

MIRANTIS

525 Almanor Ave, 4th floor Sunnyvale, CA 94085 +1-650-963-9828 Phone +1-650-968-2997 Fax

Reference Architecture for Compact Clouds

with Mirantis OpenStack 9.1 and Dell EMC Hardware

Table of Contents

- 1 Document Management
 - 1.1 Trademarks

2 Overview

- 2.1 Executive Summary
- 2.2 Business Drivers for Compact Cloud
- 2.3 High-Level Requirements
- 2.4 Sample Use-Cases for Compact Cloud

3 Compact Cloud Components and Node Roles

- 3.1 Control Plane
 - 3.1.1 Controller Role
 - 3.1.2 Database Role
 - 3.1.3 Messaging System Role
 - 3.1.4 Storage Controller Role
 - 3.1.5 Highly Available Control Plane
- 3.2 Data Plane
 - 3.2.1 Compute Role
 - 3.2.2 Network Role
 - 3.2.3 Ceph OSD Role
- 3.3 Cloud Networks
- 3.4 Monitoring Component
 - 3.4.1 Monitoring Role

4 Compact Cloud Reference Architecture

- 4.1 Sizing
- 4.2 Core Network Configuration
- 4.3 High Level Network Diagram
- 4.4 Node to Network Interconnections
 - 4.4.1 Controller VM Network Connections
 - 4.4.2 Compute Node Network Connections
 - 4.4.3 Storage Controller VM Network Connections
 - 4.4.4 Ceph OSD Network Connections
 - 4.4.5 Monitoring and MongoDB Node VM Network Connections

- 4.4.6 Infrastructure Node Network Connections
- 4.5 Cloud Networking
 - 4.5.1 Controller Node Networking
 - 4.5.2 Compute Node Networking
 - 4.5.3 Storage Controller VM Networking
 - 4.5.4 Ceph OSD Node Networking
 - 4.5.5 Monitoring and Database Node Networking
 - 4.5.6 Infrastructure Node Networking
- 4.6 Node Role VM Distribution Across Infrastructure Nodes
 - 4.6.1 Minimal Footprint
 - 4.6.2 Recommended Footprint
- 4.7 Recommended Hardware and VM Configuration
 - 4.7.1 Ceph OSD Nodes
 - 4.7.2 MongoDB Node
 - 4.7.3 Monitoring Node
 - 4.7.4 Infrastructure Node
 - 4.7.5 Hardware Summary Servers
 - Dell EMC PowerEdge R630
 - Dell EMC PowerEdge R730xd
 - Dell Networking
 - 4.7.6 Intel Solid State Storage
- 4.8 Cloud Limits

5 Deployment Guide

- 5.1 Hardware Specification
- 5.2 Deployment Overview
 - 5.2.1 Fuel Plugin & Component Overview
 - 5.2.2 Additional Extensions and Integrations
- 5.3 Network Layout
- 5.4 Fuel Master Node Installation

Proceed with installation as described in the Fuel Installation Guide.

- 5.5 Post Installation Customization
- 5.6 OpenStack Environment Deployment
 - 5.6.1 Network Settings
 - 5.6.2 Upload network template
 - 5.6.3 Add Infrastructure Nodes for Control Plane
 - 5.6.4 Creating VMs to Host Controller Components

- 5.6.5 Attach SSDs to MongoDB and Monitoring Nodes
- 5.6.6 Assign Roles to Cluster Nodes
- 5.6.7 Environment Settings
- 5.6.8 Additional Settings
 - Nodes Network Allocation
 - HDD Allocations for Controller, Compute and Storage Nodes
 - Ceph Nodes HDD Allocation
- 5.6.9 Common Settings
- 5.6.10 TLS Settings
- 5.6.11 LDAP Plugin Settings
- 5.6.12 Standalone Ceph Plugin Settings
- 5.6.13 StackLight Plugin Settings
- 5.6.14 Deploy the Environment

6 Post-Deployment Customizations

- 6.1 Recreate OSDs on SSDs
- 6.2 Distribute SSDs and SAS Drives to Different Pools
- 6.3 Migrate Fuel Master Node to the Deployed Cloud
- 6.4 Adding and Removing Compute and Storage Nodes

Testing the Deployed Cloud

Resources

- Appendix A
 - Ceph CRUSH Map Example
 - Component Configuration Details
 - OpenLDAP-backed Keystone
 - Using Ceph Block Devices with Nova
 - Using Ceph Block Devices with Glance
 - Using Ceph Block Devices with Cinder
 - Ceilometer Meters and Events
 - Recommended Ceilometer Meters
 - Recommended Ceilometer Events
 - <u>Reference Information OpenStack</u> <u>OpenStack Components</u>
 - OpenStack API Versions
- Appendix B Mirantis Software

Tables

- Table 1. Compact Cloud Requirements and Specifications, Summary
- Table 2. Compact Cloud Recommended VM configuration
- Table 3. Compact Cloud Recommended hardware configuration
- Table 4. Compact Cloud Switches
- Table 5. Compact Cloud Capacity/utilization upper limits
- Table 6. Compact Cloud Hardware node configuration
- Table 7. Compact Cloud Deployment specification
- Table 8. Compact Cloud Fuel plugins and components required
- Table 9. Compact Cloud Additional integrations required
- Table 10. Compact Cloud Network configuration detail
- Table 11. Compact Cloud Settings used in deployment
- Table 12. Compact Cloud OpenStack basic environment settings
- Table 13. OpenStack core projects
- Table 14. OpenStack optional services
- Table 15. OpenStack API versions supported in Mirantis OpenStack

Figures

Figure 1. Compact Cloud core network diagram Figure 2. Compact Cloud high level network diagram Figure 3. Compact Cloud controller to network interconnections Figure 4. Compact Cloud - compute node to network interconnections Figure 5. Compact Cloud - storage controller to network interconnections Figure 6. Compact Cloud - Ceph OSD node to network interconnection Figure 7. Compact Cloud - MongoDB and monitoring node to network interconnection Figure 8. Compact Cloud - infrastructure node to network interconnection Figure 9. Compact Cloud - controller networking Figure 10. Compact Cloud - compute node networking Figure 11. Compact Cloud - storage controller nodes Figure 12. Compact Cloud - Ceph OSD node networking Figure 13. Compact Cloud - monitoring node networking Figure 14. Compact Cloud - infrastructure node networking Figure 15. Compact Cloud - Node layout, minimal footprint Figure 16. Compact Cloud - Node layout, recommended footprint Figure 17. Modifying Fuel boot parameters Figure 18. Enabling Fuel Advanced Features Figure 19. Changing Fuel network, boot and other settings Figure 20. Network settings Figure 21. Network settings (continued 1) Figure 22. Network settings (continued 2) Figure 23. Network settings (continued 3) Figure 24. Network settings (continued 4) Figure 25. Adding infrastructure nodes with Virtual role Figure 26. Configuring infrastructure node disks Figure 27. Add VM configuration details Figure 28. Environment settings summary Figure 29. Environment settings summary (continued 1) Figure 30. Allocating drive space on Ceph nodes Figure 31. Common settings Figure 32. Common settings (continued 1) Figure 33. Common settings (continued 2) Figure 34. Common settings (continued 3) Figure 35. Common settings (continued 4)

Figure 36. TLS settings

Figure 37. Ceph plugin settings

Figure 38. StackLight plugin settings

Figure 39. StackLight plugin settings (continued 1)

Figure 40. StackLight settings (continued 2)

Figure 41. StackLight settings (continued 3)

Figure 42. Compact Cloud - OpenLDAP backed Keystone, HA diagram

1 Document Management

1.1 Trademarks

Trademarks used in this text: Dell EMC[™], the Dell EMC logo and PowerEdge[™] are trademarks of Dell EMC, Inc. Intel[®] and Xeon[®] are registered trademarks of Intel Corporation in the U.S. and other countries. Linux[®] is the registered trademark of Linus Torvalds in the U.S. and other countries.

DISCLAIMER: The OpenStack[®] Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries, and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation or the OpenStack community.

Other trademarks and trade names may be used in this publication to refer either to the entities claiming the marks and names, or to their products. Mirantis, Inc., disclaims any proprietary interest in trademarks and trade names other than its own.

2 Overview

2.1 Executive Summary

This document provides a complete reference architecture and deployment guide for *Compact Clouds* with Mirantis OpenStack 9.1 (Mitaka) on Dell EMC compute and network hardware.

The *Compact Cloud* architecture is engineered to satisfy requirements for a small-scale, extensible OpenStack cloud platform for agile software development/QA/test, Continuous Integration/Continuous Delivery (CI/CD) and DevOps, with four-nines (99.99%) control plane uptime. To do this, *Compact Cloud* employs a virtualized, 'reduced footprint' control plane architecture – where OpenStack controller, OpenStack database, storage controller and monitoring components (on VMs) share a single hardware node ('infrastructure node'), and are made highly available with load balancing, clustering and messaging technologies.

The *Compact Cloud* specification includes OpenStack-native tools (e.g., Murano, Heat, etc.) for deployment automation, and specifies a complete toolchain (StackLight) for operations and performance data logging, monitoring, alerting, visualization and analysis.

2.2 Business Drivers for Compact Cloud

The *Compact Cloud* architecture for Mirantis OpenStack 9.1 on Dell EMC Hardware offers significant benefits to organizations developing software:

- Reduction of IT capital costs
 - Use of open source software (OpenStack and all other components) eliminates licensing fees, providing savings that grow with scale.
 - Application of virtualized, distributed storage technology (Ceph) permits use of standard servers instead of purpose-dedicated storage hardware.
 - Use of software-defined networking (OpenVSwitch (OVS) SDN) constrains need for hardware switches, routers, and physical gateways.
 - Simple rack architecture, comprising Dell EMC top-of-rack (TOR) switches, server hardware powered by Intel, and select Intel mass storage devices, is easy to order, configure, and expand.
- Increased IT agility reduced IT operating costs
 - Automated full-stack provisioning for rapid deployment of new clusters and nodes.
 - Integrated monitoring, alerting and analytics simplify resource usage accounting, help ensure cloud performance and SLA compliance, and accelerate MTTR for issues.
 - Application catalog (Murano) enables rapid, self-service retrieval and deployment

of conventional and containerized apps and development environments.

• OpenStack APIs, Heat orchestration and other tools accelerate cloud operations and make them repeatable.

• Faster software cycle times

- Software-defined cloud data center enables easy composition of reliable, repeatable, readily-accessible sandbox environments for development, QA and test.
- DevOps (CI/CD) software pipeline, particularly when it exploits containers for service isolation and dependency management, accelerates release cadence by up to 4x (e.g., 6 releases per year vs. 24 releases per year). Deliver new features faster.

2.3 High-Level Requirements

The *Compact Cloud* architecture is engineered to:

- Accelerate pipelined development (from code check-in to go-live production) by 4X for applications and infrastructure (i.e., infrastructure as code, configuration as code).
- Provide 99.99% ('Four Nines') uptime including high availability and disaster recovery (HA/DR) for cloud-native apps, as well as monitoring, billing, backup/recovery, non-disruptive patching, and upgrades.
- Enforce IT security and regulatory compliance including configuration management, identity management, and the ability to apply constraints automatically in the software build/test/deploy pipeline.

2.4 Sample Use-Cases for Compact Cloud

A *Compact Cloud* might be used to provide/enable:

Developer/QA Sandboxes - Custom, standardized virtual (or containerized) environment configurations, stored as code (e.g., deployment scripts, OpenStack HEAT templates, Vagrantfiles, Dockerfiles, Salt formulas, etc.) with associated, curated binary components, in multifunctional local or secure public repos. Sandboxes can be instanced/built/launched on demand, accessed conveniently with tools like SSH, RDP or VNC, and used to host workloads for in-line/smoke testing and debugging, functional testing (e.g., feature- and feature-group testing), and possibly non-functional testing (e.g., stress testing, load testing, volume testing). Instanced sandbox environments can be relinquished after use, freeing resources. They can also be shelved (halted for later rapid restart) and/or snapshotted (imaged and stored).

Commit Verification - When developers submit patchsets to version control, code must undergo syntax checks and unit tests against dependent modules. A range of standard tools is available to automate this process: running lint and similar tools, creating required virtual environment(s),

building and deploying the app, running unit tests, and passing or rejecting, then relinquishing resources (or, in some situations, keeping them accessible for examination). Due to the frequency of code-commits, commit-check mechanics must be reusable and as lightweight as possible.

Nightly Builds - Typically performed when shared resources are least occupied. The CI system (e.g., Jenkins) automatically performs a set of integration tests over the current, unreleased branch: creating a virtual environment, provisioning it with workload and sample data, running tests, and reporting results. Because build environments tend to have large resource footprints, they should be reusable across several test runs.

Release Verification/Staging - Before production rollout of a new version of a workload, the release needs to be verified in a virtual staging environment. Steps involve packaging up the source tree, assembling the staging environment and running required upgrade procedures, deploying workload components and data samples, and executing the test suite.

3 Compact Cloud Components and Node Roles

The OpenStack cloud framework comprises many <u>components</u>, each providing essential services like Identity (Keystone), virtualization management (Nova-compute), volume/block storage virtualization (Cinder), object storage (Glance), network virtualization management (Neutron), etc., and integrated via drivers/plugins with physical and virtual infrastructure (e.g., KVM hypervisor, OpenVSwitch (OVS) SDN, Ceph distributed storage). A working OpenStack cloud also uses a database (e.g., MongoDB) to maintain its state, plus additional components (e.g., RabbitMQ, HAproxy) for messaging, load balancing, failover, etc.

<u>Mirantis OpenStack 9.1</u> (MOS) – a distribution of OpenStack release Mitaka – is a hardened, bug-fixed set of OpenStack components, drivers, select virtual infrastructure, database, load balancing/HA and other open source components – prescriptively selected, integrated and tuned, and supplied with tooling (Fuel) for rapid, simplified configuration and deployment.

MOS groups OpenStack and other required components into 'roles' – e.g., controller, compute, network, Ceph OSD, etc., which can reside on physical or virtual hosts (nodes). A single physical server can host several (non-conflicting) roles, hosted on VMs. The *Compact Cloud* architecture implements a 'reduced footprint' OpenStack 'infrastructure node' that hosts OpenStack controller components, storage controller components, OpenStack database (MongoDB), and monitoring components on four separate VMs, plus an optional VM containing the Fuel Master Node (deployment tooling). To achieve full control-plane high availability, this multi-function infrastructure node is duplicated across failure domains and its components made resilient using HAproxy (OpenStack component HA), Galera cluster (OpenStack database HA), and other technologies, as appropriate.

Major roles required for *Compact Cloud* are described in detail, below. Specific versions of components deployed depend on maintenance updates installed. This information may be found in <u>the official MOS documentation</u>.

3.1 Control Plane

The OpenStack control plane includes roles for cloud operations, database, messaging and high availability (HA). *Compact Cloud* achieves high performance and reliability and relatively small scale and expense by exploiting a 'reduced footprint' virtualized control plane architecture: placing OpenStack controller, OpenStack database, storage controller, and metrics database on individual KVM VMs that share a physical Infrastructure node. This Infrastructure node architecture is tripled to achieve high availability (HA), using HAproxy, Galera cluster and similar technologies. In terms of automation, Fuel's <u>"Reduced Footprint" feature</u> is used to deploy Infrastructure nodes and span required VMs on them.

3.1.1 Controller Role

The controller role includes components enabling management of coordinated cloud operations. Controller components present REST APIs that can be used directly, via SDKs in a wide range of language environments, via the Horizon web UI, or by other compatible cloud management tools. MOS controller components include:

- Nova-scheduler
- Nova-api
- Glance-registry
- Glance-api
- Keystone
- Cinder-api
- Ceilometer
- Sahara
- Murano
- Heat
- Horizon
- HAProxy
- Neutron-api
- OpenLDAP proxy (optional)

3.1.2 Database Role

Several OpenStack components require a database for storing configurations, states, etc. Two kinds of database roles are most important in MOS:

• **OpenStack database role** - database used by OpenStack components to store information (e.g. Keystone, Nova, Glance, Neutron, Cinder). In MOS, this role is normally performed by MySQL/Galera.

• **Telemetry database role** - database used by the Ceilometer component to store metrics collected from the cloud. In MOS, this role is normally assigned to MongoDB.

3.1.3 Messaging System Role

Most OpenStack services use AMQP implementations for message transport and RPC. In MOS, this role is normally performed by RabbitMQ.

3.1.4 Storage Controller Role

In MOS, Mirantis recommends using Ceph for all storage types (object, block, file). The storage controller role thus comprises:

- **Ceph Monitor (ceph-mon)** which maintains maps of the cluster state, including the monitor map, the OSD map, the Placement Group (PG) map, and the CRUSH map.
- **Ceph Rados Gateway (RadosGW)** a FastCGI module for interacting with a Ceph storage cluster, providing a Swift/S3-compatible API for object storage.

Please check official Ceph documentation to learn more about Ceph components.

3.1.5 Highly Available Control Plane

To maintain high availability (HA), the MOS control plane needs to be set up to avoid single points of failure (SPoF). Control-plane node roles (e.g., controller, OpenStack database, storage controller, monitoring database) reside on KVM virtual machines, duplicated across (a minimum of) three physical servers. The physical control plane servers are distributed across independent racks, and linked by redundant network connections. This layout ensures that an availability zone failure does not result in multiple controllers becoming inactive.

The MySQL/Galera cluster, which stores the current state of the OpenStack environment, is laid out in active-active mode across control-plane servers, to provide continued operation in case of instance failure.

Deployment of control plane nodes also needs to take into account the location and type of load balancers used, ensuring that a load balancer failure does not cause a service outage.

Each of the services housed on the controller nodes has its own mechanism for achieving HA:

- nova-api, glance-api, keystone-api, neutron-api and nova-scheduler are stateless services that do not require any special attention besides load balancing.
- Horizon, as a typical web application, requires sticky sessions to be enabled at the load balancer, or a shared session cache.
- Galera provides active-active high availability for the database.

• Pacemaker cluster - HA and load balancing stack. Pacemaker relies on the Corosync messaging layer for reliable cluster communication. Corosync implements the Totem single-ring ordering and membership protocol. It also provides UDP- and InfiniBand-based messaging, quorum, and cluster membership to Pacemaker.

3.2 Data Plane

The OpenStack data plane does the heavy lifting of hosting workloads by virtualizing and orchestrating compute, network and storage resources.

3.2.1 Compute Role

The compute role (virtualization layer) comprises the following MOS components:

- KVM
- Nova-Compute
- Ceph Client
- Neutron OVS Agent
- Ceilometer Agent

3.2.2 Network Role

The Network Role comprises the following MOS components:

- Neutron L3 Agent
- Neutron DHCP Agent
- Neutron Metadata Agent
- Neutron OVS Agent

3.2.3 Ceph OSD Role

A Ceph OSD Daemon (Ceph OSD) stores data, handles data replication, recovery, backfilling, rebalancing, and provides some monitoring information to Ceph Monitors by checking other Ceph OSD Daemons for a heartbeat.

3.3 Cloud Networks

To provide robust, scalable, high-performance network connectivity and throughput, the *Compact Cloud* architecture uses the following network segments:

- **PXE/Admin** This segment is used for discovering, provisioning, deploying, configuring and administering cluster members (nodes). No routing is necessary, although the Mirantis OpenStack node needs to be reachable for cloud infrastructure administration.
- *Management* Cloud components communicate over the management network.
- **SAN** This network is used for traffic among Ceph Clients and Ceph Monitors.
- **Storage Replication** This network is used for internal Ceph replication traffic only. There is no need to make this network accessible from outside the cluster.
- **Private** Contains the tenant-specific virtual networks. An SDN solution might take ownership of this aspect of OpenStack networking.

• **Public/External** - The public network contains the VIPs for Horizon, all service endpoints for cloud operator command-line tools, and the floating IP range to make instances accessible outside a tenant network.

3.4 Monitoring Component

Mirantis' StackLight Toolchain is an operational health and response monitoring solution for clouds (*Compact Cloud* being one example) built in compliance with Mirantis OpenStack reference architectures. StackLight collects information from the entire MOS deployment (nodes, services, components, interfaces, etc.) and processes this data so that it can be easily consumed and analyzed by end users. StackLight lets operators visualize three key aspects of MOS:

- **Metrics** Measurements are taken from nodes, services and interfaces throughout the environment and metrics calculated and aggregated from these. These metrics can be visualised graphically, giving in-depth insight into the cloud's operational health and performance.
- **Events** Events are collected from log files, OpenStack service notifications and other sources, and can be filtered, queried, and visualised to gain deeper understanding of specific issues or behaviors within the system.
- **Alarms** Alarms are generated using rules configured in StackLight applying these to collected logs and metrics.

3.4.1 Monitoring Role

The monitoring node aggregates the following components:

- ElasticSearch
- Kibana
- InfluxDB
- Grafana
- Nagios

4 Compact Cloud Reference Architecture

This chapter summarizes engineering goals, component selections and configuration requirements for Mirantis OpenStack *Compact Cloud* on Dell EMC hardware.

Table 1. Compact	Cloud Requirements	and Specifications	, Summary

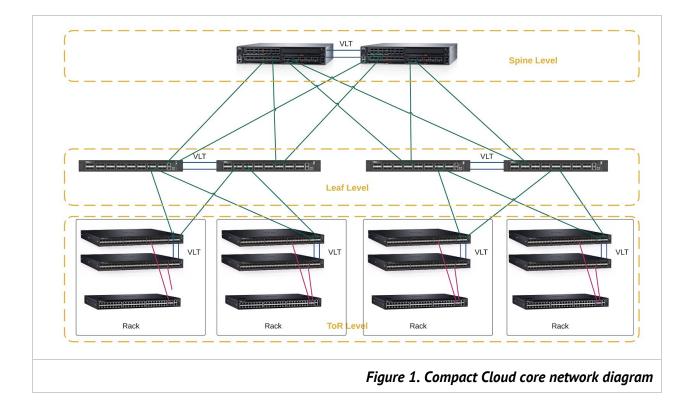
Component	Cloud Configuration		
Controller High Availability	Standard MOS RA design and configuration for 99.99% (four-nines) control plane uptime		
Hypervisor	KVM		
Glance Backend	Ceph/RBD		
Object Storage	Ceph/RadosGW		
Cinder Backend	Ceph/RBD		
Nova Storage	Ceph/RBD		
Keystone API version	3		
Keystone Identity Backends	 Mysql for domain 'default' Openstack services user IDs LDAP, each Organizational Unit (OU) maps to a Keystone domain Cloud end-user IDs 		
Keystone Assignments Backend	MySQL		
Complementary Projects	 Heat Ceilometer Sahara Murano StackLight 		
NIC Bonding type	Linux bonding, LACP, VLT		
Control Plane	Controller, OpenStack Database, Messaging system, and Network roles are joined into one 'Compact Controller' role		

Table 1. Compact Cloud Requirements and Specifications, Summary - Continued			
Number of Small Controller Nodes	3, virtualized		
Number of Compute Nodes	Up to 50 (minimum 1)		
Number of Storage Controller Nodes	3, virtualized		
Number of MongoDB Nodes	3, virtualized (minimum 1)		
Number of Monitoring Nodes	3, virtualized (minimum 1)		
Number of Ceph OSD Nodes	Up to 27 (minimum 4)		
Number of Infrastructure Nodes	3		
Neutron ML2 Backend	OVS + VxLAN		
Neutron External Network	1, flat-mode		
Neutron Complementary Services and Their Backends	None		

4.1 Sizing

Controller node configuration and the number of controller nodes recommended for *Compact Cloud* (3+, can be virtualized for smaller implementations) is calculated to ensure stable and highly available service at a minimum of four-nines (99.99%) control-plane uptime.

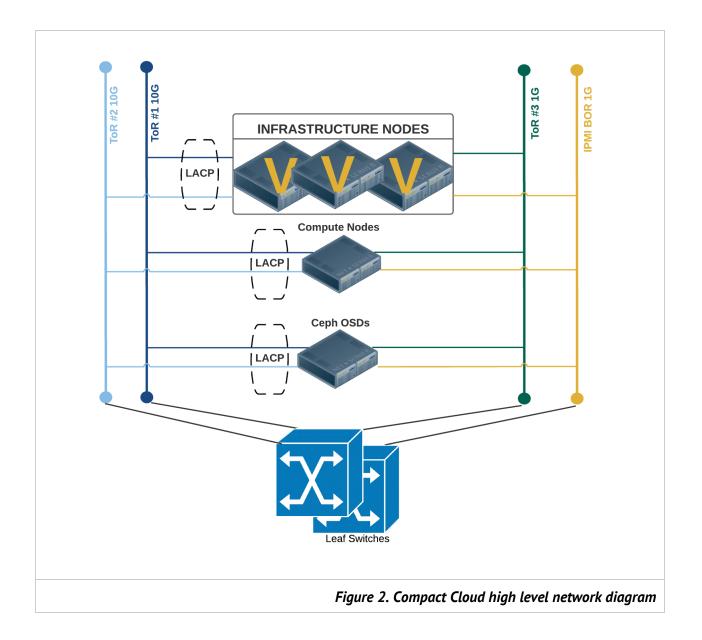
Data plane (e.g., storage controller, monitoring, Ceph OSD) node configurations and recommended numbers (typically 3+ for key node types) are calculated in terms of performance, industrial best practices, and MIrantis' experience. The recommended deployment ensures that *Compact Cloud* will continue to run at full planned capacity (i.e., will comply with SLA) if one key data plane node fails.



4.2 Core Network Configuration

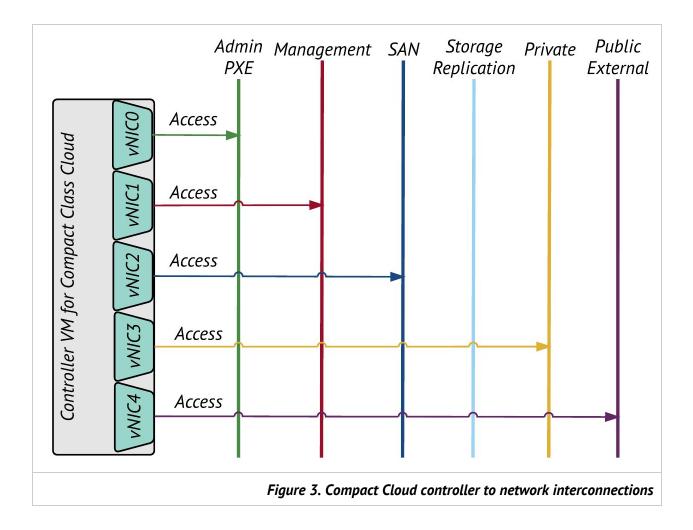
The Compact Cloud architecture employs a top-of-rack to leaf (ToR to Leaf) aggregation schema for core networking. This network configuration scales better than ring configurations, and is easier to build and maintain.

The number of ToR switches is chosen in order to enable all required connections to terminate within each rack. If racks have more than one ToR switch, these switches should be joined as a stack.


On each level, each pair of switches forms a single Virtual Link Trunking (VLT) domain. At lower levels, each switch connects to two upper level switches within one VLT domain, providing full redundancy in case of link or switch failure.

4.3 High Level Network Diagram

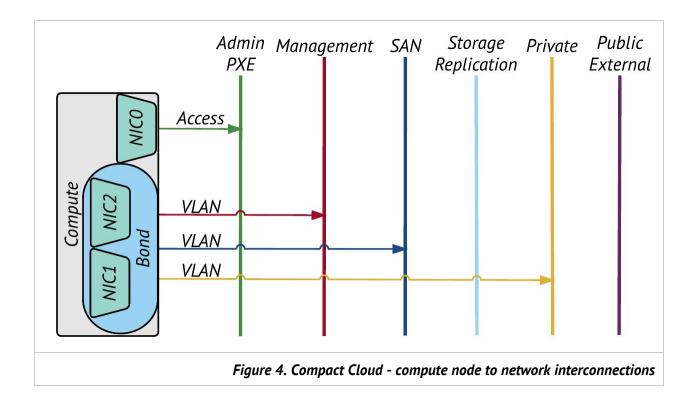
All nodes are connected to two 10GE ToR switches (Dell Networking S4048-ON) by two interfaces joined into a Link Aggregation Control Protocol (LACP) group. This virtual interface is used for MOS networking. Each node is also connected to a 1GE ToR switch — one for the Admin/PXE FUEL network and for iDRAC.



4.4 Node to Network Interconnections

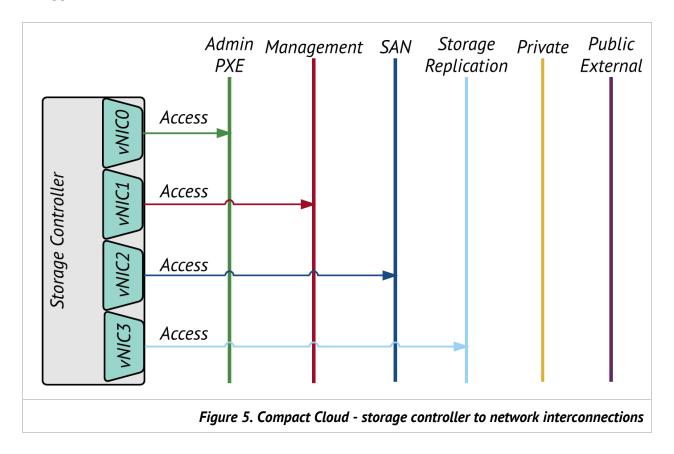
4.4.1 Controller VM Network Connections

Controller VMs for *Compact Cloud* are equipped with five virtual NICs. Each vNIC connects one cloud network in untagged mode. Controllers are connected to Admin/PXE, Management, SAN, Private, and Public networks.



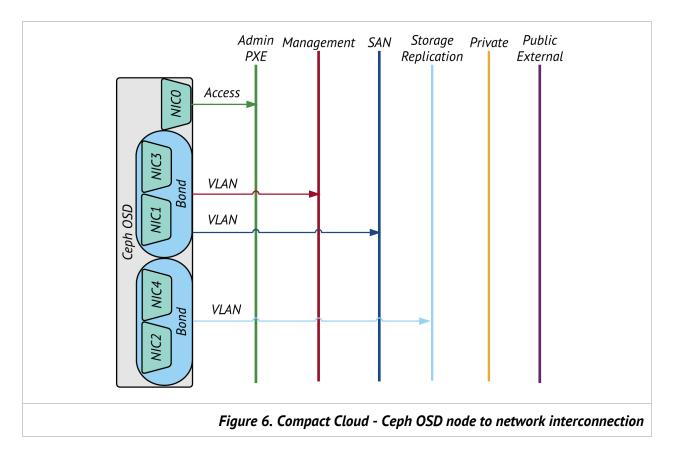
4.4.2 Compute Node Network Connections

Compute nodes for *Compact Cloud* are each equipped with three NICs. The first NIC is connected to the Admin/PXE network in untagged mode. The second and third NICs are bonded (using Linux bonding) into a single logical interface (LACP mode) that serves Managment, SAN, and Private networks on tagged mode VLANs.



4.4.3 Storage Controller VM Network Connections

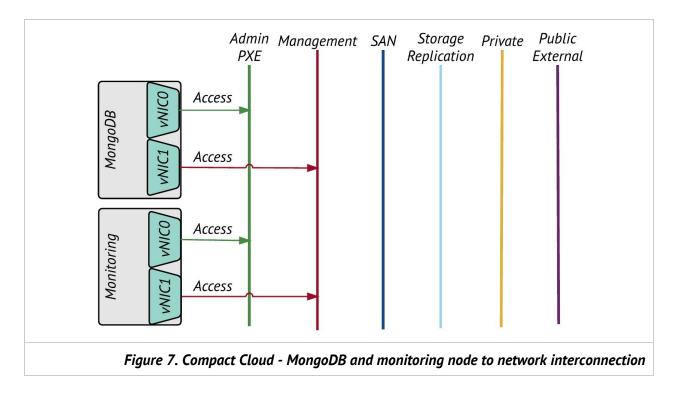
Storage controller VMs for *Compact Cloud* are equipped with four virtual NICs. Each vNIC connects with one cloud network – Admin/PXE, Management, SAN, and Storage Replication networks – in untagged mode.



4.4.4 Ceph OSD Network Connections

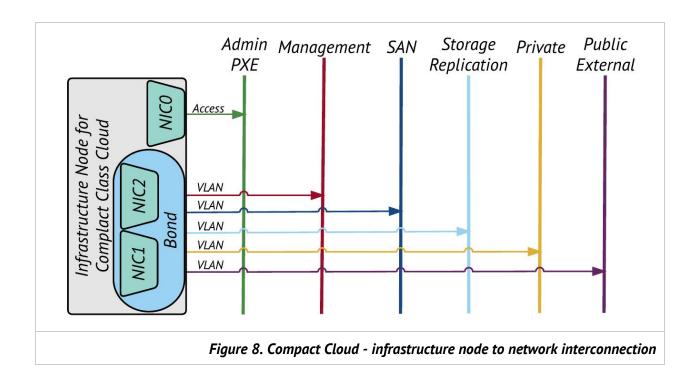
Ceph OSD nodes in *Compact Cloud* are equipped with five NICs. Though a three(3)-NIC configuration would be possible, Mirantis recommends separating the Storage Replication network on its own pair of NICs, making effective storage bandwidth predictable and eliminating a potential source of contention.

For cost efficiency, we recommend providing these five physical NICs by using one single-port NIC and two dual-port NICs. The single-port NIC is connected to the Admin/PXE network in untagged mode. The first ports of each dual-port card (effectively the second and fourth NICs) are bonded together (Linux bonding, LACP mode) to serve Management and SAN networks as tagged-mode VLANs. The second ports of each dual-port card (effectively the third and fifth NICs) are likewise bonded together to serve the Storage Replication network via a tagged-mode VLAN. This connection scheme addresses not only individual cable or switch failure but also chipset/NIC failure.



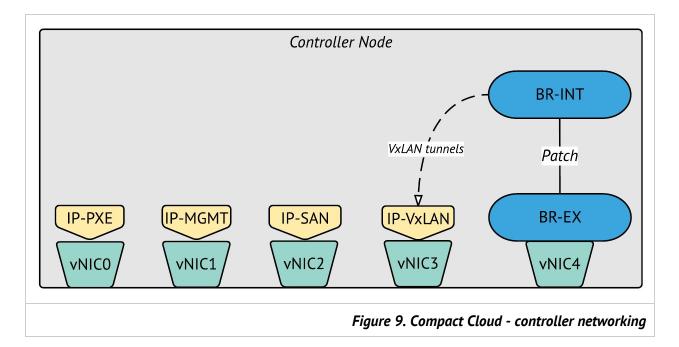
4.4.5 Monitoring and MongoDB Node VM Network Connections

Monitoring and MongoDB nodes for *Compact Cloud* are equipped with two virtual NICs. The first is connected to the Admin/PXE network, the second to the Management network, both in untagged mode.



4.4.6 Infrastructure Node Network Connections

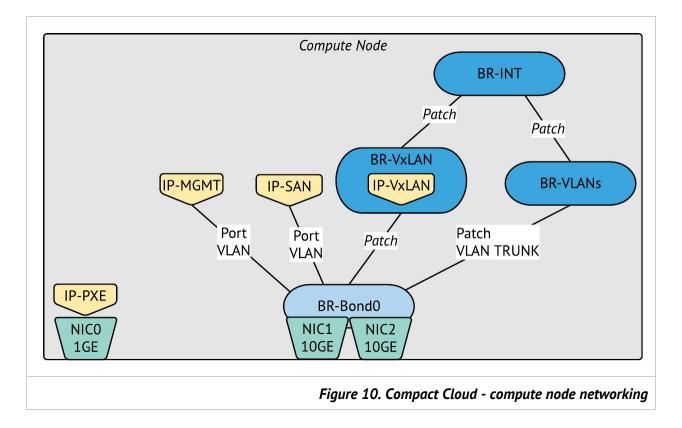
Like compute nodes, infrastructure nodes for *Compact Cloud* are each equipped with three NICs. The first NIC is connected to the Admin/PXE network in untagged mode. The second and third NICs are bonded (using Linux bonding) into a single logical interface (LACP mode) that serves Management, SAN, Storage Replication, Public, and Private networks on tagged-mode VLANs.



4.5 Cloud Networking

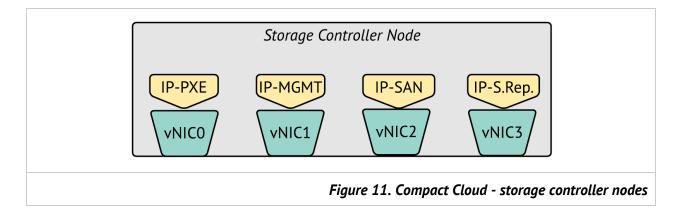
4.5.1 Controller Node Networking

Inside *Compact Cloud* controller VMs, the Admin/PXE, Management, and SAN networks are terminated on individual vNICs. A fourth vNIC serves the VxLAN tunnels used for tenant networks, and a fifth vNIC is controlled by Open vSwitch and serves the Public network.



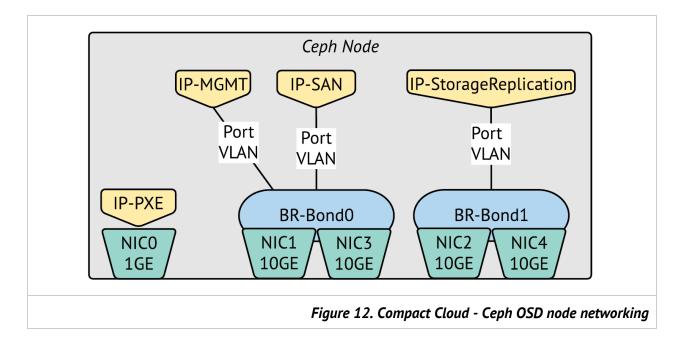
4.5.2 Compute Node Networking

Inside *Compact Cloud* compute nodes the Admin/PXE network sits on the 1GbE interface. Management and SAN networks are carried over the bonded interface in VLANs. Other networks are served by OpenVSwitch, which is under Neutron control.



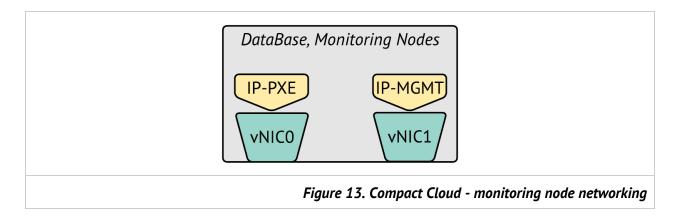
4.5.3 Storage Controller VM Networking

In storage controller VMs, all networks are connected to individual vNICs.



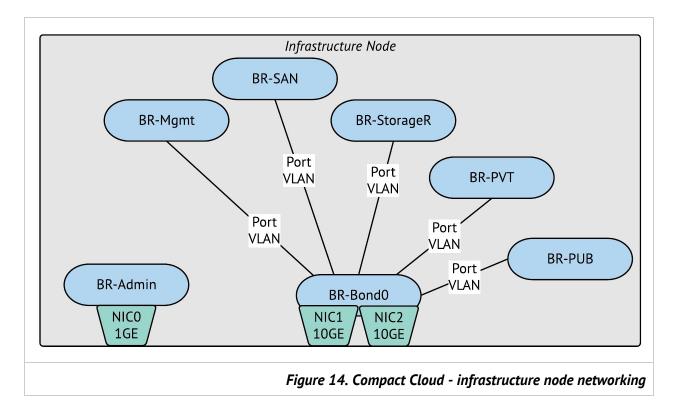
4.5.4 Ceph OSD Node Networking

On Ceph OSD nodes, the Admin/PXE network sits on the 1GbE interface. Other networks are served as VLANs extracted from the two bonded interfaces.



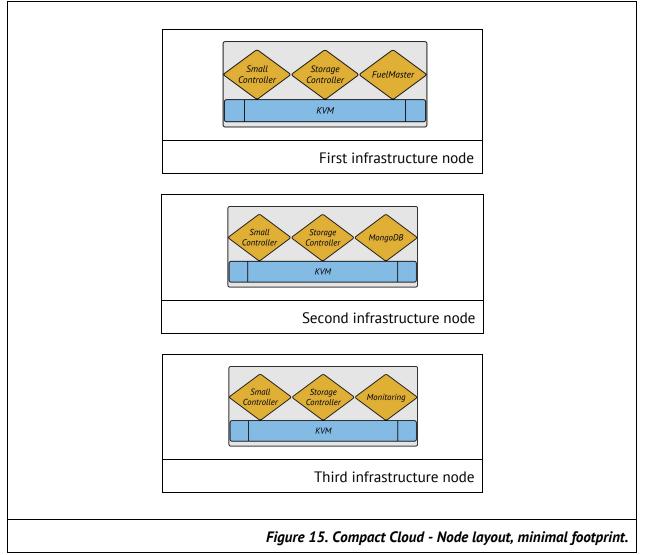
4.5.5 Monitoring and Database Node Networking

In *Compact Cloud* monitoring and MongoDB nodes, networks are directly connected to vNICs without use of LACP or VLANs.



4.5.6 Infrastructure Node Networking

All network segments connecting to each *Compact Cloud* infrastructure node are bridged (standard Linux bridging). The Admin/PXE segment is separated on its own 1GbE interface. Two 10GbE interfaces, bonded in an LACP group, carry the remaining MOS network segments within VLANs.

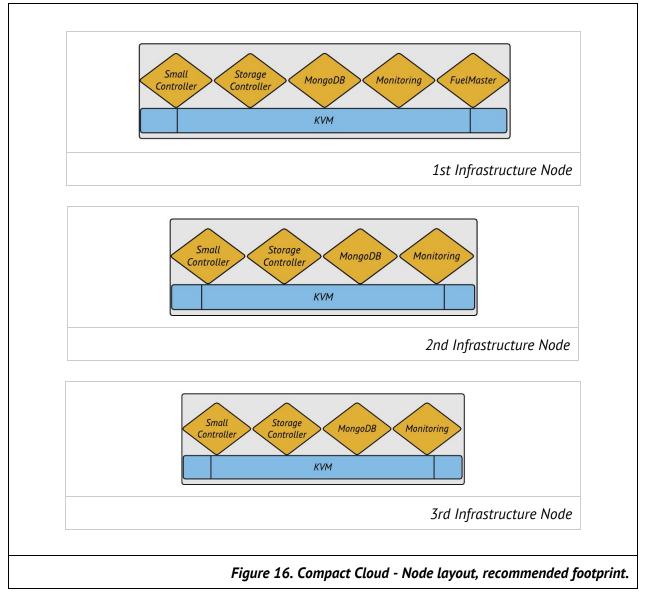


4.6 Node Role VM Distribution Across Infrastructure Nodes

The *Compact Cloud* architecture deploys control plane node roles onto KVM virtual machines hosted on infrastructure nodes. Two configurations — minimal and recommended — are offered.

4.6.1 Minimal Footprint

Infrastructure nodes can be configured with a minimal footprint, providing controller and storage node redundancy but only including a single instance of the OpenStack and monitoring databases. While these databases can be protected (e.g., with mirroring), the minimal footprint does not offer true high availability — cloud operations or data collection will stall if issues occur within the relevant software, VMs, or physical hardware.



4.6.2 Recommended Footprint

The *Compact Cloud* recommended footprint distributes database instances and uses clustering to achieve true HA.

4.7 Recommended Hardware and VM Configuration

The tables below summarize Mirantis and Dell EMC recommendations for configuring hardware and VMs to host node roles. Recommendations are discussed in greater detail, thereafter.

Role	vCPUs	RAM	vHDDs	vNICs
Compact Controller	4	64GB	500GB	5
Storage Controller	2	32GB	100GB	5
MongoDB node	6	64GB	1.6TB	2
Monitoring node	6	64GB	1.6TB	2
Fuel Master	1	32GB	300GB	2

Table 2. Compact Cloud - Recommended VM configuration

 Table 3. Compact Cloud - Recommended hardware configuration

Role	Server model	CPU	RAM	Disks	NICs
Infrastructure node	Dell EMC PowerEdge R630	2x Intel® Xeon® E5-2650v4 (12 cores per CPU)	256GB	2x 1.2TB Intel SSD DC S3710 Series 4x 1.6TB Intel SSD DC S3610 Series	Intel® Ethernet Network Daughter Card X520-DA2 /1350-T2
Compute node	Dell EMC PowerEdge R630	2x Intel® Xeon® E5-2650v4 (12 cores per CPU)	256GB	2x 480GB Intel SSD DC S3610 Series	Intel® Ethernet Network Daughter Card X520-DA2 /1350-T2

Table 3. Compact Cloud - Recommended hardware configuration - Continued							
Ceph OSD node	Dell EMC PowerEdge R730xd	2x Intel® Xeon® E5-2650v4 (12 cores per CPU)	256GB	 2x 200GB SAS (FlexBay) for OS 6x 1.6TB Intel SSD DC S3610 Series for Block Storage 15x 1.2TB SAS for Object Storage 3x 200GB Intel SSD DC S3710 Series 	Intel® Ethernet Network Daughter Card X520-DA2 /1350-T2 Intel® Ethernet Converged Network Adapter X520-DA2 SFP+		

4.7.1 Ceph OSD Nodes

Based on capacity and performance characteristics Mirantis and Dell EMC recommend Dell EMC PowerEdge R730xd to be used as a Ceph OSD node to store cloud data.

Configuration of Ceph OSD nodes primarily reflects required object storage capacity and block storage bandwidth requirements for the storage subsystem. Serially-attached storage (SAS) — relatively slow, but capacious and inexpensive — is often recommended for object storage. Performance can be increased cost-effectively by using SAS in conjunction with small SSDs, used to store the OSD journal¹, increasing the speed at which Journal data can be written.

In contrast, block storage requires high IOPS, making SSDs the only option in most cases. Intel SSD DC S3610 Series fit perfectly into that requirements.

¹ More info about OSD journal may be found here: <u>http://docs.ceph.com/docs/giant/rados/configuration/journal-ref/</u>

To address both object and block storage requirements appropriately, balancing cost and performance considerations and permitting fully-independent scaling for each storage type, Mirantis recommends using separate object and block storage hosts, configured as shown below:

- Object Storage server configuration
 - Dell EMC PowerEdge R730xd
 - 2x 300GB SATA disks for an operating system
 - 20x 2TB SAS disks to serve as Ceph OSDs
 - 4x 200GB Intel SSD DC S3710 Series for Ceph Journaling
 - 2x Intel® Xeon® E5-2630v4 (6 cores per CPU)
 - \circ 96GB RAM
- Block Storage server configuration
 - Dell EMC PowerEdge R630
 - 2x 300GB SATA disks for an operating system
 - 6x 1.6TB Intel SSD DC S3610 Series to serve as Ceph OSDs
 - 2x Intel® Xeon® E5-2630v4 (10 cores per CPU)
 - 128GB RAM

Alternatively, clouds requiring both types of storage but requiring a smaller footprint can use the hybrid storage server configuration below, which maintains the same level of resiliency:

- Hybrid Object and Block Storage server configuration
 - Dell EMC PowerEdge R730xd
 - 2x 300GB SATA disks for an operating system
 - 15x 2TB SAS disks to serve as low speed Ceph OSDs
 - 3x 200GB Intel SSD DC S3710 Series for Ceph Journaling for low speed OSDs
 - 6x 1.6TB Intel SSD DC S3610 Series to serve as high speed Ceph OSDs
 - 2x Intel® Xeon® E5-2660v4 (14 cores per CPU)
 - 256GB RAM

4.7.2 MongoDB Node

Requirements for MongoDB depend on Ceilometer settings, such as the number of entities in a cloud we wish to monitor, what metrics we wish to collect from each entity, polling intervals, how many days we wish to store collected data, how many alarms we wish to define on top of collected data, and the evaluation interval for those alarms. Entities may be VMs, networks, objects in an object store, etc.

Based on Mirantis' experience with MongoDB v2.6, a basic configuration might provide a 1.6TB SSD, which is enough to store 30 days worth of data for up to 1500 entities with 25 metrics each, at a 60 sec polling interval. This basic configuration can live on a single VM in the controller set (small footprint), or (optimal footprint) distributed across the set of three (3) controller nodes (infrastructure nodes).

For configurations that push this ceiling (i.e., more entities x metrics-per-entity, shorter polling interval, more alarms, shorter alarm-evaluation interval, etc.) we recommend using a dedicated physical server to host MongoDB. Shown below are storage requirements for a range of example configurations:

- 3000 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 35 sec
 - 5.5TB is needed to keep the data for 30 days
- 3000 entities with 15 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 19 sec
 - 6TB is needed to keep the data for 30 days
- 3000 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 13 sec
 - $\circ~$ 5.8TB is needed to keep the data for 30 days
- 3000 entities with 8 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 10 sec
 - 6TB is needed to keep the data for 30 days
- 4500 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 19 sec
 - 6TB is needed to keep the data for 30 days
- 4500 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 48 sec
 - 6TB is needed to keep the data for 30 days
- 1500 entities with 25 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 16 sec
 - 6TB is needed to keep the data for 30 days

- 1500 entities with 10 metrics per entity, 100 alarms with 30 sec evaluation interval
 - Minimal polling interval 7 sec
 - 6TB is needed to keep the data for 30 days

4.7.3 Monitoring Node

The configuration specified in <u>Table 2. Compact Cloud - Recommended VM configuration</u> will suffice for clouds up to 100 Compute nodes, where logs and time-series data are retained for up to 30 days. Actual data stored depends greatly on workload characteristics and numbers, however, and may vary widely — in some cases possibly even exceeding the capacity of the recommended configuration.

4.7.4 Infrastructure Node

The configuration specified in <u>Table 3. Compact Cloud - Recommended hardware configuration</u> incorporates requirements for all virtual nodes that will be collocated on Infrastructure nodes. A disk configuration consists of 3 pairs of SSDs (RAID 1):

- 1.2TB RAID1 for a host operating system and Controller/Fuel virtual disks
- 1.6TB RAID1 for a MongoDB virtual disk
- 1.6TB RAID1 for a Monitoring virtual disk

For a minimal footprint (no HA for MongoDB and Monitoring nodes), the MongoDB database or Monitoring virtual disk can be stored on a single 1.6TB RAID1 device. In this case, the physical node requires two Intel® Xeon® E5-2620v4 (8 cores per CPU).

4.7.5 Hardware Summary - Servers

Dell EMC and Mirantis recommend the following hardware on which the *Compact Cloud* reference architecture was developed and validated.

Dell EMC PowerEdge R630

The PowerEdge R630 two-socket rack server delivers uncompromising density and productivity. Part of the 13th generation of PowerEdge servers, the R630 is ideal for virtualization. The processor and memory density with up to 24 DIMMs of DDR4 RAM provides great memory bandwidth.

Dell EMC PowerEdge R730xd

The incredible versatility of the PowerEdge R730xd server delivers outstanding functionality in just 2U of rack space. With the Intel® Xeon® processor E5-2600 v4 product family and up to 24 DIMMs of DDR4 RAM, the R730xd has the processing cycles and threads necessary to deliver more, larger and higher-performing storage for virtual machines. Highly scalable storage, with up to sixteen 12Gb SAS drives and the high-performance Dell PowerEdge RAID Controller H730, can

greatly accelerate data access for your virtualized environment.

Dell Networking

Compact Cloud uses the Dell Networking S3048-ON top-of-rack open networking switch, a high density 1000BASE-T switch optimized for software-defined networking with ; and the Dell Networking S4048-ON switch, which offers a similar architecture but provides 48 10GbE front-side ports, and 6 40GbE backplane ports per 1U rack unit.

Table 4. Compact Cloud - Switches

Switch Model	Quantity
Dell Networking S3048-ON	1
Dell Networking S4048-ON	2

4.7.6 Intel Solid State Storage

Performance of the *Compact Cloud* architecture is optimized in part by allocating storage to a range of devices whose performance characteristics meet different operational demands. These include:

- Relatively small capacity, high-speed Intel[®] S3710 solid state disks, optimized for write performance used to store Ceph OSD journals
- Larger capacity, Intel[®] S3610 solid state disks, optimized for balanced read/write performance used for local block storage (volume and ephemeral storage) on compute nodes

Plus serial-attached (SAS) storage for objects.

4.8 Cloud Limits

This table summarizes tested upper limits for capacity and loading, and upper bounds for time required to perform critical operations (e.g., recovery from several failure modes, time to spawn a new workload, etc.).

Table 5. Compact Cloud - Capacity/utilization upper limits

Parameter	Upper limit
Number of hypervisors under one control plane	50
Number of storage nodes under one control plane	27
Number of simultaneously running workloads	3050
Number of workloads being run at once	300
Number of registered tenants	595
Number of registered users	29600
Number of users working with cloud simultaneously	3100
Percentage of vCPUs utilisation	98%
Percentage of RAM utilisation	98%
Percentage of Network (all kind of) bandwidth utilisation	99%
Percentage of Storage (all kind of) utilization	89%
Time to recover after failure that leads to permanent disruption of service	0'11"
Time to recover after failure that leads to failure of new requests	0'19"
Time to recover after failure that leads to failure of any request (new or currently executing)	7'24"
Time to spawn/terminate one workload	0'11"
Time to spawn/terminate the maximum "Number of workloads being run at once" (see above)	5'

5 Deployment Guide

In this section, we describe how to deploy *Compact Cloud* with MOS 9.1 on Dell EMC hardware. For more information, please see the <u>Mirantis OpenStack documentation</u>.

5.1 Hardware Specification

Three types of hardware nodes are used: Infrastructure, Compute, and Storage.

Table 6. Compact Cloud - Hardware node configuration

Node Type	Specification	Amount
Infrastructure	 Dell PowerEdge R630 with 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores) 256GB RAM 2x Intel s3610 1.6TB SSD 2x Intel s3710 400GB SSD 	3
Compute	Dell PowerEdge R630 with • 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores) • 256GB RAM • 1x Intel s7310 400GB SSD	4
Storage	 Dell PowerEdge R730xd with 2x CPU Intel Xeon E5-2650 v4 @ 2.20hz (12 cores) 256GB RAM 6x Intel s3610 1.6TB SSD 3x Intel s3710 200GB SSD 15x SAS drive 1.2TB 2x SAS drive 1.2TB (Flexbay) 	4

The Fuel Master is deployed on one of the Compute nodes and then moved to a virtual machine on one of Infrastructure nodes. The Compute node initially used by the Fuel Master is then added to the cluster as a regular Compute node.

Dell Networking switches used in the reference deployment are identified in <u>Table 4. Compact</u> <u>Cloud - Switches</u>.

5.2 Deployment Overview

The architecture, described in detail in sections 1-4 of this document, is hereunder summarized in terms of a practical deployment:

Component	PoC Configuration	
Controller High Availability	HA Controller Configuration (per standard Mirantis Reference Architecture)	
Glance Back-end	Ceph/RBD	
Object Storage	Ceph/RadosGW	
Cinder Back-end	Ceph/RBD	
Keystone identity backend	 MySQL for default domain (services userIDs) LDAP for end-users (multiple domains) 	
Keystone assignment backend	MySQL	
Host OS	Ubuntu 14.04	
Networking	Neutron with tunneling segmentation	
Number of Controllers	3 Nodes	
Number of Compute Nodes	3 Nodes	
Number of Storage Nodes	4 nodes Ceph OSD and 3 nodes Ceph Monitors	
Other Nodes	3 Virtual nodes (Infrastructure nodes as per Reference Architecture)	
Syslog Server	Fuel by default	

Table 7. Compact Cloud - Deployment specification

Table 7. Compact Cloud - Deployment specification - Continued				
Monitoring	3 StackLight: Infrastructure Alerting, Elasticsearch Kibana, InfluxDB Grafana nodes			
Release	Mirantis OpenStack 9.1 (Mitaka)			
Ceilometer	3 MongoDB nodes			
Related Projects	N/A			

5.2.1 Fuel Plugin & Component Overview

Fuel plugins and components used in deploying *Compact Cloud* are versioned below.

Table 8. Compact Cloud - Fuel plugins and components required				
Plugin/Component name	Plugin package version			
elasticsearch_kibana	0.10.2 4.0.0			
lma_infrastructure_alerting	0.10.2 4.0.0			
influxdb_grafana	0.10.2 4.0.0			
lma_collector	0.10.2 4.0.0			

7

5.2.2 Additional Extensions and Integrations

Additional integrations, not provided by the above Fuel plugins, are enumerated here.

Table 9. Compact Cloud - Additional integrations required

Extension	Component	
Template for network configuration	Fuel	
Post-install Ceph configuration rearrangement	Ceph	

2.0.0 | 4.0.0

standalone-ceph

5.3 Network Layout

Details specific to *Compact Cloud* deployed network configuration are summarized below.

Table 10. Compact Cloud - Network configuration detail					
Network name	Speed	Port mode	IP Range	VLAN	Interface
IPMI network	1 Gbps	Untagged	172.18.232.0/24	100	IPMI/Mgmt
Admin/PXE network	1 Gbps	Untagged	10.20.0.0/24	120	br-admin
Management network	10 Gbps	Tagged	192.168.0.0/24	140	br-mgmt
SAN	10 Gbps	Tagged	192.168.3.0/24	190	br-san
Storage network	10 Gbps	Tagged	192.168.1.0/24	180	br-storage
Public network	10 Gbps	Tagged	172.16.224.0/24	160	br-public
Private network	10 Gbps	Tagged	192.168.2.0/24	200	br-private

Table 10. Compact Cloud - Network configuration detail

5.4 Fuel Master Node Installation

Compact Cloud is deployed using the Fuel deployer. A generalized, step-by-step guide for Fuel Master Node installation can be found in the <u>Mirantis OpenStack documentation</u>.

IMPORTANT: MOS 9.1, used in this deployment, is available as an upgrade to MOS 9.0. Please download the MOS 9.0 ISO, then create the Fuel Master Node according to the instructions linked above. If internet access is available during installation, the upgrade to MOS 9.1 will proceed automatically.

This table summarizes settings we made during deployment of the *Compact Cloud* PoC on Dell EMC hardware. These are in most ways customizable:

rabie 22. compact cloud Bellings as	
Hostname	fuel.domain.tld
Enabled Interface	eth0, eth1
Interface for PXE	eth0
DHCP IP address	10.20.0.2/24
DHCP Pool range	10.20.0.3 - 10.20.0.254
Management Interface	eth1
Management IP Address	172.16.224.4/24
Gateway	172.16.224.1
DNS server	8.8.8.8
Domain	domain.tld
Search domain	domain.tld
Feature Groups enabled	"Advanced Features"

Table 11.	Compact C	loud -	Settinas	used in	deployment

IMPORTANT: In our PoC, we used one of the Compute nodes, initially, as the Fuel node. Post deployment, we converted the Fuel Master into a virtual machine and migrated this VM to one of our infrastructure nodes, re-dedicating the server it previously occupied to the cluster as a normal Compute node. If you intend to do this, it is important to remember *not to change the name of the Fuel Master node in the process*.

Boot a server using the MOS 9.0 ISO. When the Fuel Installer menu appears, press the Tab key to modify boot parameters:

Figure 17. Modifying Fuel boot parameters

Welcome to Fuel Installer (version: 9.0)	
1. Fuel Install (Static IP) 2. Fuel Advanced Install (Static IP)	
A Realist	
South States	
Press [Tab] to edit options	
FUEL for OpenStack	MIRANTIS

Make sure that the "showmenu" parameter is set to "yes," then hit the Enter key to proceed with installation. Wait until the OS is installed, the node is rebooted, and the Fuel Menu appears.

When the Fuel menu appears, navigate to the Feature Groups section and enable the "Advanced features" option:

Figure 18. Enabling Fuel Advanced Features

Fuel 9.0 setup Use Menu	Up/Down/Left/Right	to navigate. F8 exi	ts. Remember to save your c		
< Fuel User	Feature groups	on which feature grou	ps are enabled, some option	s on III will be shown or	hidden
< Network Setup	>		ps are chapted; some operand	S ON OT WITT DE SHOWN OF	interest.
< Security Setup < PXE Setup	> [] Experimental > [X] Advanced fea				
< DNS & Hostname < Bootstrap Image	> > < Check	> < Cancel	> < Apply	Σ	
< Root Password	>		/ Coppig	4	
< Time Sync < Feature groups	>				
< Shell Login < Restore settings	>				
< Quit Setup	>				
No errors found.					

Change Network, PXE or DNS settings if needed (if, for example, the Fuel node has access to the internet over the second, rather than the first network interface).

Fuel 9.0 setup Use. Menu	Up/Down/Left/Kight to nav		lemember to save		
< Fuel User	(\underline{X}) eth0 () eth > Interface: eth0	h1 Link: UP			
< Network Setup	> IP: 10.20.0.2	MAC: 52:54:00:ed			
< Security Setup < PXE Setup	<pre>> Netmask: 255.255.255.0 ></pre>	Gateway: 10.20.0	1.1		
< DNS & Hostname	>				
< Bootstrap Image < Root Password	<pre>> Interface name: > Enable interface:</pre>	eth0	(X) Yes	() No	
< Time Sync	<pre>> Configuration via DHCP</pre>		(X) Static	() DHCP	
	> IP address: > Netmask:	10.20.0.2 255.255.255.0			
< Restore settings	> Default Gateway:	10.20.0.1			
< Quit Setup	Check	< Cancel	> < Apply	>	
	(Olicenty /	(ounder	, inpprg		
Interface system id	lent if ier				

Proceed with installation as described in the <u>Fuel Installation Guide</u>.

5.5 Post Installation Customization

Check that the MOS 9.1 upgrade has been applied. To do this, run "yum info fuel|grep repo" on the Fuel node's command line.

```
[root@fuel ~]# yum info fuel|grep repo
From repo : mos9.0-updates
```

The repo should be "mos9.0-updates". If it isn't, follow the update instructions.

Next, install the Fuel plugins required for the deployment:

# fuel pluginsinstal	elasticsearch_kiba	ana-0.10-0.10.2-1.noarch.rpm
<pre># fuel pluginsinstal</pre>		0.10-0.10.2-1.noarch.rpm
<pre># fuel pluginsinstal</pre>	lma_collector-0.10	0-0.10.2-1.noarch.rpm
<pre># fuel pluginsinstal</pre>	. lma infrastructure	e alerting-0.10-0.10.2-1.noarch.rpm
<pre># fuel pluginsinstal</pre>	_ ldap-3.0-3.0.0-1.m	noarch.rpm
<pre># fuel pluginsinstal</pre>	standalone-ceph-2	0-2.0.0-1.noarch.rpm
<pre># fuel plugins</pre>		
	version package_version	
+		
	0.10.2 4.0.0	ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
2 influxdb_grafana	0.10.2 4.0.0	ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
3 lma_collector	0.10.2 4.0.0	ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
4 lma infrastructure alerting	0.10.2 4.0.0	ubuntu (liberty-8.0, liberty-9.0, mitaka-9.0)
5 ldap	3.0.0 3.0.0	ubuntu (mitaka-9.0)
-		

Because we will use the standalone-ceph plugin we need to add a definition of the new "san" bridge in the Libvirt VM template for "virt" nodes:

5.6 OpenStack Environment Deployment

Once the Fuel Master is complete, we can use it to configure and deploy the environment.

The following settings were used during installation of OpenStack:

Name	Compact Cloud
OpenStack Release	Mitaka on Ubuntu 14.04
Compute	KVM
Networking Setup	Neutron with tunneling segmentation
Storage Backends	Yes, use Ceph
Additional services	Murano, Ceilometer (OpenStack Telemetry)

Table 12. Compact Cloud - OpenStack basic environment settings

5.6.1 Network Settings

First, create a new network group for the SAN:

```
[root@fuel ~]# fuel2 network-group create san -N $GROUP_ID -C $NET_CIDR -V
$VLAN
```

The term \$GROUP_ID can be found in output from the "fuel2 network-group list" command (it must be the same for all networks of your environment). \$NET_CIDR is the CIDR range for the SAN. \$VLAN represents the VLAN index for the SAN. For example:

[root@fuel ~]# fuel2 network-group create san -N 6 -C 192.168.3.0/24 -V 190

Then modify network settings on the Network Settings tab of the Fuel web UI.

Here is how network settings were configured for this test deployment:

Figure 20. Network settings

Dashboard Nodes	Networks	Logs	History	Workflows	W Health Check		
Network Setting	S (Neutron with tunnel	ing segmenta	ition)			+ Add Ne	ew Node Network Group
Node Network Groups	default 🥓						
default	This node network group	uses a shared	admin networ	k and cannot b	e deleted		
Settings	network.san						
Neutron L2	network.descriptions.san						
Neutron L3	CIDR	192.168.	3.0/24		Use the w	vhole CIDR	
Other		Start			End		
Network Verification	IP Range	192.168.	3.1		192.168.3.2	54	0
Connectivity Check	Use VLAN tagging 🛕	190)				
	Public @						
	The Public network allows inbo from VMs to the external netwo		o VMs (Controller	s and Tenant VMs)) from external netw	vorks (e.g., the Internet) as	s well as outbound connections
	CIDR	172.16.2	24.0/25		Use the w	vhole CIDR	
		Start			End		
	IP Range	172.16.2	24.10		172.16.224.	39	•
	Gateway	172.16.2	24.1				
	Use VLAN tagging 🛕	160					
	Storage Ø						
	The Storage network is used to	provide storage s	ervices such as re	plication traffic fro	om Ceph. The Manag	gement network is used fo	or Ceph Public traffic.
	CIDR	192.168.	1.0/24		Vse the w	vhole CIDR	
		Start			End		
	IP Range	192.168.	1.1		192.168.1.2	54	0
	Use VLAN tagging 🔺	180					

Figure 21. Network settings (continued 1)

CIDR	192.168.0.0/24	✓ Use the whole CIDR	
	Start	End	
IP Range	192.168.0.1	192,168.0.254	
Use VLAN tagging 🔺	140		
Private 🛛			
	s communication between each tenant's V annot be accessed directly from the rest of	Ms. Private network address spaces are not a part of the f the public network.	public net
CIDR	192.168.2.0/24	Use the whole CIDR	
CIDR	192.168.2.0/24 Start	Use the whole CIDR	
CIDR IP Range			
	Start	End	
IP Range	Start 192.168.2.1	End	

Figure 22. Network settings (continued 2)

Dashboard	Nodes	Networks	S ettings	Logs	Health Check				
Networ	k Setting	S (Neutron	with tunnelir	ng segmentat	ion)			+ Add New Node	Network Group
Node Networ	k Groups	Neutro	n L2 Config	guration 🌘)				
default					mentation such as VLA nd the Base MAC addr		This section is specific to	a tunneling segmentatio	n related parameters
Settings				Start	End				
Neutron I	.2	Tunnel ID r	ange	2	65535	;			
Neutron I Other	.3	Base MAC a	address	fa:16:3e:	00:00:00				
Network Veri	fication								
Connectiv Check	vity								
						Load	d Deployed Settings	Cancel Changes	Save Settings

Figure 23. Network settings (continued 3)

Dashboard Nodes	Networks	Logs	History	Workflows	Health Check	
Network Setting	S (Neutron with tunneli	ng segmenta	ation)			+ Add New Node Network Group
Node Network Groups	Floating Network	Paramete	rs 🛛			
default	This network is used to assign F	loating IPs to ten	ant VMs.			
Settings		Start			End	
	Floating IP range	172.16.2	24.31		172.16.224	4.126
Neutron L2 Neutron L3	Floating network name	admin_fl	oating_net]	
Other	Admin Tenant Ne	twork Par	ameters 🛛			
Network Verification	This Admin Tenant network pro	vides internal net	work access for in	stances. It can be	used only by the A	Admin tenant.
Connectivity Check	Admin Tenant network CIDR	192.168.	111.0/24			
	Admin Tenant network gateway	192.168.	111.1]	
	Admin Tenant network name	admin_ir	nternal_net]	
	Guest OS DNS Ser	vers 🛛				
	This setting is used to specify the servers outside the environmer		e servers for the e	nvironment. These	e servers will be us	ed to forward DNS queries for external DNS names to DNS
	Guest OS DNS Servers	8.8.4.4			0 0	
		8.8.8.8			0 0	
						Cancel Changes Save Settings

Figure 24. Network settings (continued 4)

Dashboard Nodes	Networks	Ö Settings	Logs	History	A Workflows	W Health Che	ck				
Network Setti	NgS (Neutron wi	th tunnelir	ng segmenta	tion)			+ Add New Node Network Group				
Node Network Groups	Common										
default	Public Ga			not be available o	er will not						
Settings	respond to controllers	ICMP requests will not take p	s to the deployed ublic gateway ava	cluster. If unchec ilability into acco	ked, the unt as part						
Neutron L2	need to ma			have internet acce ie mirrors for the	ess, you will						
Neutron L3											
Other	Public net	Public network assignment									
Network Verification			k to all nodes twork will be assi	gned to controller	s only						
Connectivity Check	Neutron A	dvanced	d Configur	ation							
		L2 population	on chanism in Neutr	on							
	Enable Dist		Routers in Neut	ron							
		h Availability fe	atures for Virtua oller nodes to fun	Routers in Neutr ction properly	on						
	Enable Neu		anced service plu	s-in							
	Host OS D	NS Serv	ers								
	DNS list		172.19.0	5		O Li	st of upstream DNS servers				
	Host OS N	TP Serve	ers				2				
	NTP server list		0.fuel.po	ol.ntp.org		0 0	List of upstream NTP servers				
			1.fuel.po	ol.ntp.org		0 0					
			2.fuel.po	ol.ntp.org		0 0					
					Lo	ad Deploye	d Settings Cancel Changes Save Settings				
		_				_					

5.6.2 Upload network template

Because we are using untagged networks on virtualized nodes and tagged networks on baremetal nodes, we use network templates to define different interface settings for each node type. See the network template example in the Appendices.

Upload the network template to the environment:

```
<fuel master># fuel2 network-template upload -f $NET TEMPLATE FILE $ENV ID
```

Where \$NET_TEMPLATE_FILE represents the network template file without its extension, and \$ENV_ID represents the environment ID. For example:

```
[root@fuel ~]# ls *network-template*
Dell-MOS9.0-CompactCloud-network-template.yaml
[root@fuel ~]# fuel2 network-template upload -f Dell-MOS9.0-CompactCloud-network-template 6
```


5.6.3 Add Infrastructure Nodes for Control Plane

Add Infrastructure nodes to the environment and assign <u>the Virtual role</u> to them:

Figure 25. Adding infrastructure nodes with Virtual role

Dashboard	Nodes	Networks	Settings	Logs	Health Check				
	It 🗣	T Q					Configure Disks	Configure Interfaces	+ Add Nodes
Sort By	Roles 🖶								
Virtual	(3)								Select All
	Untitle	d (2d:7c)			B 3	PENDING A	DDITION	CPU: 2 (48) RAM: 256.0 GB	HDD: 3.3 TB 🔅
		d (70:9c)			B 3	PENDING A	DDITION	CPU: 2 (48) RAM: 256.0 GB	HDD: 3.3 TB
	Untitle VIRT	d (2e:04)			B (3	PENDING A	DDITION	CPU: 2 (48) RAM: 256.0 GB	HDD: 3.3 TB

Select all three nodes and configure their disks as shown:

Figure 26. Configuring infrastructure node disks

Dashboard	Nodes	Networks	C Settings	E Logs	History	入 Workflows	W Health Check		
		ntion of 3 0:02:00.0-scsi-0		pace : 1.5 TB				Boot from this c	isk 🔵
					Unalloca 1.5 TE				
sdb (disk/by	/-path/pci-000	0:02:00.0-scsi-0	:0:3:0) Total S	pace : 1.5 TB				Boot from this c	isk 🔵
					Unalloca 1.5 TE				
sdc (disk/by	-path/pci-000	0:02:00.0-scsi-0	: 2:0:0) Total Sp	oace : 371.4 GB	3			Boot from this c	isk 💿
	i ystem) GB					Virtual Stora 317.4 GB	gei		
									1
Park	. N. J. (1.4								
Back I	o Node List								

:

5.6.4 Creating VMs to Host Controller Components

For each node, add VM definitions in "VM Configurations" section for the VMs that will host the compact controller, storage controller, MongoDB, and monitoring as described in <u>section 4.6</u>:

Figure 27. Add VM configuration details

Untitled (2d:7c)		0
Invironment: Compact Clou Roles: Virtual Manufacturer: Dell Inc. Node network group: defau GDN: bootstrap	Public IP: N/A MAC Address: ec:f4:bb:ea:2d:7c	
CPU 48 x 2.20 GHz		+
Disks 3 drives, 3.3 TB tot	al	+
Interfaces 1 x 1.0 Gbps,	2 x 10.0 Gbps, 1 x N/A	+
Memory 16 x 16.0 GB, 29	56.0 GB total	+
System Dell Inc. PowerEd	dge R630	+
NUMA topology 2 NUMA	A nodes	+
VM Configurations		-
You can define a custom virtual	I machine configuration in a JSON file.	
[{"mem":64,"vda_size":" {"mem":32,"vda_size":"1 {"mem":64,"vda_size":"1 {"mem":64,"vda_size":"1 Save Settings	100G","id":2,"cpu":2}, 100G","id":3,"cpu":6},	11
	Configure Disks Configure Interfaces Cl	ose

You can define the amount of memory in GB, the size of the disk, and the number of CPU cores for each VM. VM IDs must be unique within each hardware node on which VMs are provisioned. As a

general best practice, it makes sense to give each VM in an environment a globally unique ID, as this will prevent ID conflicts later, if migration of VMs is required.

For this exercise, we've defined 4 VMs on each Virt node, as described below, as shown in the illustration immediately preceding, and as discussed in section 4.6.2, above:

- Controller VMs with IDs 1, 5, 9
 - 500GB virtual disk, 64GB RAM, 4 vCPU
- Storage Controller VMs with IDs 2, 6, 10
 - 100GB virtual disk, 32GB RAM, 2 vCPU
- MongoDB VMs with IDs 3, 7, 11
 - 100GB virtual disk, 64GB RAM, 6 vCPU
- Monitoring VMs with IDs 4, 8, 12
 - 100GB virtual disk, 64GB RAM, 6 vCPU

NOTE: Do not set the "created" parameter to "true" as this instructs Fuel to assume a pre-existing VM (rather than creating a new VM) during provisioning.

VMs can also be created from the Fuel CLI:

```
<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":64,
"vda_size":"500G", "id":1, "cpu":4}, {"mem":32, "vda_size":"100G", "id":2,
"cpu":2}, {"mem":64, "vda_size":"100G", "id":3, "cpu":6}, {"mem":64,
"vda_size":"100G", "id":4, "cpu":6}]'
```

NOTE: To add a VM to the deployed environment you must use the CLI, and the command must be formatted as shown, with already-created VMs flagged as "created": true. You can cause new VMs to be created by Fuel by setting "created": false, as shown below:

```
<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":16,
"vda_size":"300G", "created":true, "id":1, "cpu": 8}, {"mem":4,
"vda_size":"300G", "created":true, "id":2, "cpu":2}, {"mem":4,
"vda_size":"300G", "created":false, "id":10, "cpu":2}]'
```

Or you can just skip the "created" parameter for VMs you need created, since "created": true is the default.

```
<fuel_master># fuel2 node create-vms-conf <VIRT_NODE_ID> --conf '[{"mem":16,
"vda_size":"300G", "created":true, "id":1, "cpu":8}, {"mem":4,
"vda_size":"300G", "created":true, "id":2, "cpu":2}, {"mem":4,
"vda_size":"300G", "id":10, "cpu":2}]'
```


After that, for a brand-new *Compact Cloud* environment, you can cause Fuel to provision VM(s) by clicking the "Provision VMs" button in the Fuel web UI. However, if you are creating additional VM(s) in an already deployed environment, you must use the CLI:

<fuel master># fuel node --node <VIRT NODE ID> --deploy

5.6.5 Attach SSDs to MongoDB and Monitoring Nodes

Once VMs are provisioned and discovered, we need to replace their virtual disks with 1.5GB SSDs on the MongoDB and Monitoring nodes. To do this, perform the following operation on each Virt node:

- SSH to the Virt node #1
- Using the "virsh destroy <ID>_vm" command, stop the Monitoring and MongoDB VMs with IDs 3 and 4 (7, 8 at Virt node #2 and 11, 12 at Virt node #3)
- We'll address SSDs via their Device IDs. Determine the device IDs for each 1.5GB SSD by grepping a listing of the "/dev/disk/by-id/" directory:

```
root@node-1:~# ls -l /dev/disk/by-id/|grep wwn|grep sd[ab]
lrwxrwxrwx 1 root root 9 Nov 11 05:58 wwn-0x55cd2e404c341e15 -> ../../sdb
lrwxrwxrwx 1 root root 9 Nov 11 05:58 wwn-0x55cd2e404c341e31 -> ../../sda
```

 Use the "virsh edit <ID>_vm" command to modify the "disk" section. Assign each VM to a dedicated SSD.

```
<disk type='block' device='disk'>
  <driver name='qemu' type='raw' cache='none'/>
  <source dev='/dev/disk/by-id/wwn-0x55cd2e404c341e15'/>
  <target dev='vda' bus='virtio'/>
```

- Start the VMs using the "virsh start <ID>_vm" command.
- Wait a couple of minutes to let nodes be discovered by Fuel. Verify in the Fuel UI that the disk size of the nodes has changed.

5.6.6 Assign Roles to Cluster Nodes

Add remaining hardware nodes to the cluster and assign required roles to the spawned virtual machines and hardware nodes using the Fuel web UI. Alternatively, you can do this with Fuel CLI by issuing the following command:

```
<fuel_master># fuel --env-id=<ENV_ID> node set
--node-id=<NODE1_ID>[,<NODE2_ID>] --role=controller
```


Here is an example of a full configuration:

[root@fuel ~]# fuel node						
id status	name	cluster	ip	mac	roles	
+	+	+	++		+	
· 4	12_vm	6	10.20.0.18	52:54:00:13:5d:94	elasticsearch_kibana, influxdb_grafa	
infrastructure	_alerting					
21 ready	4_vm	6	10.20.0.24	52:54:00:88:d9:55	elasticsearch_kibana, influxdb_grafa	
infrastructure	_alerting					
11 ready	3_vm			52:54:00:d3:2c:da		
· · ·	1_vm			52:54:00:16:86:1c		
5 ready	compute-2	6	10.20.0.6	ec:f4:bb:ea:6f:c4	compute	
3 ready	infra-3	6	10.20.0.5	ec:f4:bb:ea:2e:04	virt	
2 ready	infra-2	6	10.20.0.4	ec:f4:bb:ea:70:9c	virt	
20 ready	5_vm	6	10.20.0.13	52:54:00:dd:7f:f5	controller	
1 ready	infra-1	6	10.20.0.3	ec:f4:bb:ea:2d:7c	virt	
12 ready	9_vm	1 6	10.20.0.20	52:54:00:5c:ae:55	controller	
22 ready	2_vm	1 6	10.20.0.22	52:54:00:13:41:45	ceph-mon	
17 ready	7_vm	1 6	10.20.0.17	52:54:00:5e:2c:c1	mongo	
14 ready	6_vm	1 6	10.20.0.14	52:54:00:b9:f5:84	ceph-mon	
15 ready	10_vm	1 6	10.20.0.16	52:54:00:0e:40:bd	ceph-mon	
16 ready	8_vm	1 6	10.20.0.15	52:54:00:8d:14:47	elasticsearch_kibana, influxdb_grafa	
infrastructure	_alerting					
18 ready	11_vm	1 6	10.20.0.19	52:54:00:e8:96:c6	mongo	
7 ready	ceph-1	I 6	10.20.0.11	ec:f4:bb:ea:2b:1c	ceph-osd	
6 ready	compute-3	1 6	10.20.0.7	ec:f4:bb:ea:6f:7c	compute	
10 ready	ceph-4	1 6	10.20.0.9	24:6e:96:1f:4a:e4	ceph-osd	
4 ready	compute-1	1 6	10.20.0.8	ec:f4:bb:ea:2e:44	compute	
8 ready	ceph-2	1 6	10.20.0.12	ec:f4:bb:ea:29:c4	ceph-osd	
9 ready	ceph-3	6	10.20.0.10	ec:f4:bb:ea:2e:4c	ceph-osd	

5.6.7 Environment Settings

The illustration below, taken from the environment post-deployment, summarizes environment settings.

Figure 28. Environment settings summary

shboard	Nodes	Networks	Settings	Logs	W Health Check	
Plugin star Plugin ldap Plugin elas Plugin inf] Plugin ima of Miranti Plugin lbaa Provision c Plugin star Plugin idap Plugin elas	<pre>p is deployed. sticsearch_kit luxdb_grafana _collector is is OpenStack. _infrastructur as is deployed. of 48 environn ndalone-ceph i p is deployed. sticsearch_kit luxdb_grafana</pre>	is deployed. De . Enable to use oana is deployed. deployed. The re alerting is d. Enables LBaas ment node(s) is is deployed. De . Enable to use oana is deployed.	ELDAP authentie d. Deploy Elast Deploy the Infil Stacklight Col: deployed. Deployed. Sfor Neutron. s done. etach Ceph Monii e LDAP authenti d. Deploy Elast Deploy the Infil	by tools to send Be aware, in H tor and Rados Ga cation backend f ticsearch and th uxDB and Grafana	for Keystone he Kibana web a servers. dvanced monito d alerts conce A mode rescheo ateway from co for Keystone he Kibana web a servers.	interface. oring agent of the so called Logging, Monitoring and Alerting (LMA) Toolchain erning the OpenStack infrastructure. Juling of LB instances will not work!! ontroller role
of Miranti	is OpenStack.	ce election is	deployed Depl	ov tools to serv	d alerts conce	arning the OnenStack infractourture
of Miranti Plugin 1ma_ Plugin 1baa <u>Hide additio</u>	_infrastructur as is deployed onal information	d. Enables LBaa			A mode resched	erning the OpenStack infrastructure. duling of LB instances will not work!! Kibana
of Miranti Plugin Ima_ Plugin Ibaa <u>Hide additio</u> <u>HOrizc</u> The OpenS	_infrastructur as is deployed onal information OD Stack dashboa deos to help Op	d. Enables LBaa n rd Horizon is no	as for Neutron.		A mode resched	
of Miranti Plugin Ima_ Plugin Ibaa <u>Hide additio</u> <u>HOrizc</u> The OpenS tutorial vid	infrastructur as is deployed onal information OD Stack dashboa Jeos to help Op arted page	d. Enables LBaa n rd Horizon is no	as for Neutron.	Be aware, in HA	A mode resched and ster, see	duling of LB instances will not work!! <u>Kibana</u>
of Miranti Plugin Ima Plugin Ibaa Hide additio Horizco The OpenS tutorial vid the Get Sta Grafal	infrastructur as is deployed onal information OD Stack dashboa Jeos to help Op arted page	d. Enables LBaa	as for Neutron.	Be aware, in HA	A mode resched and ster, see	duling of LB instances will not work!! <u>Kibana</u> Dashboard for visualizing logs and notifications
of Miranti Plugin Ima Plugin Ibaa Hide additio Horizco The OpenS tutorial vid the Get Sta Grafal	_infrastructur as is deployed onal information ON Stack dashboa deos to help Op arted page <u>Na</u> d for visualizin	d. Enables LBaa	as for Neutron.	Be aware, in HA	A mode resched	duling of LB instances will not work!! <u>Kibana</u> Dashboard for visualizing logs and notifications <u>Nagios</u>
of Miranti Plugin Ima, Plugin Ibaa Hide additio Horizco The OpenS tutorial vid the Get Sta Grafar Dashboarco Kibana	infrastructur as is deployed onal information OD Stack dashboa Jeos to help Op arted page D d for visualizing d	d. Enables LBaa	ns for Neutron.	Be aware, in HA	A mode resched	duling of LB instances will not work!! <u>Kibana</u> Dashboard for visualizing logs and notifications <u>Nagios</u> Dashboard for visualizing alerts
of Miranti Plugin Ima, Plugin Ibaa Hide additio Horizco The OpenS tutorial vid the Get Sta Grafar Dashboarco Kibana	infrastructur as is deployed onal information OD Stack dashboa deos to help Of arted page D d for visualizin d for visualizin d for visualizin	d. Enables LBaa n rd Horizon is no perators and Do g metrics	ns for Neutron.	Be aware, in HA	A mode resched	duling of LB instances will not work!! Kibana Dashboard for visualizing logs and notifications Nagios Dashboard for visualizing alerts Grafana

Figure 29. Environment settings summary (continued 1)

Summary		Capacity			
Name	MOS_COE 🖍	CPU (Cores) 101 (776) R/	٩M	1.4 TB HDD	86.7 TB
Status	Operational	Node Statistics			
OpenStack Release	Mitaka on Ubuntu 14.04	Total Nodes	52	Ready	52
Compute	KVM				
Network	Neutron with tunneling segmentation	Controller	3	Offline	1
Storage Backends	Ceph RBD for volumes (Cinder)	Compute	30		
	Ceph RadosGW for objects (Swift API)	Ceph OSD	9		
	Ceph RBD for ephemeral volumes (Nova)	Telemetry - MongoDB	1		
To view the OpenStack health check	Ceph RBD for images (Glance) status go to Healthcheck tab	Operating System	2		
		Virtual	3		
Delete Environment	Reset Environment 🚯	StackLight Infrastructure Alerting	1		
		Elasticsearch Kibana	1		
		InfluxDB Grafana	1		
		Storage - Ceph Mon	3		
		+ Add Nodes			
Resources					
-					

- Get Started: documentation and tutorial videos to help Operators and Developers get up and running faster.
- Mirantis OpenStack Documentation: access the full suite of Mirantis documentation, including recommendations for planning and running your environment.
- Fuel Documentation: the page contains the most recent Fuel documentation.
- Plugin Documentation: information about developing and installing plugins to customize your Mirantis OpenStack environment.
- Technical Bulletins: see the most up-to-date list of critical security issues affecting Mirantis OpenStack and instructions to patch your environment.

5.6.8 Additional Settings

Nodes Network Allocation

Networks for the PoC deployment are defined using Fuel <u>network templates</u>. A sample network template file for the deployment is linked in the Appendices.

HDD Allocations for Controller, Compute and Storage Nodes

Fuel generally suggests reasonable starting minimums for storage allocation on these nodes. In some cases, it may be necessary to increase the space on the /var/log partition to retain more log data.

Ceph Nodes HDD Allocation

Allocate drive space on Ceph nodes as shown below.

Figure 30. Allocating drive space on Ceph nodes

da (disk/by-path/pci-0000:02:00.0-scsi-0:0:0:0) Total Space : 185.8	Boot from this disk
Ceph Journal 185.8 GB	
db (disk/by-path/pci-0000:02:00.0-scsi-0:0:1:0) Total Space : 185.8	Boot from this disk
Ceph Journal 185.8 GB	
c (disk/by-path/pci-0000:02:00.0-scsi-0:0:2:0) Total Space : 185.8	Boot from this disk
Ceph journal 185.8 GB	le la constante de la constante
dd (disk/by-path/pci-0000:02:00.0-scsi-0:0:3:0) Total Space : 1.5	Boot from this disk
3 Серћ 1.5 ТВ	
de (disk/by-path/pci-0000:02:00.0-scsi-0:0:4:0) Total Space : 1.5 B	Boot from this disk
Ceph 1.5 TB	×
1.5 TB df (disk/by-path/pci-0000:02:00.0-scsi-0:0:5:0) Total Space : 1.5	Boot from this disk
	bude Holl Halls disk e
Ceph 1.5 TB	
dg (disk/by-path/pci-0000:02:00.0-scsi-0:0:6:0) Total Space : 1.5 B	Boot from this disk (
Ceph 1.5 TB	
idh (disk/by-path/pci-0000:02:00.0-scsi-0:0:7:0) Total Space : 1.5 B	Boot from this disk
Ceph 1.5 TB	ľ
di (disk/by-path/pci-0000:02:00.0-scsi-0:0:8:0) Total Space : 1.5 TB	Boot from this disk
Ceph 1.5 TB	New State Process
idj (disk/by-path/pci-0000:02:00.0-scsi-0:2:0:0) Total Space : 1.1 TB Base System 1.1 TB	Boot from this disk
1.1 TB sdk (disk/by-path/pci-0000:02:00.0-scsi-0:2:6:0) Total Space : 1.1	Boot from this disk
B	Bude from this disk of
Ceph 1.1 TB	
dl (disk/by-path/pci-0000:02:00.0-scsi-0:2:7:0) Total Space : 1.1 TB Ceph 1.1 TB	Boot from this disk 🤇
	Boot from this disk
sdm (disk/by-path/pci-0000:02:00.0-scsi-0:2:8:0) Total Space : 1.1 B Ceph	BUUL HUIL UIS USA
Серћ 1.1 ТВ	
idn (disk/by-path/pci-0000:02:00.0-scsi-0:2:9:0) Total Space : 1.1 B	Boot from this disk
Ceph 1.1 TB	i i i i i i i i i i i i i i i i i i i
sdo (disk/by-path/pci-0000:02:00.0-scsi-0:2:10:0) Total Space : 1.1 B	Boot from this disk (
Ceph 1.1 TB	,
sdp (disk/by-path/pci-0000:02:00.0-scsi-0:2:11:0) Total Space : 1.1	Boot from this disk
Ceph 1.1 TB	
tdq (disk/by-path/pci-0000:02:00.0-scsi-0:2:12:0) Total Space : 1.1	Boot from this disk
Ceph 1.1 TB	*
rdr (disk/by-path/pci-0000:02:00.0-scsi-0:2:13:0) Total Space : 1.1	Boot from this disk
18 Ceph 1.1 TB	*
ids (disk/by-path/pci-0000:02:00.0-scsi-0:2:14:0) Total Space : 1.1 Ta	Boot from this disk
Ceph 1.1 TB	
1.1 TB idt (disk/by-path/pci-0000:02:00.0-scsi-0:2:15:0) Total Space : 1.1	Boot from this disk
B Ceph 1.1 TB	DUOL ITOM DIIS DISK V

5.6.9 Common Settings

Set passwords and other required values (our choices are shown) on the sub-panels of Fuel's Settings tab.

Figure 31. Common settings

Dashboard Nodes	Networks	Settings	Logs	Health Check				
OpenStack Settings								
General		ck Access						
Security	Username		admin			Username for Admir	nistrator	
Compute	Deserverd					Password for Admin		
Storage	Password		•••••		۲	Password for Admin	istrator	
OpenStack	Tenant		admin	admin		Tenant (project) name for Administrator		
Services Other	Email		admin@le	admin@localhost		Email address for Administrator		
other	Operatin	g System /	Access					
	Username		fueladmin	1		Username for opera	itor user	
	Password		••••••		•••• •	Password for operat	tor user	
	Home direc	tory	/home/fu	eladmin		Home directory for a	operator user	
	Authorized SSH keys Sudoers configuration						nclude to operator user	's authorized keys, one per
			ALL=(ALL) NOPASSWD: ALL			Sudoers configuration directives for operator user, one per line.		
	Reposito	ries						
	Please note: t To create a lo Please make :	he first repository cal repository min sure your Fuel ma:	will be considered ror on the Fuel ma ster node has Inte	d the operating sys aster node, please rnet access to the	tem mirror that w follow the instruct repository before	ill be used during node p ions provided by running attempting to create a m	orovisioning. g "fuel-createmirror —he hirror.	elp" on the Fuel master node.
	Name			URI			Priority	
	ubuntu					u.com/ubuntu/ tru	None	
	ubuntu-u	pdates		deb http:/	/archive.ubuntu	u.com/ubuntu/ tru	None	•
	ubuntu-se	ecurity		deb http:/	/archive.ubuntu	u.com/ubuntu/ tru	None	0
	mos			deb http:/	/172. <mark>17.32.2</mark> :80	80/mitaka-9.0/ubu	1050	•
	mos-upda	ites		deb http:/	/mirror.f <mark>uel-inf</mark> r	ra.org/mos-repos/	1050	•
	mos-secu	rity		deb http:/	/mirror.fuel-infi	ra.org/mos-repos/	1050	0
	mos-hold	back		deb http:/	//mirror.fuel-infi	ra.org/mos-repos/	1100	•
	Auxiliary			deb http:/	/172.17.32.2:80	80/mitaka-9.0/ubu	1150	0
	Add Extra	Repo						
	Kernel pa	arameters						
	Initial parar	neters	console=1	ty0 net.ifnames	=0 biosdevnar	Default kernel parar	neters	
	Provision	1						
	Initial packa	ges	acl anacron bash-com	pletion	•			
				Lo	ad Defaults	Load Deployed Setti	ings Cancel Ch	anges Save Settings

Figure 32. Common settings (continued 1)

Dashboard Nodes	Image: Networks Image: Settings Image: Set
OpenStack Set General Security Compute Storage Logging OpenStack Services	Common Hypervisor type • KVM Choose this type of hypervisor if you run OpenStack on hardware • QEMU Choose this type of hypervisor if you run OpenStack on virtual hosts.
Other	 Nova quotas Quotas are used to limit CPU and memory usage for tenants. Enabling quotas will increase load on the Nova database. Resume guests state on host boot Whether to resume previous guests state when the host reboots. If enabled, this option causes guests assigned to the host to resume their previous state. If the guest was running a restart will be attempted when nova-compute starts. If the guest was not running previously, a restart will not be attempted.
	Load Defaults Load Deployed Settings Cancel Changes Save Settings

Figure 33. Common settings (continued 2)

Dashboard Nodes	Networks Image: Settings Image: Settings							
OpenStack Se	ettings							
General	Common							
Security								
Compute	V Use qcow format for images For most cases you will want qcow format. If it's disabled, raw image format will be used to run VMs. OpenStack with raw format currently does not support snanchorting							
Storage	snapshotting.							
Logging	Storage Backends							
OpenStack Services	Cinder LVM over iSCSI for volumes 🛕							
Other	 Cinder Block device driver Cinder Block device driver High performance block device storage. It is recommended to have at least one Cinder Block Device Ceph RBD for volumes (Cinder) Configures Cinder to store volumes in Ceph RBD images. Ceph RBD for images (Glance) Configures Glance to use the Ceph RBD backend to store images. If enabled, this option will prevent Swift from installing. Ceph RBD for ephemeral volumes in RBD. This works best if Ceph is enabled for volumes and images, too. Enables live migration of all types of Ceph backed VMs (without this option, live migration will only work with VMs launched from Cinder volumes). Ceph RadosGW for objects (Swift API) Configures RadosGW for ted for Ceph RBD. This exposes S3 and Swift API Interfaces. If enabled, this option will prevent Swift from installing. Ceph object replication and for Ceph RBD. This exposes S3 and Swift API Interfaces. If enabled, this option will prevent Swift from installing. Ceph object replication factor 							
	Load Defaults Load Deployed Settings Cancel Changes Save Settings							

Figure 34. Common settings (continued 3)

Dashboard Nodes	Networks Settings	Logs Health Check
OpenStack S	ettings	
General	Common	
Security Compute Storage Logging	OpenStack debug log Debug logging mode pr	ode provides more information, but requires more disk space.
OpenStack Services	Syslog	
Other	Hostname	Remote syslog hostname
	Port	514 Remote syslog port
	Syslog transport pro UDP TCP	otocol
		Load Defaults Load Deployed Settings Cancel Changes Save Settings

Figure 35. Common settings (continued 4)

Dashboard Nodes	Image: Networks Image: Settings Image: Settings
OpenStack Set General Security Compute Storage Logging OpenStack Services Other	Additional Components Install Sahara If selected, Sahara component will be installed Install Murano If selected, Murano component will be installed Install Murano service broker for Cloud Foundry If selected, Murano service broker will be installed Install Murano service broker for Cloud Foundry If selected, Murano service broker will be installed Install Cellometer and Aodh A If selected, Cellometer and Aodh components will be installed Use external Mongo DB If selected, You can use external Mongo DB as cellometer backend Install Ironic If selected, Ironic component will be installed
	Murano Settings
	Murano Repository URL http://storage.apps.openstack.org/ Image: Start
	Load Defaults Load Deployed Settings Cancel Changes Save Settings

5.6.10 TLS Settings

Figure 36. TLS settings

Dashboard	Nodes	Networks	Ö Settings	E Logs	History	A Workflows	Health Check	
OpenSt General Security Compute Storage Logging OpenSta Services Other		tings Public TL TLS for Enable TI W HTTPS I Secure a Select sou Self-sig Generate	S OpenStack pub IS termination on for Horizon for Horizon er rce for certi ned	Dic endpoints HAProxy for Oper habling HTTPS ins ficate ertificate that will with certificat	A Stack services tead of HTTP be signed by this §			
		DNS hostna TLS endpoi	ime for public	cloud.dor		Defaults L	Your DNS entries s will use this hostna	

5.6.11 LDAP Plugin Settings

For the sake of simplicity, LDAP was not configured on this environment.

5.6.12 Standalone Ceph Plugin Settings

Figure 37. Ceph plugin settings

Standalone Ceph A

Versions

2.0.0

5.6.13 StackLight Plugin Settings

Figure 38. StackLight plugin settings

The StackLight Elasticsearch-Kibana Server Plugin A

Versions			
Retention period	30		The number of days after which data is automatically deleted within the Elasticsearch system (0 to never delete data).
JVM heap size	1		in GB (between 1 and 32). The amount of memory reserved for the JVM.
User name	Ima		The username to access Kibana.
User password	•••••	۲	The password to access Kibana.
Advanced settings The plugin determines the be	st settings if not set		
Enable TLS for Kibana			
DNS hostname for Kibana	kibana.domain.local		Your DNS entries should point to this name.
Certificate for Kibana	[3.2 KB] dell-mos9-kibana.pem	×	Certificate and private key data, concatenated into a single file.
Use LDAP for Kibana aut	thentication		

Figure 39. StackLight plugin settings (continued 1)

The StackLight InfluxDB-Grafana Server Plugin A

Versions 0.10.2			
Retention period	30		The number of days after which data is automatically deleted in influxDB (0 to never delete data).
Root password			The password of the InfluxDB root user
Database name	Îma		The name of the database used to store the metrics
User name	lma		The name of the InfluxDB user
User password	•••••	۲	The password of the InfluxDB user
Store WAL files in memor Store the Write-Ahead-Log (WA		mprove	the write performances but data may be lost in case of server crash.
User name	lma		The name of the Grafana admin
User password		۲	The password of the Grafana admin
MySQL settings			
Local MySQL			
Remote server			
MySQL address and port			IP address or fully qualified domain name of the MySQL server and port. E.g. example.com:3307. Specifying the port is optional, the default value is 3306.
MySQL database	grafana		The name of the database. The database must be created beforehand when 'remote' mode is selected.
MySQL username	grafana		The user must be provisioned beforehand when the 'remote' mode is selected.
MySQL password		۲	
Enable TLS for Grafana			
DNS hostname for Grafana	grafana.domain.local		Your DNS entries should point to this name.
Certificate for Grafana	[3.2 KB] dell-mos9-grafana.pem	×	Certificate and private key concatenated into a single PEM file.

Use LDAP for Grafana authentication

Figure 40. StackLight settings (continued 2)

Versions 💿 0.10.2			
Nagios HTTP password		۲	The password to access the Nagios Web Interface (username: "nagiosadmin")
Receive CRITICAL notifica	ations by email		
Receive WARNING notific	cations by email		
Receive UNKNOWN notif	fications by email		
Receive RECOVERY notifi	cations by email		
he recipient email address	admin@domain.local		The recipient for the alert notifications
he sender email address	cloud-admin@domain.local		
external SMTP server and			IP address (or fully qualified domain name) and port of the externa SMTP server. Leave empty to use the local MTA service.
DOLL			Swith Server, beave empty to use the local with service.
Jort			SMTP Server, Leave empty to use the local MTA service.
	ethod		SMTP Server, Leave empty to use the local MTA Service.
oort MTP authentication me None	ethod		SMTP Server, Leave empty to use the Jotal MTA Service.
MTP authentication me	ethod		SMTP Server, Leave empty to use the local MTA Service.
MTP authentication me	ethod		SMTP Server, Leave empty to use the local MTA Service.
MTP authentication me None Login	ethod		SMTP Server, Leave emply to use the local MTA Service.
MTP authentication me None Login Plain CRAMMD5	ethod		SMTP Server, Leave emply to use the local MTA Service.
MTP authentication me None Login Plain CRAMMD5	ethod	0	SMTP Server, Leave emply to use the local MTA Service.
MTP authentication me None Login Plain CRAMMD5 MTP user MTP password	ethod	0	Sin tri Server, Leave emply to use the local with service.
MTP authentication me None Login Plain	ethod	۲	Your DNS entries should point to this name

Figure 41. StackLight settings (continued 3)

The StackLight Col	lector Plugin	
Versions		
Environment label		Optional string to tag the data. If empty, it will default to "env- <environment id="">".</environment>
Events analytics (logs an	d notifications)	
 Local node (if deployed) 		
Remote server		
Elasticsearch address		IP address or fully qualified domain name of the Elasticsearch server.
Metrics analytics		
Local node (if deployed)		
Remote server		
InfluxDB address		IP address or fully qualified domain name of the InfluxDB server.
InfluxDB database name	Ima	
InfluxDB user	Ima	
InfluxDB password		
Alerting		
Alerts sent to the StackLip	ght Infrastructure Alerting plugin (Nagios)	if deployed.
Alerts sent by email (required)	iires a SMTP server)	
The recipient email address		
The sender email address		
SMTP authentication me	ethod	
None		
O Plain		
CRAMMD5		
SMTP server address		IP address (or fully qualified domain name) and port of the SMTP server
SMTP user		
SMTP password	۲	

5.6.14 Deploy the Environment

Deploy the environment using the Fuel web UI or CLI.

<fuel_master># fuel --env <ENV_ID> --deploy

6 Post-Deployment Customizations

6.1 Recreate OSDs on SSDs

Fuel doesn't differentiate SSDs and SAS drives when placing Ceph OSDs on them. In order to fully utilize SSD bandwidth, however, SSDs they should be split across approximately 5 OSDs. To enable this, you need to remove OSDs created by Fuel on those SSDs, split each SSD into five partitions, and create OSDs on them.

1. Find all OSD numbers you want to replace. Display all OSDs grouped by the hosts they're on by using the "ceph osd tree" command on any Controller or Ceph node. The nodes will have weights close to their size in TB. In the case shown, the weight is 1.45 (for a 1.5TB OSD):

```
root@node-12:~# ceph osd tree
ID WEIGHT TYPE NAME
                            UP/DOWN REWEIGHT PRIMARY-AFFINITY
-6 34.79999 root root
-7 8.70000 host node-7
 0 1.45000
             osd.0
                                up 1.00000
                                                  1.00000
                osd.1
 1 1.09000
                               up 1.00000
                                                  1.00000
                                up 1.00000
 2 1.09000
                osd.2
                                                  1.00000
 3 1.09000
                                up 1.00000
                osd.3
                                                  1.00000
                osd.4
 4 1.09000
                                up 1.00000
                                                  1.00000
 5 1.45000
                osd.5
                                up 1.00000
                                                  1.00000
 6 1.09000
                                up 1.00000
                                                  1.00000
                osd.6
 7
   1.09000
                                up 1.00000
                osd.7
                                                  1.00000
                                                  1.00000
 8 1.45000
                osd.8
                                up 1.00000
. . .
```

2. Write down host-to-osd_ids mapping. Here, we store them as shell variables:

```
host7_osd='0 5 8 15 19 20'
host8_osd='21 22 27 29 31 39'
host9_osd='26 41 44 48 54 64'
host10_osd='33 63 70 72 77 79'
```

3. SSH to the first Ceph OSD node. Stop and remove the OSDs on it:

```
osd="$host7_osd"
for i in $osd; do
  service ceph-osd stop id=$i
  sleep 1
  ceph osd crush remove osd.$i
  ceph auth del osd.$i
  ceph osd rm $i
  done
```


disks=\$(mount|egrep "ceph-(\${osd// /|}) "|cut -d' ' -f1|cut -d/ -f3|tr '\n' ' '|tr -d
3)
for i in \$osd; do umount /var/lib/ceph/osd/ceph-\$i; done

Note that you already have a shell variable called "disks," containing disk names of SSDs used by these OSDs. We'll need this variable for the next steps.

4. Repartition all SSDs listed in the "disks" variable. Create five equal XFS partitions on each SSD.

```
for i in $disks; do
parted /dev/$i rm 3
parted /dev/$i mkpart ceph xfs 237MB 320253MB
parted /dev/$i mkpart ceph xfs 320253MB 640269MB
parted /dev/$i mkpart ceph xfs 640269MB 960285MB
parted /dev/$i mkpart ceph xfs 960285MB 1280301MB
parted /dev/$i mkpart ceph xfs 1280301MB 1600321MB
done
```

5. Create and activate new OSDs on the new partitions.

```
for d in $disks; do for i in 3 4 5 6 7; do ceph-disk -v prepare --fs-type xfs
--cluster ceph -- $d$i; done; done
for d in $disks; do for i in 3 4 5 6 7; do ceph-disk -v activate --mark-init upstart
--mount $d$i; done; done
```

6. Check Ceph status using the "ceph status" command. Wait until the Ceph cluster is healthy again and all OSDs are in the "active+clean" state.

7. Repeat steps 3-6 for for each Ceph OSD node.

6.2 Distribute SSDs and SAS Drives to Different Pools

We're going to put the RadosGW pool on our SAS drives while keeping the other pools (for Cinder, Nova, Glance) on our SSDs. In order to do this we need to move the SSD OSDs into different "roots" (in terms of the Ceph CRUSH Map), create two rulesets to distinguish these two "roots", and assign the rulesets to pools.

- Obtain the CRUSH Map, following instructions in <u>the official Ceph manual</u>. A sample CRUSH Map is shown in the Appendices to this document.
- Create a second root and hosts attached to it. Put SSD OSDs into those hosts.
- Create a second rule and adjust both rules in the way that each of them points to a different root (adjust the "step take" stanza).

- Make sure that the old rule retains its ID (usually "0") and points to a root with SAS drives while the new rule points to a root with SSDs.
- Compile and upload the modified CRUSH Map.
- Change ruleset ID for Glance, Cinder, and Nova pools:

```
for pool in compute images volumes: do
ceph osd pool set $pool crush_ruleset 4
done
```

• Verify that Nova, Glance, and Cinder still work.

6.3 Migrate Fuel Master Node to the Deployed Cloud

Use the fuel-migrate script to migrate the Fuel Master node to a virtual machine on a compute node. This allows for reduced resource utilization in small environments and lets the Fuel Master node run on physical or virtual machines by making it host agnostic.

To run the script, issue the following command:

```
<fuel master># fuel-migrate
```

More info about migrating Fuel node to the cloud can be found here.

6.4 Adding and Removing Compute and Storage Nodes

Mirantis (via openstack.org) maintains a <u>guide</u> for adding or removing compute and storage nodes from an environment.

IMPORTANT: Before removing a compute node, all VMs running on that node need to be migrated to other compute nodes.

Testing the Deployed Cloud

A <u>test plan</u> and complete <u>test report</u> for the *Compact Cloud* are available for online review.

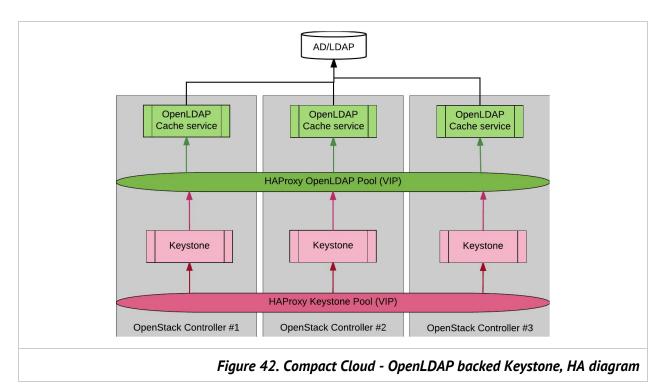
Resources

Mirantis OpenStack 9.1 Documentation Mirantis OpenStack Planning Guide Fuel Installation Guide Fuel User Guide Dell Power Consumption Calculators

Appendix A

Network Template Example

A <u>sample network template for Compact Cloud</u> is available for review online.


Ceph CRUSH Map Example

A <u>sample Ceph CRUSH map</u> is available for review online.

Component Configuration Details

OpenLDAP-backed Keystone

Keystone Identity can use OpenLDAP as a cache proxy for authentication requests to existing external Directory servers (MS AD, OpenLDAP, etc), improving responsiveness and decreasing load on Directory servers. In this case, each controller runs an OpenLDAP cache (proxy) server connected to an external AD/LDAP server. HAProxy controls the OpenLDAP endpoint on a VIP.

Using Ceph Block Devices with Nova

To use Ceph block devices by default with Nova, configure Glance according to the Ceph documentation: <u>http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-nova</u>

Using Ceph Block Devices with Glance

To use Ceph block devices by default with Glance, configure Glance according to the Ceph documentation: <u>http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-glance</u>

Using Ceph Block Devices with Cinder

To use Ceph block devices by default with Cinder, and to enable the cinder-backup feature, configure Cinder according to the Ceph documentation: <u>http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder,</u> <u>http://docs.ceph.com/docs/master/rbd/rbd-openstack/#configuring-cinder-backup</u>

Ceilometer Meters and Events

Below are enumerated OpenStack Ceilometer meters and events we recommend collecting using the StackLight subsystem specified as a component of *Compact Cloud*.

Recommended Ceilometer Meters

- cpu
- cpu.util
- disk.read.bytes
- disk.write.bytes
- image
- image.download
- image.upload
- memory
- network.incoming.bytes
- network.outgoing.bytes
- vcpus
- volume
- Volume.size

Recommended Ceilometer Events

- compute.instance.create.end
- compute.instance.create.start
- compute.instance.delete.end
- compute.instance.delete.start
- compute.instance.pause.end

- compute.instance.pause.start
- compute.instance.power_off.end
- compute.instance.power off.start
- compute.instance.power on.end
- compute.instance.power on.start
- compute.instance.rebuild.end
- compute.instance.rebuild.start
- compute.instance.resize.confirm.end
- compute.instance.resize.confirm.start
- compute.instance.resume
- compute.instance.suspend
- compute.instance.suspstart
- compute.instance.unpause.end
- compute.instance.unpause.start
- compute.instance.update.end
- compute.instance.update.start
- compute.reboot.end
- compute.reboot.start
- floatingip.create.end
- floatingip.create.start
- image.delete
- image.update
- image.upload
- network.create.end
- network.create.start
- network.services.firewall.create.end
- network.services.firewall.create.start
- network.services.firewall.delete.end
- network.services.firewall.delete.start
- network.services.lb.vip.create.end
- network.services.lb.vip.create.start
- network.services.lb.vip.delete.end
- network.services.lb.vip.delete.start
- network.update.end
- network.update.start
- port.create.end
- port.create.start
- port.delete.end
- port.delete.start
- router.create.end
- router.create.start
- router.update.end
- router.update.start
- snapshot.create.end

- snapshot.create.start
- snapshot.delete.end
- snapshot.delete.start
- subnet.create.end
- subnet.create.start
- subnet.delete.end
- subnet.delete.start
- volume.create.end
- volume.create.start
- volume.delete.end
- volume.delete.start
- volume.resize.end
- volume.resize.start
- volume.update.end
- volume.update.start

Reference Information - OpenStack

OpenStack is a cloud operating system that controls large pools of compute, storage, and networking resources throughout a datacenter, all managed through a dashboard that gives administrators control while empowering their users to provision resources through a web interface.

OpenStack Components

Name	Purpose	Description
Nova ²	Compute service	Manages the lifecycle of compute instances in an OpenStack environment. Responsibilities include spawning, scheduling and decommissioning of machines on demand.
Neutron ³	Networking service	Enables network connectivity as a service for other OpenStack services, such as OpenStack Compute. Provides an API for users to define networks and the attachments into them. Has a pluggable architecture that supports many popular networking vendors and technologies.
Swift⁴	Object Storage	Stores and retrieves arbitrary unstructured data objects via a RESTful, HTTP based API. It is highly fault tolerant with its data replication and scale out architecture. Its implementation is not like a file server with mountable directories.
Cinder⁵	Block Storage	Provides persistent block storage to running instances. Its pluggable driver architecture facilitates the creation and management of block storage devices.
Keystone ⁶	Identity service	Provides an authentication and authorization service for other OpenStack services. Provides a catalog of endpoints for all OpenStack services.

Table 13. OpenStack core projects

² Nova WIKI - <u>https://wiki.openstack.org/wiki/Nova</u>

³ Neutron WIKI - <u>https://wiki.openstack.org/wiki/Neutron</u>

⁴ Swift WIKI - <u>https://wiki.openstack.org/wiki/Swift</u>

⁵ Cinder WIKI - <u>https://wiki.openstack.org/wiki/Cinder</u>

⁶ Keystone WIKI - <u>https://wiki.openstack.org/wiki/Keystone</u>

Table 13. OpenStack core projects - Continued			
Glance ⁷	Image service	Stores and retrieves virtual machine disk images. OpenStack Compute makes use of this during instance provisioning.	

Table 14. OpenStack optional services

Name	Purpose	Description
Horizon ⁸	Dashboard	Provides a web based user interface to OpenStack services including Nova, Swift, Keystone, etc.
Ceilometer	Telemetry	Collects data on the utilization of the physical and virtual resources comprising deployed clouds, persists these data for subsequent retrieval and analysis, and triggers actions when defined criteria are met.
Heat ¹⁰	Orchestration	Provides a human- and machine-accessible service for managing the entire lifecycle of infrastructure and applications within OpenStack clouds.
Trove ¹¹	Database	Provides scalable and reliable Cloud Database as a Service provisioning functionality for both relational and non-relational database engines
Sahara ¹²	Elastic Map Reduce	Provides a simple means to provision a data-intensive application cluster (Hadoop or Spark) on top of OpenStack
Ironic ¹³	Bare-Metal Provisioning	Provides bare metal machines instead of virtual machines.
Zaqar ¹⁴	Messaging	Provides a multi-tenant cloud messaging service for web and mobile developers.

⁷ Glance WIKI - <u>https://wiki.openstack.org/wiki/Glance</u>

⁸ Horizon WIKI - <u>https://wiki.openstack.org/wiki/Horizon</u>

⁹ Ceilometer WIKI - <u>https://wiki.openstack.org/wiki/Telemetry</u>

¹⁰ Heat WIKI - <u>https://wiki.openstack.org/wiki/Heat</u>

¹¹ Trove WIKI - <u>https://wiki.openstack.org/wiki/Trove</u>

¹² Sahara WIKI - <u>https://wiki.openstack.org/wiki/Sahara</u>

¹³ Ironic WIKI - <u>https://wiki.openstack.org/wiki/Ironic</u>

¹⁴ Zaqar WIKI - <u>https://wiki.openstack.org/wiki/Zaqar</u>

Table 14. OpenStack optional services - Continued			
Monasca ¹⁵	Monitoring	Provides monitoring-as-a-service solution integrated to OpenStack.	
Manila ¹⁶	Shared Filesystems	Provides shared file system -as-a-service solution integrated to OpenStack.	
Designate ¹⁷	DNS	Provides DNS -as-a-service solution integrated to OpenStack.	
Barbican ¹⁸	Key Management	Provides the secure storage, provisioning and management of secrets such as passwords, encryption keys and X.509 Certificates.	
Magnum ¹⁹	Containers	Provides the container orchestration engines such as Docker and Kubernetes available as first class resources in OpenStack.	
Murano ²⁰	Application Catalog	Provides an application catalog to OpenStack, enabling application developers and cloud administrators to publish various cloud-ready applications in a browsable categorized catalog.	
Congress ²¹	Governance	Provides a policy as a service across any collection of cloud services in order to offer governance and compliance for dynamic infrastructures.	
Rally ²²	Benchmarking	Provides the toolchain for cloud verification, benchmarking, and profiling.	
Mistral ²³	Workflow	Provides business processes workflow -as-a-service solution integrated to OpenStack.	

¹⁵ Monasca WIKI - <u>https://wiki.openstack.org/wiki/Monasca</u>

¹⁶ Manila WIKI - <u>https://wiki.openstack.org/wiki/Manila</u>

¹⁷ Designate WIKI - <u>https://wiki.openstack.org/wiki/Designate</u>

¹⁸ Barbican WIKI - <u>https://wiki.openstack.org/wiki/Barbican</u>

¹⁹ Magnum WIKI - <u>https://wiki.openstack.org/wiki/Magnum</u>

²⁰ Murano WIKI - <u>https://wiki.openstack.org/wiki/Murano</u>

²¹ Congress WIKI - <u>https://wiki.openstack.org/wiki/Congress</u>

²² Rally WIKI - <u>https://wiki.openstack.org/wiki/Rally</u>

²³ Mistral WIKI - <u>https://wiki.openstack.org/wiki/Mistral</u>

OpenStack API Versions

Mirantis OpenStack supports the following versions of the OpenStack API.

Component	API Version
Keystone	v2
Nova	v2
Glance	v2
Cinder	v2
Swift (via Ceph RadosGW)	v1
Neutron	v2
Ceilometer	v2
Murano	v1
Heat	v1

Table 15. OpenStack API versions supported in Mirantis OpenStack

Appendix B - Mirantis Software

Mirantis OpenStack is 100% open source software. Mirantis OpenStack release 9.1 (corresponding to OpenStack Mitaka) is an update to Mirantis OpenStack 9.0, applied by updating a Fuel 9.0 master node as detailed above in <u>5.4 Fuel Master Node Installation</u>.

Mirantis currently offers several tiers of <u>enterprise-grade</u>, <u>per-node support subscriptions</u> for Mirantis OpenStack 9.x, and will support Mirantis OpenStack 9.x for up to three years for 24 x 7 support tier customers.

Mirantis Managed Offering (MMO) provides design, deployment, scaling, management, monitoring, regular upgrades, and comprehensive support for Mirantis open cloud software at enterprise premise(s) or colocation facility(-ies) of choice, letting customers focus on accelerating their business instead of operating their cloud, and helping them benefit from continuous open source innovation without disruption or risk. Base pricing for MMO is shown below.

The following table of Dell EMC SKUs:

- Applies to US only
- Category is 'Licensing Support'
- Segment is ENT (Enterprise)
- Manufacturer is Mirantis
- Subclass Code is 308
- Currency Type is USD

SKU	Part Num.	Description
A9226527	MOS-001-24X7	Mirantis - OpenStack Subscriptions per Node; 1 -Year 24x7 Support
A9226528	MOS-001-8X5	Mirantis - OpenStack Subscriptions per Node; 1 -Year 8x5 Support
A9226911	MMO-001-BASE	Mirantis Managed OpenStack Services