can be instanced/built/launched on demand, accessed
conveniently with tools like SSH, RDP or VNC, and used to host workloads for in-line/smoke
testing and debugging, functional testing (e.g., feature- and feature-group testing), and possibly
non-functional testing (e.g., stress testing, load testing, volume testing). Instanced sandbox
environments can be relinquished after use, freeing resources. They can also be shelved (halted
for later rapid restart) and/or snapshotted (imaged and stored).

Commit Verification - When developers submit patchsets to version control, code must undergo
syntax checks and unit tests against dependent modules. A range of standard tools is available to
automate this process: running lint and similar tools, creating required virtual environment(s),

www.mirantis.com 10

http://www.mirantis.com/

building and deploying the app, running unit tests, and passing or rejecting, then relinquishing
resources (or, in some situations, keeping them accessible for examination). Due to the frequency
of code-commits, commit-check mechanics must be reusable and as lightweight as possible.

Nightly Builds - Typically performed when shared resources are least occupied. The CI system
(e.g., Jenkins) automatically performs a set of integration tests over the current, unreleased
branch: creating a virtual environment, provisioning it with workload and sample data, running
tests, and reporting results. Because build environments tend to have large resource footprints,
they should be reusable across several test runs.

Release Verification/Staging - Before production rollout of a new version of a workload, the release
needs to be verified in a virtual staging environment. Steps involve packaging up the source tree,
assembling the staging environment and running required upgrade procedures, deploying
workload components and data samples, and executing the test suite.

www.mirantis.com 11

http://www.mirantis.com/

3 Compact Cloud Components and Node Roles
The OpenStack cloud framework comprises many components , each providing essential services
like Identity (Keystone), virtualization management (Nova-compute), volume/block storage
virtualization (Cinder), object storage (Glance), network virtualization management (Neutron), etc.,
and integrated via drivers/plugins with physical and virtual infrastructure (e.g., KVM hypervisor,
OpenVSwitch (OVS) SDN, Ceph distributed storage). A working OpenStack cloud also uses a
database (e.g., MongoDB) to maintain its state, plus additional components (e.g., RabbitMQ,
HAproxy) for messaging, load balancing, failover, etc.

Mirantis OpenStack 9.1 (MOS) — a distribution of OpenStack release Mitaka — is a hardened,
bug-fixed set of OpenStack components, drivers, select virtual infrastructure, database, load
balancing/HA and other open source components — prescriptively selected, integrated and tuned,
and supplied with tooling (Fuel) for rapid, simplified configuration and deployment.

MOS groups OpenStack and other required components into 'roles' — e.g., controller, compute,
network, Ceph OSD, etc., which can reside on physical or virtual hosts (nodes). A single physical
server can host several (non-conflicting) roles, hosted on VMs. The Compact Cloud architecture
implements a 'reduced footprint' OpenStack 'infrastructure node' that hosts OpenStack controller
components, storage controller components, OpenStack database (MongoDB), and monitoring
components on four separate VMs, plus an optional VM containing the Fuel Master Node
(deployment tooling). To achieve full control-plane high availability, this multi-function
infrastructure node is duplicated across failure domains and its components made resilient using
HAproxy (OpenStack component HA), Galera cluster (OpenStack database HA), and other
technologies, as appropriate.

Major roles required for Compact Cloud are described in detail, below. Specific versions of
components deployed depend on maintenance updates installed. This information may be found
in the official MOS documentation .

www.mirantis.com 12

https://en.wikipedia.org/wiki/OpenStack#Components
https://www.mirantis.com/software/openstack/
https://docs.mirantis.com/openstack/fuel/fuel-9.1/index.html
http://www.mirantis.com/

3.1 Control Plane
The OpenStack control plane includes roles for cloud operations, database, messaging and high
availability (HA). Compact Cloud achieves high performance and reliability and relatively small
scale and expense by exploiting a 'reduced footprint' virtualized control plane architecture:
placing OpenStack controller, OpenStack database, storage controller, and metrics database on
individual KVM VMs that share a physical Infrastructure node. This Infrastructure node
architecture is tripled to achieve high availability (HA), using HAproxy, Galera cluster and similar
technologies. In terms of automation, Fuel's "Reduced Footprint" feature is used to deploy
Infrastructure nodes and span required VMs on them.

3.1.1 Controller Role

The controller role includes components enabling management of coordinated cloud operations.
Controller components present REST APIs that can be used directly, via SDKs in a wide range of
language environments, via the Horizon web UI, or by other compatible cloud management tools.
MOS controller components include:

● Nova-scheduler
● Nova-api
● Glance-registry
● Glance-api
● Keystone
● Cinder-api
● Ceilometer
● Sahara
● Murano
● Heat
● Horizon
● HAProxy
● Neutron-api
● OpenLDAP proxy (optional)

3.1.2 Database Role

Several OpenStack components require a database for storing configurations, states, etc. Two
kinds of database roles are most important in MOS:

● OpenStack database role - database used by OpenStack components to store information
(e.g. Keystone, Nova, Glance, Neutron, Cinder). In MOS, this role is normally performed by
MySQL/Galera.

www.mirantis.com 13

https://docs.mirantis.com/openstack/fuel/fuel-8.0/operations.html#using-the-reduced-footprint-feature
http://www.mirantis.com/

● Telemetry database role - database used by the Ceilometer component to store metrics
collected from the cloud. In MOS, this role is normally assigned to MongoDB.

3.1.3 Messaging System Role

Most OpenStack services use AMQP implementations for message transport and RPC. In MOS, this
role is normally performed by RabbitMQ.

3.1.4 Storage Controller Role

In MOS, Mirantis recommends using Ceph for all storage types (object, block, file). The storage
controller role thus comprises:

● Ceph Monitor (ceph-mon) - which maintains maps of the cluster state, including the
monitor map, the OSD map, the Placement Group (PG) map, and the CRUSH map.

● Ceph Rados Gateway (RadosGW) - a FastCGI module for interacting with a Ceph storage
cluster, providing a Swift/S3-compatible API for object storage.

Please check official Ceph documentation to learn more about Ceph components.

3.1.5 Highly Available Control Plane

To maintain high availability (HA), the MOS control plane needs to be set up to avoid single
points of failure (SPoF). Control-plane node roles (e.g., controller, OpenStack database, storage
controller, monitoring database) reside on KVM virtual machines, duplicated across (a minimum
of) three physical servers. The physical control plane servers are distributed across independent
racks, and linked by redundant network connections. This layout ensures that an availability zone
failure does not result in multiple controllers becoming inactive.

The MySQL/Galera cluster, which stores the current state of the OpenStack environment, is laid
out in active-active mode across control-plane servers, to provide continued operation in case of
instance failure.

Deployment of control plane nodes also needs to take into account the location and type of load
balancers used, ensuring that a load balancer failure does not cause a service outage.

Each of the services housed on the controller nodes has its own mechanism for achieving HA:

● nova-api, glance-api, keystone-api, neutron-api and nova-scheduler are stateless services
that do not require any special attention besides load balancing.

● Horizon, as a typical web application, requires sticky sessions to be enabled at the load
balancer, or a shared session cache.

● Galera provides active-active high availability for the database.

www.mirantis.com 14

http://docs.ceph.com/docs/jewel/start/intro/
http://www.mirantis.com/

● Pacemaker cluster - HA and load balancing stack. Pacemaker relies on the Corosync
messaging layer for reliable cluster communication. Corosync implements the Totem
single-ring ordering and membership protocol. It also provides UDP- and InfiniBand-based
messaging, quorum, and cluster membership to Pacemaker.

www.mirantis.com 15

http://www.mirantis.com/

3.2 Data Plane
The OpenStack data plane does the heavy lifting of hosting workloads by virtualizing and
orchestrating compute, network and storage resources.

3.2.1 Compute Role

The compute role (virtualization layer) comprises the following MOS components:
● KVM
● Nova-Compute
● Ceph Client
● Neutron OVS Agent
● Ceilometer Agent

3.2.2 Network Role

The Network Role comprises the following MOS components:
● Neutron L3 Agent
● Neutron DHCP Agent
● Neutron Metadata Agent
● Neutron OVS Agent

3.2.3 Ceph OSD Role

A Ceph OSD Daemon (Ceph OSD) stores data, handles data replication, recovery, backfilling,
rebalancing, and provides some monitoring information to Ceph Monitors by checking other Ceph
OSD Daemons for a heartbeat.

3.3 Cloud Networks
To provide robust, scalable, high-performance network connectivity and throughput, the Compact
Cloud architecture uses the following network segments:

● PXE/Admin - This segment is used for discovering, provisioning, deploying, configuring
and administering cluster members (nodes). No routing is necessary, although the Mirantis
OpenStack node needs to be reachable for cloud infrastructure administration.

● Management - Cloud components communicate over the management network.
● SAN - This network is used for traffic among Ceph Clients and Ceph Monitors.
● Storage Replication - This network is used for internal Ceph replication traffic only. There is

no need to make this network accessible from outside the cluster.
● Private - Contains the tenant-specific virtual networks. An SDN solution might take

ownership of this aspect of OpenStack networking.

www.mirantis.com 16

http://www.mirantis.com/

● Public/External - The public network contains the VIPs for Horizon, all service endpoints
for cloud operator command-line tools, and the floating IP range to make instances
accessible outside a tenant network.

3.4 Monitoring Component
Mirantis’ StackLight Toolchain is an operational health and response monitoring solution for
clouds (Compact Cloud being one example) built in compliance with Mirantis OpenStack reference
architectures. StackLight collects information from the entire MOS deployment (nodes, services,
components, interfaces, etc.) and processes this data so that it can be easily consumed and
analyzed by end users. StackLight lets operators visualize three key aspects of MOS:

● Metrics - Measurements are taken from nodes, services and interfaces throughout the
environment and metrics calculated and aggregated from these. These metrics can be
visualised graphically, giving in-depth insight into the cloud's operational health and
performance.

● Events - Events are collected from log files, OpenStack service notifications and other
sources, and can be filtered, queried, and visualised to gain deeper understanding of
specific issues or behaviors within the system.

● Alarms - Alarms are generated using rules configured in StackLight — applying these to
collected logs and metrics.

3.4.1 Monitoring Role

The monitoring node aggregates the following components:
● ElasticSearch
● Kibana
● InfluxDB
● Grafana
● Nagios

www.mirantis.com 17

http://www.mirantis.com/

4 Compact Cloud Reference Architecture
This chapter summarizes engineering goals, component selections and configuration
requirements for Mirantis OpenStack Compact Cloud on Dell EMC hardware.

Table 1. Compact Cloud Requirements and Specifications, Summary

Component Cloud Configuration

Controller High Availability Standard MOS RA design and configuration for
99.99% (four-nines) control plane uptime

Hypervisor KVM

Glance Backend Ceph/RBD

Object Storage Ceph/RadosGW

Cinder Backend Ceph/RBD

Nova Storage Ceph/RBD

Keystone API version 3

Keystone Identity Backends ● Mysql for domain 'default'
○ Openstack services user IDs

● LDAP, each Organizational Unit (OU) maps
to a Keystone domain

○ Cloud end-user IDs

Keystone Assignments Backend MySQL

Complementary Projects ● Heat
● Ceilometer
● Sahara
● Murano
● StackLight

NIC Bonding type Linux bonding, LACP, VLT

Control Plane Controller, OpenStack Database, Messaging system,
and Network roles are joined into one 'Compact
Controller' role

www.mirantis.com 18

http://www.mirantis.com/

Table 1. Compact Cloud Requirements and Specifications, Summary - Continued

Number of Small Controller Nodes 3, virtualized

Number of Compute Nodes Up to 50 (minimum 1)

Number of Storage Controller Nodes 3, virtualized

Number of MongoDB Nodes 3, virtualized (minimum 1)

Number of Monitoring Nodes 3, virtualized (minimum 1)

Number of Ceph OSD Nodes Up to 27 (minimum 4)

Number of Infrastructure Nodes 3

Neutron ML2 Backend OVS + VxLAN

Neutron External Network 1, flat-mode

Neutron Complementary Services and
Their Backends

None

4.1 Sizing
Controller node configuration and the number of controller nodes recommended for Compact
Cloud (3+, can be virtualized for smaller implementations) is calculated to ensure stable and
highly available service at a minimum of four-nines (99.99%) control-plane uptime.

Data plane (e.g., storage controller, monitoring, Ceph OSD) node configurations and
recommended numbers (typically 3+ for key node types) are calculated in terms of performance,
industrial best practices, and MIrantis' experience. The recommended deployment ensures that
Compact Cloud will continue to run at full planned capacity (i.e., will comply with SLA) if one key
data plane node fails.

www.mirantis.com 19

http://www.mirantis.com/

4.2 Core Network Configuration
The Compact Cloud architecture employs a top-of-rack to leaf (ToR to Leaf) aggregation schema
for core networking. This network configuration scales better than ring configurations, and is
easier to build and maintain.

The number of ToR switches is chosen in order to enable all required connections to terminate
within each rack. If racks have more than one ToR switch, these switches should be joined as a
stack.

Figure 1. Compact Cloud core network diagram

On each level, each pair of switches forms a single Virtual Link Trunking (VLT) domain. At lower
levels, each switch connects to two upper level switches within one VLT domain, providing full
redundancy in case of link or switch failure.

www.mirantis.com 20

http://www.mirantis.com/

4.3 High Level Network Diagram
All nodes are connected to two 10GE ToR switches (Dell Networking S4048-ON) by two interfaces
joined into a Link Aggregation Control Protocol (LACP) group. This virtual interface is used for
MOS networking. Each node is also connected to a 1GE ToR switch — one for the Admin/PXE
FUEL network and for iDRAC.

Figure 2. Compact Cloud high level network diagram

www.mirantis.com 21

http://www.mirantis.com/

4.4 Node to Network Interconnections

4.4.1 Controller VM Network Connections

Controller VMs for Compact Cloud are equipped with five virtual NICs. Each vNIC connects one
cloud network in untagged mode. Controllers are connected to Admin/PXE, Management, SAN,
Private, and Public networks.

Figure 3. Compact Cloud controller to network interconnections

www.mirantis.com 22

http://www.mirantis.com/

4.4.2 Compute Node Network Connections

Compute nodes for Compact Cloud are each equipped with three NICs. The first NIC is connected
to the Admin/PXE network in untagged mode. The second and third NICs are bonded (using Linux
bonding) into a single logical interface (LACP mode) that serves Managment, SAN, and Private
networks on tagged mode VLANs.

 Figure 4. Compact Cloud - compute node to network interconnections

www.mirantis.com 23

https://www.lucidchart.com/documents/edit/42d201ca-479e-4a9f-8a3b-65f918b6edaf/1?callback=close&v=10209&s=612
http://www.mirantis.com/

4.4.3 Storage Controller VM Network Connections

Storage controller VMs for Compact Cloud are equipped with four virtual NICs. Each vNIC connects
with one cloud network — Admin/PXE, Management, SAN, and Storage Replication networks — in
untagged mode.

Figure 5. Compact Cloud - storage controller to network interconnections

www.mirantis.com 24

https://www.lucidchart.com/documents/edit/42d201ca-479e-4a9f-8a3b-65f918b6edaf/2?callback=close&v=10209&s=612
http://www.mirantis.com/

4.4.4 Ceph OSD Network Connections

Ceph OSD nodes in Compact Cloud are equipped with five NICs. Though a three(3)-NIC
configuration would be possible, Mirantis recommends separating the Storage Replication
network on its own pair of NICs, making effective storage bandwidth predictable and eliminating
a potential source of contention.

For cost efficiency, we recommend providing these five physical NICs by using one single-port
NIC and two dual-port NICs. The single-port NIC is connected to the Admin/PXE network in
untagged mode. The first ports of each dual-port card (effectively the second and fourth NICs) are
bonded together (Linux bonding, LACP mode) to serve Management and SAN networks as
tagged-mode VLANs. The second ports of each dual-port card (effectively the third and fifth NICs)
are likewise bonded together to serve the Storage Replication network via a tagged-mode VLAN.
This connection scheme addresses not only individual cable or switch failure but also chipset/NIC
failure.

 Figure 6. Compact Cloud - Ceph OSD node to network interconnection

www.mirantis.com 25

http://www.mirantis.com/

4.4.5 Monitoring and MongoDB Node VM Network Connections

Monitoring and MongoDB nodes for Compact Cloud are equipped with two virtual NICs. The first is
connected to the Admin/PXE network, the second to the Management network, both in untagged
mode.

Figure 7. Compact Cloud - MongoDB and monitoring node to network interconnection

www.mirantis.com 26

http://www.mirantis.com/

4.4.6 Infrastructure Node Network Connections

Like compute nodes, infrastructure nodes for Compact Cloud are each equipped with three NICs.
The first NIC is connected to the Admin/PXE network in untagged mode. The second and third
NICs are bonded (using Linux bonding) into a single logical interface (LACP mode) that serves
Management, SAN, Storage Replication, Public, and Private networks on tagged-mode VLANs.

Figure 8. Compact Cloud - infrastructure node to network interconnection

www.mirantis.com 27

http://www.mirantis.com/

4.5 Cloud Networking

4.5.1 Controller Node Networking

Inside Compact Cloud controller VMs, the Admin/PXE, Management, and SAN networks are
terminated on individual vNICs. A fourth vNIC serves the VxLAN tunnels used for tenant networks,
and a fifth vNIC is controlled by Open vSwitch and serves the Public network.

Figure 9. Compact Cloud - controller networking

www.mirantis.com 28

http://www.mirantis.com/

4.5.2 Compute Node Networking

Inside Compact Cloud compute nodes the Admin/PXE network sits on the 1GbE interface.
Management and SAN networks are carried over the bonded interface in VLANs. Other networks
are served by OpenVSwitch, which is under Neutron control.

Figure 10. Compact Cloud - compute node networking

www.mirantis.com 29

http://www.mirantis.com/

4.5.3 Storage Controller VM Networking

In storage controller VMs, all networks are connected to individual vNICs.

Figure 11. Compact Cloud - storage controller nodes

www.mirantis.com 30

http://www.mirantis.com/

4.5.4 Ceph OSD Node Networking

On Ceph OSD nodes, the Admin/PXE network sits on the 1GbE interface. Other networks are
served as VLANs extracted from the two bonded interfaces.

Figure 12. Compact Cloud - Ceph OSD node networking

www.mirantis.com 31

http://www.mirantis.com/

4.5.5 Monitoring and Database Node Networking

In Compact Cloud monitoring and MongoDB nodes, networks are directly connected to vNICs
without use of LACP or VLANs.

Figure 13. Compact Cloud - monitoring node networking

www.mirantis.com 32

http://www.mirantis.com/

4.5.6 Infrastructure Node Networking

All network segments connecting to each Compact Cloud infrastructure node are bridged (standard
Linux bridging). The Admin/PXE segment is separated on its own 1GbE interface. Two 10GbE
interfaces, bonded in an LACP group, carry the remaining MOS network segments within VLANs.

Figure 14. Compact Cloud - infrastructure node networking

www.mirantis.com 33

http://www.mirantis.com/

4.6 Node Role VM Distribution Across Infrastructure Nodes
The Compact Cloud architecture deploys control plane node roles onto KVM virtual machines
hosted on infrastructure nodes. Two configurations — minimal and recommended — are offered.

4.6.1 Minimal Footprint

Infrastructure nodes can be configured with a minimal footprint, providing controller and storage
node redundancy but only including a single instance of the OpenStack and monitoring
databases. While these databases can be protected (e.g., with mirroring), the minimal footprint
does not offer true high availability — cloud operations or data collection will stall if issues occur
within the relevant software, VMs, or physical hardware.

First infrastructure node

Second infrastructure node

Third infrastructure node

Figure 15. Compact Cloud - Node layout, minimal footprint.

www.mirantis.com 34

http://www.mirantis.com/

4.6.2 Recommended Footprint

The Compact Cloud recommended footprint distributes database instances and uses clustering to
achieve true HA.

1st Infrastructure Node

2nd Infrastructure Node

3rd Infrastructure Node

Figure 16. Compact Cloud - Node layout, recommended footprint.

www.mirantis.com 35

http://www.mirantis.com/

4.7 Recommended Hardware and VM Configuration
The tables below summarize Mirantis and Dell EMC recommendations for configuring hardware
and VMs to host node roles. Recommendations are discussed in greater detail, thereafter.

Table 2. Compact Cloud - Recommended VM configuration

Role vCPUs RAM vHDDs vNICs

Compact Controller 4 64GB 500GB 5

Storage Controller 2 32GB 100GB 5

MongoDB node 6 64GB 1.6TB 2

Monitoring node 6 64GB 1.6TB 2

Fuel Master 1 32GB 300GB 2

Table 3. Compact Cloud - Recommended hardware configuration

Role Server
model

CPU RAM Disks NICs

Infrastructure
node

Dell EMC
PowerEdge
R630

2x Intel ® Xeon ®
E5-2650v4 (12
cores per CPU)

256GB 2x 1.2TB Intel SSD
DC S3710 Series

4x 1.6TB Intel SSD
DC S3610 Series

Intel® Ethernet
Network
Daughter Card
X520-DA2
/1350-T2

Compute
node

Dell EMC
PowerEdge
R630

2x Intel ® Xeon ®
E5-2650v4 (12
cores per CPU)

256GB 2x 480GB Intel
SSD DC S3610

Series

Intel® Ethernet
Network
Daughter Card
X520-DA2
/1350-T2

www.mirantis.com 36

http://www.mirantis.com/

Table 3. Compact Cloud - Recommended hardware configuration - Continued

Ceph OSD
node

Dell EMC
PowerEdge
R730xd

2x Intel ®
Xeon ®
E5-2650v4
(12 cores per
CPU)

256GB 2x 200GB
SAS (FlexBay)
for OS

6x 1.6TB
Intel SSD DC
S3610 Series
for Block
Storage

15x 1.2TB
SAS for
Object
Storage

3x 200GB
Intel SSD DC
S3710 Series

Intel®
Ethernet
Network
Daughter
Card
X520-DA2
/1350-T2

Intel®
Ethernet
Converged
Network
Adapter
X520-DA2
SFP+

4.7.1 Ceph OSD Nodes

Based on capacity and performance characteristics Mirantis and Dell EMC recommend Dell EMC
PowerEdge R730xd to be used as a Ceph OSD node to store cloud data.

Configuration of Ceph OSD nodes primarily reflects required object storage capacity and block
storage bandwidth requirements for the storage subsystem. Serially-attached storage (SAS) —
relatively slow, but capacious and inexpensive — is often recommended for object storage.
Performance can be increased cost-effectively by using SAS in conjunction with small SSDs, used
to store the OSD journal , increasing the speed at which Journal data can be written. 1

In contrast, block storage requires high IOPS, making SSDs the only option in most cases. Intel
SSD DC S3610 Series fit perfectly into that requirements.

1 More info about OSD journal may be found here:
 http://docs.ceph.com/docs/giant/rados/configuration/journal-ref/

www.mirantis.com 37

http://docs.ceph.com/docs/giant/rados/configuration/journal-ref/
http://www.mirantis.com/

To address both object and block storage requirements appropriately, balancing cost and
performance considerations and permitting fully-independent scaling for each storage type,
Mirantis recommends using separate object and block storage hosts, configured as shown below:

● Object Storage server configuration
○ Dell EMC PowerEdge R730xd
○ 2x 300GB SATA disks for an operating system
○ 20x 2TB SAS disks to serve as Ceph OSDs
○ 4x 200GB Intel SSD DC S3710 Series for Ceph Journaling
○ 2x Intel ® Xeon ® E5-2630v4 (6 cores per CPU)
○ 96GB RAM

● Block Storage server configuration
○ Dell EMC PowerEdge R630
○ 2x 300GB SATA disks for an operating system
○ 6x 1.6TB Intel SSD DC S3610 Series to serve as Ceph OSDs
○ 2x Intel ® Xeon ® E5-2630v4 (10 cores per CPU)
○ 128GB RAM

Alternatively, clouds requiring both types of storage but requiring a smaller footprint can use the
hybrid storage server configuration below, which maintains the same level of resiliency:

● Hybrid Object and Block Storage server configuration
○ Dell EMC PowerEdge R730xd
○ 2x 300GB SATA disks for an operating system
○ 15x 2TB SAS disks to serve as low speed Ceph OSDs
○ 3x 200GB Intel SSD DC S3710 Series for Ceph Journaling for low speed OSDs
○ 6x 1.6TB Intel SSD DC S3610 Series to serve as high speed Ceph OSDs
○ 2x Intel ® Xeon ® E5-2660v4 (14 cores per CPU)
○ 256GB RAM

www.mirantis.com 38

http://www.mirantis.com/

4.7.2 MongoDB Node

Requirements for MongoDB depend on Ceilometer settings, such as the number of entities in a
cloud we wish to monitor, what metrics we wish to collect from each entity, polling intervals, how
many days we wish to store collected data, how many alarms we wish to define on top of
collected data, and the evaluation interval for those alarms. Entities may be VMs, networks,
objects in an object store, etc.

Based on Mirantis' experience with MongoDB v2.6, a basic configuration might provide a 1.6TB
SSD, which is enough to store 30 days worth of data for up to 1500 entities with 25 metrics each,
at a 60 sec polling interval. This basic configuration can live on a single VM in the controller set
(small footprint), or (optimal footprint) distributed across the set of three (3) controller nodes
(infrastructure nodes).

For configurations that push this ceiling (i.e., more entities x metrics-per-entity, shorter polling
interval, more alarms, shorter alarm-evaluation interval, etc.) we recommend using a dedicated
physical server to host MongoDB. Shown below are storage requirements for a range of example
configurations:

● 3000 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 35 sec
○ 5.5TB is needed to keep the data for 30 days

● 3000 entities with 15 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 19 sec
○ 6TB is needed to keep the data for 30 days

● 3000 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 13 sec
○ 5.8TB is needed to keep the data for 30 days

● 3000 entities with 8 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 10 sec
○ 6TB is needed to keep the data for 30 days

● 4500 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 19 sec
○ 6TB is needed to keep the data for 30 days

● 4500 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 48 sec
○ 6TB is needed to keep the data for 30 days

● 1500 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 16 sec
○ 6TB is needed to keep the data for 30 days

www.mirantis.com 39

http://www.mirantis.com/

● 1500 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
○ Minimal polling interval 7 sec
○ 6TB is needed to keep the data for 30 days

4.7.3 Monitoring Node

The configuration specified in Table 2. Compact Cloud - Recommended VM configuration will
suffice for clouds up to 100 Compute nodes, where logs and time-series data are retained for up
to 30 days. Actual data stored depends greatly on workload characteristics and numbers, however,
and may vary widely — in some cases possibly even exceeding the capacity of the recommended
configuration.

4.7.4 Infrastructure Node

The configuration specified in Table 3. Compact Cloud - Recommended hardware configuration
incorporates requirements for all virtual nodes that will be collocated on Infrastructure nodes. A
disk configuration consists of 3 pairs of SSDs (RAID 1):

● 1.2TB RAID1 for a host operating system and Controller/Fuel virtual disks
● 1.6TB RAID1 for a MongoDB virtual disk
● 1.6TB RAID1 for a Monitoring virtual disk

For a minimal footprint (no HA for MongoDB and Monitoring nodes), the MongoDB database or
Monitoring virtual disk can be stored on a single 1.6TB RAID1 device. In this case, the physical
node requires two Intel ® Xeon ® E5-2620v4 (8 cores per CPU).

4.7.5 Hardware Summary - Servers

Dell EMC and Mirantis recommend the following hardware on which the Compact Cloud reference
architecture was developed and validated.

Dell EMC PowerEdge R630
The PowerEdge R630 two-socket rack server delivers uncompromising density and productivity.
Part of the 13th generation of PowerEdge servers, the R630 is ideal for virtualization. The
processor and memory density with up to 24 DIMMs of DDR4 RAM provides great memory
bandwidth.

Dell EMC PowerEdge R730xd
The incredible versatility of the PowerEdge R730xd server delivers outstanding functionality in
just 2U of rack space. With the Intel® Xeon® processor E5-2600 v4 product family and up to 24
DIMMs of DDR4 RAM, the R730xd has the processing cycles and threads necessary to deliver
more, larger and higher-performing storage for virtual machines. Highly scalable storage, with up
to sixteen 12Gb SAS drives and the high-performance Dell PowerEdge RAID Controller H730, can

www.mirantis.com 40

http://www.mirantis.com/

greatly accelerate data access for your virtualized environment.

Dell Networking
Compact Cloud uses the Dell Networking S3048-ON top-of-rack open networking switch, a high
density 1000BASE-T switch optimized for software-defined networking with ; and the Dell
Networking S4048-ON switch, which offers a similar architecture but provides 48 10GbE
front-side ports, and 6 40GbE backplane ports per 1U rack unit.

Table 4. Compact Cloud - Switches

Switch Model Quantity

Dell Networking S3048-ON 1

Dell Networking S4048-ON 2

4.7.6 Intel Solid State Storage

Performance of the Compact Cloud architecture is optimized in part by allocating storage to a
range of devices whose performance characteristics meet different operational demands. These
include:

● Relatively small capacity, high-speed Intel® S3710 solid state disks, optimized for write
performance - used to store Ceph OSD journals

● Larger capacity, Intel® S3610 solid state disks, optimized for balanced read/write
performance - used for local block storage (volume and ephemeral storage) on compute
nodes

Plus serial-attached (SAS) storage for objects.

4.8 Cloud Limits
This table summarizes tested upper limits for capacity and loading, and upper bounds for time
required to perform critical operations (e.g., recovery from several failure modes, time to spawn a
new workload, etc.).

www.mirantis.com 41

http://www.mirantis.com/

Table 5. Compact Cloud - Capacity/utilization upper limits

Parameter Upper limit

Number of hypervisors under one control plane 50

Number of storage nodes under one control plane 27

Number of simultaneously running workloads 3050

Number of workloads being run at once 300

Number of registered tenants 595

Number of registered users 29600

Number of users working with cloud simultaneously 3100

Percentage of vCPUs utilisation 98%

Percentage of RAM utilisation 98%

Percentage of Network (all kind of) bandwidth utilisation 99%

Percentage of Storage (all kind of) utilization 89%

Time to recover after failure that leads to permanent disruption of service 0'11"

Time to recover after failure that leads to failure of new requests 0'19"

Time to recover after failure that leads to failure of any request (new or
currently executing)

7'24"

Time to spawn/terminate one workload 0'11"

Time to spawn/terminate the maximum "Number of workloads being run at
once" (see above)

5'

www.mirantis.com 42

http://www.mirantis.com/

5 Deployment Guide
In this section, we describe how to deploy Compact Cloud with MOS 9.1 on Dell EMC hardware.
For more information, please see the Mirantis OpenStack documentation .

5.1 Hardware Specification
Three types of hardware nodes are used: Infrastructure, Compute, and Storage.

Table 6. Compact Cloud - Hardware node configuration

Node Type Specification Amount

Infrastructure Dell PowerEdge R630 with
● 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores)
● 256GB RAM
● 2x Intel s3610 1.6TB SSD
● 2x Intel s3710 400GB SSD

3

Compute Dell PowerEdge R630 with
● 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores)
● 256GB RAM
● 1x Intel s7310 400GB SSD

4

Storage Dell PowerEdge R730xd with
● 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores)
● 256GB RAM
● 6x Intel s3610 1.6TB SSD
● 3x Intel s3710 200GB SSD
● 15x SAS drive 1.2TB
● 2x SAS drive 1.2TB (Flexbay)

4

The Fuel Master is deployed on one of the Compute nodes and then moved to a virtual machine
on one of Infrastructure nodes. The Compute node initially used by the Fuel Master is then added
to the cluster as a regular Compute node.

Dell Networking switches used in the reference deployment are identified in Table 4. Compact
Cloud - Switches .

www.mirantis.com 43

https://docs.mirantis.com/openstack/fuel/fuel-9.1/
http://www.mirantis.com/

5.2 Deployment Overview
The architecture, described in detail in sections 1-4 of this document, is hereunder summarized in
terms of a practical deployment:

Table 7. Compact Cloud - Deployment specification

Component PoC Configuration

Controller High
Availability

HA Controller Configuration (per standard Mirantis Reference
Architecture)

Glance Back-end Ceph/RBD

Object Storage Ceph/RadosGW

Cinder Back-end Ceph/RBD

Keystone identity backend ● MySQL for default domain (services userIDs)
● LDAP for end-users (multiple domains)

Keystone assignment
backend

MySQL

Host OS Ubuntu 14.04

Networking Neutron with tunneling segmentation

Number of Controllers 3 Nodes

Number of Compute Nodes 3 Nodes

Number of Storage Nodes 4 nodes Ceph OSD and 3 nodes Ceph Monitors

Other Nodes 3 Virtual nodes (Infrastructure nodes as per Reference
Architecture)

Syslog Server Fuel by default

www.mirantis.com 44

http://www.mirantis.com/

Table 7. Compact Cloud - Deployment specification - Continued

Monitoring 3 StackLight: Infrastructure Alerting, Elasticsearch Kibana,
InfluxDB Grafana nodes

Release Mirantis OpenStack 9.1 (Mitaka)

Ceilometer 3 MongoDB nodes

Related Projects N/A

5.2.1 Fuel Plugin & Component Overview

Fuel plugins and components used in deploying Compact Cloud are versioned below.

Table 8. Compact Cloud - Fuel plugins and components required

Plugin/Component name Plugin | package version

elasticsearch_kibana 0.10.2 | 4.0.0

lma_infrastructure_alerting 0.10.2 | 4.0.0

influxdb_grafana 0.10.2 | 4.0.0

lma_collector 0.10.2 | 4.0.0

standalone-ceph 2.0.0 | 4.0.0

5.2.2 Additional Extensions and Integrations

Additional integrations, not provided by the above Fuel plugins, are enumerated here.

Table 9. Compact Cloud - Additional integrations required

Extension Component

Template for network configuration Fuel

Post-install Ceph configuration rearrangement Ceph

www.mirantis.com 45

http://www.mirantis.com/

5.3 Network Layout
Details specific to Compact Cloud deployed network configuration are summarized below.

Table 10. Compact Cloud - Network configuration detail

Network name Speed Port mode IP Range VLAN Interface

IPMI network 1 Gbps Untagged 172.18.232.0/24 100 IPMI/Mgmt

Admin/PXE network 1 Gbps Untagged 10.20.0.0/24 120 br-admin

Management network 10 Gbps Tagged 192.168.0.0/24 140 br-mgmt

SAN 10 Gbps Tagged 192.168.3.0/24 190 br-san

Storage network 10 Gbps Tagged 192.168.1.0/24 180 br-storage

Public network 10 Gbps Tagged 172.16.224.0/24 160 br-public

Private network 10 Gbps Tagged 192.168.2.0/24 200 br-private

www.mirantis.com 46

http://www.mirantis.com/

5.4 Fuel Master Node Installation
Compact Cloud is deployed using the Fuel deployer. A generalized, step-by-step guide for Fuel
Master Node installation can be found in the Mirantis OpenStack documentation .

IMPORTANT: MOS 9.1, used in this deployment, is available as an upgrade to MOS 9.0. Please
download the MOS 9.0 ISO , then create the Fuel Master Node according to the instructions linked
above. If internet access is available during installation, the upgrade to MOS 9.1 will proceed
automatically.

This table summarizes settings we made during deployment of the Compact Cloud PoC on Dell
EMC hardware. These are in most ways customizable:

Table 11. Compact Cloud - Settings used in deployment

Hostname fuel.domain.tld

Enabled Interface eth0, eth1

Interface for PXE eth0

DHCP IP address 10.20.0.2/24

DHCP Pool range 10.20.0.3 - 10.20.0.254

Management Interface eth1

Management IP Address 172.16.224.4/24

Gateway 172.16.224.1

DNS server 8.8.8.8

Domain domain.tld

Search domain domain.tld

Feature Groups enabled "Advanced Features"

IMPORTANT: In our PoC, we used one of the Compute nodes, initially, as the Fuel node. Post
deployment, we converted the Fuel Master into a virtual machine and migrated this VM to one of
our infrastructure nodes, re-dedicating the server it previously occupied to the cluster as a normal
Compute node. If you intend to do this, it is important to remember not to change the name of the
Fuel Master node in the process .

www.mirantis.com 47

https://docs.mirantis.com/openstack/fuel/fuel-9.1/
https://www.mirantis.com/software/openstack/download/
http://www.mirantis.com/

Boot a server using the MOS 9.0 ISO. When the Fuel Installer menu appears, press the Tab key to
modify boot parameters:

Figure 17. Modifying Fuel boot parameters

Make sure that the "showmenu" parameter is set to "yes," then hit the Enter key to proceed with
installation. Wait until the OS is installed, the node is rebooted, and the Fuel Menu appears.

www.mirantis.com 48

http://www.mirantis.com/

When the Fuel menu appears, navigate to the Feature Groups section and enable the "Advanced
features" option:

Figure 18. Enabling Fuel Advanced Features

www.mirantis.com 49

http://www.mirantis.com/

Change Network, PXE or DNS settings if needed (if, for example, the Fuel node has access to the
internet over the second, rather than the first network interface).

Figure 19. Changing Fuel network, boot and other settings

Proceed with installation as described in the Fuel Installation Guide .

www.mirantis.com 50

https://docs.mirantis.com/openstack/fuel/fuel-9.1/
http://www.mirantis.com/

5.5 Post Installation Customization
Check that the MOS 9.1 upgrade has been applied. To do this, run "yum info fuel|grep repo" on
the Fuel node's command line.

[root@fuel ~]# yum info fuel|grep repo
From repo : mos9.0-updates

The repo should be "mos9.0-updates". If it isn't, follow the update instructions .

Next, install the Fuel plugins required for the deployment:

fuel plugins --install elasticsearch_kibana-0.10-0.10.2-1.noarch.rpm
fuel plugins --install influxdb_grafana-0.10-0.10.2-1.noarch.rpm
fuel plugins --install lma_collector-0.10-0.10.2-1.noarch.rpm
fuel plugins --install lma_infrastructure_alerting-0.10-0.10.2-1.noarch.rpm
fuel plugins --install ldap-3.0-3.0.0-1.noarch.rpm
fuel plugins --install standalone-ceph-2.0-2.0.0-1.noarch.rpm
fuel plugins
id | name | version | package_version | releases
---+-----------------------------+---------+-----------------+--
1 | elasticsearch_kibana | 0.10.2 | 4.0.0 | ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
2 | influxdb_grafana | 0.10.2 | 4.0.0 | ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
3 | lma_collector | 0.10.2 | 4.0.0 | ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
4 | lma_infrastructure_alerting | 0.10.2 | 4.0.0 | ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
5 | ldap | 3.0.0 | 3.0.0 | ubuntu (mitaka-9.0)
6 | standalone-ceph | 2.0.0 | 4.0.0 | ubuntu (mitaka-9.0)

Because we will use the standalone-ceph plugin we need to add a definition of the new "san"
bridge in the Libvirt VM template for "virt" nodes:

[root@fuel ~]# vim
/etc/puppet/mitaka-9.0/modules/osnailyfacter/templates/vm_libvirt.erb
<domain type='kvm'>
 <devices>
…

<interface type='bridge'>
 <source bridge='br-mesh'/>
 <model type='virtio'/>

</interface>
<interface type='bridge'>

 <source bridge='br-san'/>
 <model type='virtio'/>

</interface>
<serial type='pty'>

...
 </devices>
</domain>

www.mirantis.com 51

https://docs.mirantis.com/openstack/fuel/fuel-9.1/release-notes/update-product.html#update-from-9-to-9-1
http://www.mirantis.com/

5.6 OpenStack Environment Deployment
Once the Fuel Master is complete, we can use it to configure and deploy the environment.

The following settings were used during installation of OpenStack:

Table 12. Compact Cloud - OpenStack basic environment settings

Name Compact Cloud

OpenStack Release Mitaka on Ubuntu 14.04

Compute KVM

Networking Setup Neutron with tunneling segmentation

Storage Backends Yes, use Ceph

Additional services Murano, Ceilometer (OpenStack Telemetry)

5.6.1 Network Settings

First, create a new network group for the SAN:

[root@fuel ~]# fuel2 network-group create san -N $GROUP_ID -C $NET_CIDR -V
$VLAN

The term $GROUP_ID can be found in output from the "fuel2 network-group list" command (it
must be the same for all networks of your environment). $NET_CIDR is the CIDR range for the
SAN. $VLAN represents the VLAN index for the SAN. For example:

[root@fuel ~]# fuel2 network-group create san -N 6 -C 192.168.3.0/24 -V 190

Then modify network settings on the Network Settings tab of the Fuel web UI.

www.mirantis.com 52

http://www.mirantis.com/

Here is how network settings were configured for this test deployment:

Figure 20. Network settings

www.mirantis.com 53

http://www.mirantis.com/

Figure 21. Network settings (continued 1)

www.mirantis.com 54

http://www.mirantis.com/

Figure 22. Network settings (continued 2)

www.mirantis.com 55

http://www.mirantis.com/

Figure 23. Network settings (continued 3)

www.mirantis.com 56

http://www.mirantis.com/

Figure 24. Network settings (continued 4)

www.mirantis.com 57

http://www.mirantis.com/

5.6.2 Upload network template

Because we are using untagged networks on virtualized nodes and tagged networks on baremetal
nodes, we use network templates to define different interface settings for each node type. See the
network template example in the Appendices.

Upload the network template to the environment:

<fuel_master># fuel2 network-template upload -f $NET_TEMPLATE_FILE $ENV_ID

Where $NET_TEMPLATE_FILE represents the network template file without its extension, and
$ENV_ID represents the environment ID. For example:

[root@fuel ~]# ls *network-template*
Dell-MOS9.0-CompactCloud-network-template.yaml
[root@fuel ~]# fuel2 network-template upload -f Dell-MOS9.0-CompactCloud-network-template 6

www.mirantis.com 58

http://www.mirantis.com/

5.6.3 Add Infrastructure Nodes for Control Plane

Add Infrastructure nodes to the environment and assign the Virtual role to them:

Figure 25. Adding infrastructure nodes with Virtual role

Select all three nodes and configure their disks as shown:

Figure 26. Configuring infrastructure node disks

:

www.mirantis.com 59

https://docs.mirantis.com/openstack/fuel/fuel-8.0/operations.html#using-the-reduced-footprint-feature
http://www.mirantis.com/

5.6.4 Creating VMs to Host Controller Components

For each node, add VM definitions in "VM Configurations" section for the VMs that will host the
compact controller, storage controller, MongoDB, and monitoring as described in section 4.6 :

Figure 27. Add VM configuration details

You can define the amount of memory in GB, the size of the disk, and the number of CPU cores for
each VM. VM IDs must be unique within each hardware node on which VMs are provisioned. As a

www.mirantis.com 60

http://www.mirantis.com/

general best practice, it makes sense to give each VM in an environment a globally unique ID, as
this will prevent ID conflicts later, if migration of VMs is required.
For this exercise, we've defined 4 VMs on each Virt node, as described below, as shown in the
illustration immediately preceding, and as discussed in section 4.6.2, above:

● Controller VMs with IDs 1, 5, 9
○ 500GB virtual disk, 64GB RAM, 4 vCPU

● Storage Controller VMs with IDs 2, 6, 10
○ 100GB virtual disk, 32GB RAM, 2 vCPU

● MongoDB VMs with IDs 3, 7, 11
○ 100GB virtual disk, 64GB RAM, 6 vCPU

● Monitoring VMs with IDs 4, 8, 12
○ 100GB virtual disk, 64GB RAM, 6 vCPU

NOTE : Do not set the "created" parameter to "true" as this instructs Fuel to assume a pre-existing
VM (rather than creating a new VM) during provisioning.

VMs can also be created from the Fuel CLI:

<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":64,
"vda_size":"500G", "id":1, "cpu":4}, {"mem":32, "vda_size":"100G", "id":2,
"cpu":2}, {"mem":64, "vda_size":"100G", "id":3, "cpu":6}, {"mem":64,
"vda_size":"100G", "id":4, "cpu":6}]'

NOTE: To add a VM to the deployed environment you must use the CLI, and the command must
be formatted as shown, with already-created VMs flagged as "created": true. You can cause new
VMs to be created by Fuel by setting "created": false, as shown below:

<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":16,
"vda_size":"300G", "created":true, "id":1, "cpu": 8}, {"mem":4,
"vda_size":"300G", "created":true, "id":2, "cpu":2}, {"mem":4,
"vda_size":"300G", "created":false, "id":10, "cpu":2}]'

Or you can just skip the "created" parameter for VMs you need created, since "created": true is the
default.

<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":16,
"vda_size":"300G", "created":true, "id":1, "cpu":8}, {"mem":4,
"vda_size":"300G", "created":true, "id":2, "cpu":2}, {"mem":4,
"vda_size":"300G", "id":10, "cpu":2}]'

www.mirantis.com 61

http://www.mirantis.com/

After that, for a brand-new Compact Cloud environment, you can cause Fuel to provision VM(s) by
clicking the "Provision VMs" button in the Fuel web UI. However, if you are creating additional
VM(s) in an already deployed environment, you must use the CLI:

<fuel_master># fuel node --node <VIRT_NODE_ID> --deploy

5.6.5 Attach SSDs to MongoDB and Monitoring Nodes

Once VMs are provisioned and discovered, we need to replace their virtual disks with 1.5GB SSDs
on the MongoDB and Monitoring nodes. To do this, perform the following operation on each Virt
node:

● SSH to the Virt node #1
● Using the "virsh destroy <ID>_vm" command, stop the Monitoring and MongoDB VMs with

IDs 3 and 4 (7, 8 at Virt node #2 and 11, 12 at Virt node #3)
● We'll address SSDs via their Device IDs. Determine the device IDs for each 1.5GB SSD by

grepping a listing of the "/dev/disk/by-id/" directory:

root@node-1:~# ls -l /dev/disk/by-id/|grep wwn|grep sd[ab]
lrwxrwxrwx 1 root root 9 Nov 11 05:58 wwn-0x55cd2e404c341e15 -> ../../sdb
lrwxrwxrwx 1 root root 9 Nov 11 05:58 wwn-0x55cd2e404c341e31 -> ../../sda

● Use the "virsh edit <ID>_vm" command to modify the "disk" section. Assign each VM to a
dedicated SSD.

 <disk type='block' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <source dev='/dev/disk/by-id/wwn-0x55cd2e404c341e15'/>
 <target dev='vda' bus='virtio'/>

● Start the VMs using the "virsh start <ID>_vm" command.
● Wait a couple of minutes to let nodes be discovered by Fuel. Verify in the Fuel UI that the

disk size of the nodes has changed.

5.6.6 Assign Roles to Cluster Nodes

Add remaining hardware nodes to the cluster and assign required roles to the spawned virtual
machines and hardware nodes using the Fuel web UI. Alternatively, you can do this with Fuel CLI
by issuing the following command:

<fuel_master># fuel --env-id=<ENV_ID> node set
--node-id=<NODE1_ID>[,<NODE2_ID>] --role=controller

www.mirantis.com 62

http://www.mirantis.com/

www.mirantis.com 63

http://www.mirantis.com/

Here is an example of a full configuration:

[root@fuel ~]# fuel node
id | status | name | cluster | ip | mac | roles
---+----------+------------------+---------+------------+-------------------+--

19 | ready | 12_vm | 6 | 10.20.0.18 | 52:54:00:13:5d:94 | elasticsearch_kibana, influxdb_grafana,
infrastructure_alerting
21 | ready | 4_vm | 6 | 10.20.0.24 | 52:54:00:88:d9:55 | elasticsearch_kibana, influxdb_grafana,
infrastructure_alerting
11 | ready | 3_vm | 6 | 10.20.0.23 | 52:54:00:d3:2c:da | mongo
13 | ready | 1_vm | 6 | 10.20.0.21 | 52:54:00:16:86:1c | controller
 5 | ready | compute-2 | 6 | 10.20.0.6 | ec:f4:bb:ea:6f:c4 | compute
 3 | ready | infra-3 | 6 | 10.20.0.5 | ec:f4:bb:ea:2e:04 | virt
 2 | ready | infra-2 | 6 | 10.20.0.4 | ec:f4:bb:ea:70:9c | virt
20 | ready | 5_vm | 6 | 10.20.0.13 | 52:54:00:dd:7f:f5 | controller
 1 | ready | infra-1 | 6 | 10.20.0.3 | ec:f4:bb:ea:2d:7c | virt
12 | ready | 9_vm | 6 | 10.20.0.20 | 52:54:00:5c:ae:55 | controller
22 | ready | 2_vm | 6 | 10.20.0.22 | 52:54:00:13:41:45 | ceph-mon
17 | ready | 7_vm | 6 | 10.20.0.17 | 52:54:00:5e:2c:c1 | mongo
14 | ready | 6_vm | 6 | 10.20.0.14 | 52:54:00:b9:f5:84 | ceph-mon
15 | ready | 10_vm | 6 | 10.20.0.16 | 52:54:00:0e:40:bd | ceph-mon
16 | ready | 8_vm | 6 | 10.20.0.15 | 52:54:00:8d:14:47 | elasticsearch_kibana, influxdb_grafana,
infrastructure_alerting
18 | ready | 11_vm | 6 | 10.20.0.19 | 52:54:00:e8:96:c6 | mongo
 7 | ready | ceph-1 | 6 | 10.20.0.11 | ec:f4:bb:ea:2b:1c | ceph-osd
 6 | ready | compute-3 | 6 | 10.20.0.7 | ec:f4:bb:ea:6f:7c | compute
10 | ready | ceph-4 | 6 | 10.20.0.9 | 24:6e:96:1f:4a:e4 | ceph-osd
 4 | ready | compute-1 | 6 | 10.20.0.8 | ec:f4:bb:ea:2e:44 | compute
 8 | ready | ceph-2 | 6 | 10.20.0.12 | ec:f4:bb:ea:29:c4 | ceph-osd
 9 | ready | ceph-3 | 6 | 10.20.0.10 | ec:f4:bb:ea:2e:4c | ceph-osd

www.mirantis.com 64

http://www.mirantis.com/

5.6.7 Environment Settings

The illustration below, taken from the environment post-deployment, summarizes environment
settings.

Figure 28. Environment settings summary

www.mirantis.com 65

http://www.mirantis.com/

Figure 29. Environment settings summary (continued 1)

www.mirantis.com 66

http://www.mirantis.com/

5.6.8 Additional Settings

Nodes Network Allocation

Networks for the PoC deployment are defined using Fuel network templates . A sample network
template file for the deployment is linked in the Appendices.

HDD Allocations for Controller, Compute and Storage Nodes

Fuel generally suggests reasonable starting minimums for storage allocation on these nodes. In
some cases, it may be necessary to increase the space on the /var/log partition to retain more log
data.

www.mirantis.com 67

http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/configure-environment/network-templates/network-templates-overview.html
http://www.mirantis.com/

Ceph Nodes HDD Allocation

Allocate drive space on Ceph nodes as shown below.

Figure 30. Allocating drive space on Ceph nodes

www.mirantis.com 68

http://www.mirantis.com/

5.6.9 Common Settings

Set passwords and other required values (our choices are shown) on the sub-panels of Fuel's
Settings tab.

Figure 31. Common settings

www.mirantis.com 69

http://www.mirantis.com/

Figure 32. Common settings (continued 1)

www.mirantis.com 70

http://www.mirantis.com/

Figure 33. Common settings (continued 2)

www.mirantis.com 71

http://www.mirantis.com/

Figure 34. Common settings (continued 3)

www.mirantis.com 72

http://www.mirantis.com/

Figure 35. Common settings (continued 4)

www.mirantis.com 73

http://www.mirantis.com/

5.6.10 TLS Settings

Figure 36. TLS settings

www.mirantis.com 74

http://www.mirantis.com/

5.6.11 LDAP Plugin Settings

For the sake of simplicity, LDAP was not configured on this environment.

5.6.12 Standalone Ceph Plugin Settings

Figure 37. Ceph plugin settings

5.6.13 StackLight Plugin Settings

Figure 38. StackLight plugin settings

www.mirantis.com 75

http://www.mirantis.com/

Figure 39. StackLight plugin settings (continued 1)

www.mirantis.com 76

http://www.mirantis.com/

Figure 40. StackLight settings (continued 2)

www.mirantis.com 77

http://www.mirantis.com/

Figure 41. StackLight settings (continued 3)

www.mirantis.com 78

http://www.mirantis.com/

5.6.14 Deploy the Environment

Deploy the environment using the Fuel web UI or CLI.

<fuel_master># fuel --env <ENV_ID> --deploy

www.mirantis.com 79

http://www.mirantis.com/

6 Post-Deployment Customizations

6.1 Recreate OSDs on SSDs
Fuel doesn't differentiate SSDs and SAS drives when placing Ceph OSDs on them. In order to fully
utilize SSD bandwidth, however, SSDs they should be split across approximately 5 OSDs. To
enable this, you need to remove OSDs created by Fuel on those SSDs, split each SSD into five
partitions, and create OSDs on them.

1. Find all OSD numbers you want to replace. Display all OSDs grouped by the hosts they're
on by using the "ceph osd tree" command on any Controller or Ceph node. The nodes will
have weights close to their size in TB. In the case shown, the weight is 1.45 (for a 1.5TB
OSD):

root@node-12:~# ceph osd tree
ID WEIGHT TYPE NAME UP/DOWN REWEIGHT PRIMARY-AFFINITY
 -6 34.79999 root root
 -7 8.70000 host node-7
 0 1.45000 osd.0 up 1.00000 1.00000
 1 1.09000 osd.1 up 1.00000 1.00000
 2 1.09000 osd.2 up 1.00000 1.00000
 3 1.09000 osd.3 up 1.00000 1.00000
 4 1.09000 osd.4 up 1.00000 1.00000
 5 1.45000 osd.5 up 1.00000 1.00000
 6 1.09000 osd.6 up 1.00000 1.00000
 7 1.09000 osd.7 up 1.00000 1.00000
 8 1.45000 osd.8 up 1.00000 1.00000
...

2. Write down host-to-osd_ids mapping. Here, we store them as shell variables:

host7_osd='0 5 8 15 19 20'
host8_osd='21 22 27 29 31 39'
host9_osd='26 41 44 48 54 64'
host10_osd='33 63 70 72 77 79'

3. SSH to the first Ceph OSD node. Stop and remove the OSDs on it:

osd="$host7_osd"
for i in $osd; do
 service ceph-osd stop id=$i
 sleep 1
 ceph osd crush remove osd.$i
 ceph auth del osd.$i
 ceph osd rm $i
done

www.mirantis.com 80

http://www.mirantis.com/

disks=$(mount|egrep "ceph-(${osd// /|}) "|cut -d' ' -f1|cut -d/ -f3|tr '\n' ' '|tr -d
3)
for i in $osd; do umount /var/lib/ceph/osd/ceph-$i; done

Note that you already have a shell variable called "disks," containing disk names of SSDs
used by these OSDs. We'll need this variable for the next steps.

4. Repartition all SSDs listed in the "disks" variable. Create five equal XFS partitions on each
SSD.

for i in $disks; do
parted /dev/$i rm 3
parted /dev/$i mkpart ceph xfs 237MB 320253MB
parted /dev/$i mkpart ceph xfs 320253MB 640269MB
parted /dev/$i mkpart ceph xfs 640269MB 960285MB
parted /dev/$i mkpart ceph xfs 960285MB 1280301MB
parted /dev/$i mkpart ceph xfs 1280301MB 1600321MB
done

5. Create and activate new OSDs on the new partitions.

for d in $disks; do for i in 3 4 5 6 7; do ceph-disk -v prepare --fs-type xfs
--cluster ceph -- di; done; done
for d in $disks; do for i in 3 4 5 6 7; do ceph-disk -v activate --mark-init upstart
--mount di; done; done

6. Check Ceph status using the "ceph status" command. Wait until the Ceph cluster is healthy
again and all OSDs are in the "active+clean" state.

root@node-12:~# ceph status
 cluster ee126587-f638-484f-a23a-7aac7e931c12
 health HEALTH_OK
 monmap e3: 3 mons at
{node-14=192.168.3.14:6789/0,node-15=192.168.3.15:6789/0,node-22=192.168.3.17:6789/0}
 election epoch 14, quorum 0,1,2 node-14,node-15,node-22
 osdmap e4426: 180 osds: 178 up, 178 in
 pgmap v738789: 8960 pgs, 13 pools, 36966 MB data, 9582 objects
 373 GB used, 100929 GB / 101302 GB avail
 8960 active+clean

7. Repeat steps 3-6 for for each Ceph OSD node.

6.2 Distribute SSDs and SAS Drives to Different Pools
We're going to put the RadosGW pool on our SAS drives while keeping the other pools (for Cinder,
Nova, Glance) on our SSDs. In order to do this we need to move the SSD OSDs into different
"roots" (in terms of the Ceph CRUSH Map), create two rulesets to distinguish these two "roots",
and assign the rulesets to pools.

● Obtain the CRUSH Map, following instructions in the official Ceph manual. A sample
CRUSH Map is shown in the Appendices to this document.

● Create a second root and hosts attached to it. Put SSD OSDs into those hosts.
● Create a second rule and adjust both rules in the way that each of them points to a

different root (adjust the "step take" stanza).

www.mirantis.com 81

http://docs.ceph.com/docs/jewel/rados/operations/crush-map/#editing-a-crush-map
http://www.mirantis.com/

● Make sure that the old rule retains its ID (usually "0") and points to a root with SAS drives
while the new rule points to a root with SSDs.

● Compile and upload the modified CRUSH Map.
● Change ruleset ID for Glance, Cinder, and Nova pools:

for pool in compute images volumes: do
ceph osd pool set $pool crush_ruleset 4
done

● Verify that Nova, Glance, and Cinder still work.

6.3 Migrate Fuel Master Node to the Deployed Cloud
Use the fuel-migrate script to migrate the Fuel Master node to a virtual machine on a compute
node. This allows for reduced resource utilization in small environments and lets the Fuel Master
node run on physical or virtual machines by making it host agnostic.

To run the script, issue the following command:

<fuel_master># fuel-migrate

More info about migrating Fuel node to the cloud can be found here .

6.4 Adding and Removing Compute and Storage Nodes
Mirantis (via openstack.org) maintains a guide for adding or removing compute and storage nodes
from an environment.

IMPORTANT: Before removing a compute node, all VMs running on that node need to be migrated
to other compute nodes.

www.mirantis.com 82

https://docs.mirantis.com/openstack/fuel/fuel-8.0/operations.html#using-the-reduced-footprint-feature
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide/maintain-environment.html
http://www.mirantis.com/

Testing the Deployed Cloud
A test plan and complete test report for the Compact Cloud are available for online review.

www.mirantis.com 83

https://docs.google.com/document/d/1_FHI_IIXNcEZ79Idlk8Rgey-sbDufqxEymvFQExG7Bs/edit
https://docs.google.com/document/d/1d_d5ePJQVKB-9cvG5sZRVklxbSWqzegF3JxZ7PnT4Vo/edit#
http://www.mirantis.com/

Resources
Mirantis OpenStack 9.1 Documentation
Mirantis OpenStack Planning Guide
Fuel Installation Guide
Fuel User Guide
Dell Power Consumption Calculators

www.mirantis.com 84

https://docs.mirantis.com/openstack/fuel/fuel-9.1/
https://docs.mirantis.com/openstack/fuel/fuel-9.1/mos-planning-guide/index.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-install-guide.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-user-guide.html
http://www.dell.com/learn/us/en/04/campaigns/config_calculator%20http://www.dell.com/content/topics/topic.aspx/global/products/pedge/topics/en/config_calculator?c=us&l=en&s=corp
http://www.mirantis.com/

Appendix A

Network Template Example
A sample network template for Compact Cloud is available for review online.

Ceph CRUSH Map Example
A sample Ceph CRUSH map is available for review online.

Component Configuration Details

OpenLDAP-backed Keystone

Keystone Identity can use OpenLDAP as a cache proxy for authentication requests to existing
external Directory servers (MS AD, OpenLDAP, etc), improving responsiveness and decreasing load
on Directory servers. In this case, each controller runs an OpenLDAP cache (proxy) server
connected to an external AD/LDAP server. HAProxy controls the OpenLDAP endpoint on a VIP.

Figure 42. Compact Cloud - OpenLDAP backed Keystone, HA diagram

www.mirantis.com 85

https://docs.google.com/document/d/1evZdrpfAnk-6hZySaG3aSxX2Kf1yyKEhmx43It1130o/edit
https://docs.google.com/document/d/1xC2W6M5_bJ7r0UCGH7ebWrW8rZChOBY9yG-lvK8t0Mo/edit
https://www.lucidchart.com/documents/edit/73e17508-9bbe-45ff-a71b-24a9fb4c3c39/0?callback=close&v=842&s=612
http://www.mirantis.com/

Using Ceph Block Devices with Nova

To use Ceph block devices by default with Nova, configure Glance according to the Ceph
documentation: http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-nova

Using Ceph Block Devices with Glance

To use Ceph block devices by default with Glance, configure Glance according to the Ceph
documentation: http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-glance

Using Ceph Block Devices with Cinder

To use Ceph block devices by default with Cinder, and to enable the cinder-backup feature,
configure Cinder according to the Ceph documentation:
http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder ,
http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder-backup

Ceilometer Meters and Events
Below are enumerated OpenStack Ceilometer meters and events we recommend collecting using
the StackLight subsystem specified as a component of Compact Cloud .

Recommended Ceilometer Meters
● cpu
● cpu.util
● disk.read.bytes
● disk.write.bytes
● image
● image.download
● image.upload
● memory
● network.incoming.bytes
● network.outgoing.bytes
● vcpus
● volume
● Volume.size

Recommended Ceilometer Events
● compute.instance.create.end
● compute.instance.create.start
● compute.instance.delete.end
● compute.instance.delete.start
● compute.instance.pause.end

www.mirantis.com 86

http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-nova
http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-glance
http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder
http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder-backup
http://www.mirantis.com/

● compute.instance.pause.start
● compute.instance.power_off.end
● compute.instance.power_off.start
● compute.instance.power_on.end
● compute.instance.power_on.start
● compute.instance.rebuild.end
● compute.instance.rebuild.start
● compute.instance.resize.confirm.end
● compute.instance.resize.confirm.start
● compute.instance.resume
● compute.instance.suspend
● compute.instance.suspstart
● compute.instance.unpause.end
● compute.instance.unpause.start
● compute.instance.update.end
● compute.instance.update.start
● compute.reboot.end
● compute.reboot.start
● floatingip.create.end
● floatingip.create.start
● image.delete
● image.update
● image.upload
● network.create.end
● network.create.start
● network.services.firewall.create.end
● network.services.firewall.create.start
● network.services.firewall.delete.end
● network.services.firewall.delete.start
● network.services.lb.vip.create.end
● network.services.lb.vip.create.start
● network.services.lb.vip.delete.end
● network.services.lb.vip.delete.start
● network.update.end
● network.update.start
● port.create.end
● port.create.start
● port.delete.end
● port.delete.start
● router.create.end
● router.create.start
● router.update.end
● router.update.start
● snapshot.create.end

www.mirantis.com 87

http://www.mirantis.com/

● snapshot.create.start
● snapshot.delete.end
● snapshot.delete.start
● subnet.create.end
● subnet.create.start
● subnet.delete.end
● subnet.delete.start
● volume.create.end
● volume.create.start
● volume.delete.end
● volume.delete.start
● volume.resize.end
● volume.resize.start
● volume.update.end
● volume.update.start

www.mirantis.com 88

http://www.mirantis.com/

Reference Information - OpenStack
OpenStack is a cloud operating system that controls large pools of compute, storage, and
networking resources throughout a datacenter, all managed through a dashboard that gives
administrators control while empowering their users to provision resources through a web
interface.

OpenStack Components

Table 13. OpenStack core projects

Name Purpose Description

Nova 2 Compute service Manages the lifecycle of compute instances in an
OpenStack environment. Responsibilities include
spawning, scheduling and decommissioning of
machines on demand.

Neutron 3 Networking service Enables network connectivity as a service for other
OpenStack services, such as OpenStack Compute.
Provides an API for users to define networks and the
attachments into them. Has a pluggable architecture
that supports many popular networking vendors and
technologies.

Swift 4 Object Storage Stores and retrieves arbitrary unstructured data objects
via a RESTful, HTTP based API. It is highly fault
tolerant with its data replication and scale out
architecture. Its implementation is not like a file server
with mountable directories.

Cinder 5 Block Storage Provides persistent block storage to running instances.
Its pluggable driver architecture facilitates the creation
and management of block storage devices.

Keystone 6 Identity service Provides an authentication and authorization service
for other OpenStack services. Provides a catalog of
endpoints for all OpenStack services.

2 Nova WIKI - https://wiki.openstack.org/wiki/Nova
3 Neutron WIKI - https://wiki.openstack.org/wiki/Neutron
4 Swift WIKI - https://wiki.openstack.org/wiki/Swift
5 Cinder WIKI - https://wiki.openstack.org/wiki/Cinder
6 Keystone WIKI - https://wiki.openstack.org/wiki/Keystone

www.mirantis.com 89

https://wiki.openstack.org/wiki/Nova
https://wiki.openstack.org/wiki/Neutron
https://wiki.openstack.org/wiki/Swift
https://wiki.openstack.org/wiki/Cinder
https://wiki.openstack.org/wiki/Keystone
http://www.mirantis.com/

Table 13. OpenStack core projects - Continued

Glance 7 Image service Stores and retrieves virtual machine disk images.
OpenStack Compute makes use of this during instance
provisioning.

Table 14. OpenStack optional services

Name Purpose Description

Horizon 8 Dashboard Provides a web based user interface to OpenStack
services including Nova, Swift, Keystone, etc.

Ceilometer
 9

Telemetry Collects data on the utilization of the physical and
virtual resources comprising deployed clouds, persists
these data for subsequent retrieval and analysis, and
triggers actions when defined criteria are met.

Heat 10 Orchestration Provides a human- and machine-accessible service for
managing the entire lifecycle of infrastructure and
applications within OpenStack clouds.

Trove 11 Database Provides scalable and reliable Cloud Database as a
Service provisioning functionality for both relational
and non-relational database engines

Sahara 12 Elastic Map Reduce Provides a simple means to provision a data-intensive
application cluster (Hadoop or Spark) on top of
OpenStack

Ironic 13 Bare-Metal
Provisioning

Provides bare metal machines instead of virtual
machines.

Zaqar 14 Messaging Provides a multi-tenant cloud messaging service for
web and mobile developers.

7 Glance WIKI - https://wiki.openstack.org/wiki/Glance
8 Horizon WIKI - https://wiki.openstack.org/wiki/Horizon
9 Ceilometer WIKI - https://wiki.openstack.org/wiki/Telemetry
10 Heat WIKI - https://wiki.openstack.org/wiki/Heat
11 Trove WIKI - https://wiki.openstack.org/wiki/Trove
12 Sahara WIKI - https://wiki.openstack.org/wiki/Sahara
13 Ironic WIKI - https://wiki.openstack.org/wiki/Ironic
14 Zaqar WIKI - https://wiki.openstack.org/wiki/Zaqar

www.mirantis.com 90

https://wiki.openstack.org/wiki/Glance
https://wiki.openstack.org/wiki/Horizon
https://wiki.openstack.org/wiki/Telemetry
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Trove
https://wiki.openstack.org/wiki/Sahara
https://wiki.openstack.org/wiki/Ironic
https://wiki.openstack.org/wiki/Zaqar
http://www.mirantis.com/

Table 14. OpenStack optional services - Continued

Monasca 15 Monitoring Provides monitoring-as-a-service solution integrated to
OpenStack.

Manila 16 Shared Filesystems Provides shared file system -as-a-service solution
integrated to OpenStack.

Designate 17 DNS Provides DNS -as-a-service solution integrated to
OpenStack.

Barbican 18 Key Management Provides the secure storage, provisioning and
management of secrets such as passwords, encryption
keys and X.509 Certificates.

Magnum 19 Containers Provides the container orchestration engines such as
Docker and Kubernetes available as first class
resources in OpenStack.

Murano 20 Application Catalog Provides an application catalog to OpenStack, enabling
application developers and cloud administrators to
publish various cloud-ready applications in a
browsable categorized catalog.

Congress 21 Governance Provides a policy as a service across any collection of
cloud services in order to offer governance and
compliance for dynamic infrastructures.

Rally 22 Benchmarking Provides the toolchain for cloud verification,
benchmarking, and profiling.

Mistral 23 Workflow Provides business processes workflow -as-a-service
solution integrated to OpenStack.

15 Monasca WIKI - https://wiki.openstack.org/wiki/Monasca
16 Manila WIKI - https://wiki.openstack.org/wiki/Manila
17 Designate WIKI - https://wiki.openstack.org/wiki/Designate
18 Barbican WIKI - https://wiki.openstack.org/wiki/Barbican
19 Magnum WIKI - https://wiki.openstack.org/wiki/Magnum
20 Murano WIKI - https://wiki.openstack.org/wiki/Murano
21 Congress WIKI - https://wiki.openstack.org/wiki/Congres s
22 Rally WIKI - https://wiki.openstack.org/wiki/Rally
23 Mistral WIKI - https://wiki.openstack.org/wiki/Mistral

www.mirantis.com 91

https://wiki.openstack.org/wiki/Monasca
https://wiki.openstack.org/wiki/Manila
https://wiki.openstack.org/wiki/Designate
https://wiki.openstack.org/wiki/Barbican
https://wiki.openstack.org/wiki/Magnum
https://wiki.openstack.org/wiki/Murano
https://wiki.openstack.org/wiki/Congres
https://wiki.openstack.org/wiki/Rally
https://wiki.openstack.org/wiki/Mistral
http://www.mirantis.com/

OpenStack API Versions

Mirantis OpenStack supports the following versions of the OpenStack API.

Table 15. OpenStack API versions supported in Mirantis OpenStack

Component API Version

Keystone v2

Nova v2

Glance v2

Cinder v2

Swift (via Ceph RadosGW) v1

Neutron v2

Ceilometer v2

Murano v1

Heat v1

www.mirantis.com 92

http://www.mirantis.com/

Appendix B - Mirantis Software
Mirantis OpenStack is 100% open source software. Mirantis OpenStack release 9.1
(corresponding to OpenStack Mitaka) is an update to Mirantis OpenStack 9.0, applied by
updating a Fuel 9.0 master node as detailed above in 5.4 Fuel Master Node Installation .

Mirantis currently offers several tiers of enterprise-grade, per-node support subscriptions for
Mirantis OpenStack 9.x, and will support Mirantis OpenStack 9.x for up to three years for 24 x 7
support tier customers.

Mirantis Managed Offering (MMO) provides design, deployment, scaling, management,
monitoring, regular upgrades, and comprehensive support for Mirantis open cloud software at
enterprise premise(s) or colocation facility(-ies) of choice, letting customers focus on accelerating
their business instead of operating their cloud, and helping them benefit from continuous open
source innovation without disruption or risk. Base pricing for MMO is shown below.

The following table of Dell EMC SKUs:

● Applies to US only
● Category is 'Licensing Support'
● Segment is ENT (Enterprise)
● Manufacturer is Mirantis
● Subclass Code is 308
● Currency Type is USD

SKU Part Num. Description

A9226527 MOS-001-24X7 Mirantis - OpenStack Subscriptions per Node; 1
-Year 24x7 Support

A9226528 MOS-001-8X5 Mirantis - OpenStack Subscriptions per Node; 1
-Year 8x5 Support

A9226911 MMO-001-BASE Mirantis Managed OpenStack Services

www.mirantis.com 93

https://www.mirantis.com/support/enterprise-support-services/
http://www.mirantis.com/

