Dell EMC Ready Bundle for Red Hat OpenStack

Technical Guide Deploying OpenShift Container Platform 3.3 Version 6.0.1

Dell EMC Converged Platforms and Solutions

Contents

List of Figures	.iv
List of Tables	v
Trademarks	6
Notes, Cautions, and Warnings	7
Chapter 1: Executive Summary	8
About OpenShift on OpenStack	
About This Document	
Intended Audience	
Intended Addience	10
Chapter 2: Background	.11
Architecture	12
Work Resources	14
Chapter 3: Plan and Prepare to Install OpenShift	15
Installation Plan	
Prepare the Environment.	
Ensure Subscriptions Credentials and Pool ID.	
Network Requirements	
Obtain the Guest Image	
Set Ample Default Quotas	
Configure LBaaS on All Controllers	17
Configure Heat Services	
Increase Keystone Token Expiration Value	
Upload the Image into Glance	
Obtain the OpenShift-on-OpenStack Repository	
Prepare the Heat YAML Files	
· · · · · · · · · · · · · · · · · · ·	
	~-
Chapter 4: Installation and Configuration	
Execute Heat Templates	
Troubleshoot and Debug Failures	
Heat Events	
Time-savers	
Debugging in Proper Order.	
About Ansible Log Files	28
Chapter 5: Validate the Installation	29
List the Nodes	
Ensure a Working Router	

Deploy the Router Pod to a Master	30
Chapter 6: Configure a Docker Registry with Persistent Storage Create a Cinder Volume	34
Configure Red Hat Ceph Storage and Cinder Persistent Storage Create the Docker-Registry Create a Sample User in OpenShift	
Chapter 7: Configure OpenShift Web GUI Access Make DNS World Accessible Ensure the Wildcard Domain Resolves to the Router	43
Add DNS to the Bastion Host Navigate to the OpenShift Web Console	44
Chapter 8: Deploy a Sample Application Application Deployment Procedure	
Chapter 9: Next Steps	
Appendix A: Getting Help Contacting Dell EMC References To Learn More	51 51

List of Figures

Figure 1: Solution Architecture	13
Figure 2: Example Application with No Database	
Figure 3: New Application	46
Figure 4: Overview	47
Figure 5: Build Complete	
Figure 6: Working Application	48

List of Tables

Table 1: Work Resources	14
Table 2: openshift_parameters.yaml Parameters	22
Table 3: Cinder Volume Values	34

Trademarks

Copyright © 2014-2017 Dell Inc. or its subsidiaries. All rights reserved.

Microsoft[®] and Windows[®] are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Red Hat[®], Red Hat Enterprise Linux[®], and Ceph are trademarks or registered trademarks of Red Hat, Inc., registered in the U.S. and other countries. Linux[®] is the registered trademark of Linus Torvalds in the U.S. and other countries. Oracle[®] and Java[®] are registered trademarks of Oracle Corporation and/or its affiliates.

DISCLAIMER: The OpenStack[®] Word Mark and OpenStack Logo are either registered trademarks/ service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries, and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation or the OpenStack community.

The Midokura[®] name and logo, as well as the MidoNet[®] name and logo, are registered trademarks of Midokura SARL.

Notes, Cautions, and Warnings

A Note indicates important information that helps you make better use of your system.

A Caution indicates potential damage to hardware or loss of data if instructions are not followed.

A **Warning** indicates a potential for property damage, personal injury, or death.

This document is for informational purposes only and may contain typographical errors and technical inaccuracies. The content is provided as is, without express or implied warranties of any kind.

Chapter 1

Executive Summary

Topics:

- About OpenShift on OpenStack
- About This Document
- Intended Audience

In order to meet the demands put on an organization by customers, developers need a way to provision environments and build and deploy applications with their components in a self-service fashion.

IT Operations needs to be able to provide this with a secure, enterprise-grade environment that can have policy based control for automation of cluster services, scheduling and orchestration of the applications. By incorporating an OpenShift container management and OpenStack virtual machine clusters, these demands can be met quickly and effectively.

About OpenShift on OpenStack

Red Hat OpenShift Container Platform 3.3 is a Platform as a Service (PaaS) product. Its developer-centric approach enables developers to create and deploy applications with more predictability, greater ease, and less operator intervention. It manages deployments and provides application scalability services.

In the data center, OpenShift Container Platform 3.3 is deployed on Red Hat Enterprise Linux Server 7, and is comprised of application containers powered by Docker, and orchestration and management provided by Kubernetes.

Integration of OpenShift with OpenStack allows the organization to leverage existing operational techniques and organizational policies, adding a layer of deployment and redeployment flexibility not common in non-virtual deployments. This solution provides an example demonstrating how OpenShift Container Platform 3.3 basic usage can occur on a robust OpenStack infrastructure.

The configuration described in this document consists of three OpenShift master virtual machines and four OpenShift node virtual machines in single datacenter environment. The addition of more nodes is possible, but not documented here. In addition to the configuration, operational management tasks are shown to demonstrate functionality.

This version of the documentation introduces High Availability features of OpenShift Container Platform 3.3, to a robust, production-ready deployment of OpenShift on OpenStack.

OpenShift Container Platform 3.3 is hosted at *http://www.openshift.com*. It is based upon OpenShift Origin, the open source software project hosted at *http://www.openshift.org*.

About This Document

This document contains code and configuration samples in monospace fonts. While it is tempting for the user to copy and paste those values from this document into their system, it is inadvisable and not supported. While we make every effort to ensure that the documentation is correct and complete, documents rendered via some client applications make unpredictable changes to the actual spacing of the data elements, and lose fidelity to what a proper code or configuration setting should actually be to work properly. We see very impactful changes, for example, between the Firefox PDF display and the Adobe Acrobat reader PDF display.

Copy and paste from this document only with full understanding of the necessary formatting changes that you'll have to make. We have made efforts to provide online verbatim copies of the essential data, as well as pointing the user to appropriate external documentation to achieve the proper formatting.

This integration document does not stand on its own as a complete solution. Rather, it is referenced in the two dependant technical guides:

- <u>Technical Guide Deploying OpenShift Container Platform 3.3 in the Dell EMC Ready Bundle for Red</u> <u>Hat OpenStack - Version 6.0.1</u>
- <u>Technical Guide Deploying CloudForms 4.2 in the Dell EMC Ready Bundle for Red Hat OpenStack Version 6.0.1</u>

This guide is especially important with regard to configuring DNS and networking. Ensure that you refer to this document during OpenShift and CloudForms installation.

Intended Audience

This technical guide shows the administrator how to build and deploy OpenShift in their Dell EMC Ready Bundle for Red Hat OpenStack. The end user is not directly addressed in this document.

Find out more about developing and managing the OpenShift Container Platform by accessing the Red Hat documentation here: *https://docs.openshift.com/container-platform/3.3/welcome/index.html*.

Chapter

2

Background

Topics:

- Architecture
- Work Resources

OpenShift will be running on multiple VMs. Some of them will require Internet access.

Architecture

Figure 1: Solution Architecture on page 13 displays a conceptual visualization of the Dell EMC Ready Bundle for Red Hat OpenStack architecture with OpenShift and CloudForms:

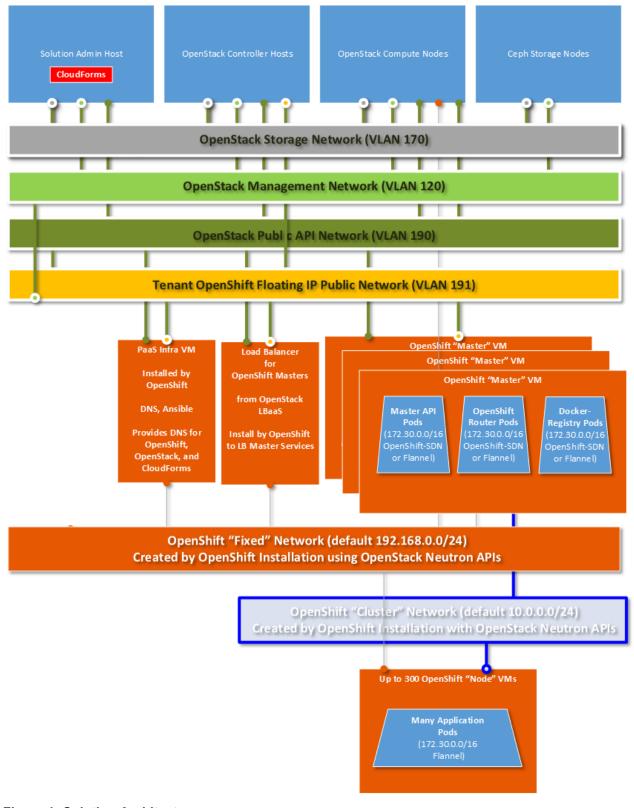


Figure 1: Solution Architecture

Work Resources

This solution uses several Open Source projects to install OpenShift, listed in *Table 1: Work Resources* on page 14:

Table 1: Work Resources

Project	Description	URL
OpenShift on OpenStack	Heat templates and scripts to set up the OpenStack environment and kick off the OpenShift Ansible installation. Not packaged by Red Hat.	https://github.com/redhat- openstack/openshift-on- openstack
OpenShift Ansible Playbooks	Ansible playbooks to deploy all manner of OpenShift on all manner of infrastructures. Packaged by Red Hat and available in repositories.	https://github.com/openshift/ openshift-ansible
OpenShift Container Platform 3.3 Documentation	Information required to set up and manage an OpenShift Container Platform environment, as a cluster administrator or an application developer.	https://docs.openshift.com/ container-platform/3.3/welcome/ index.html

Chapter

3

Plan and Prepare to Install OpenShift

Topics:

- Installation Plan
- Prepare the Environment

You must carefully plan the OpenShift installation, and prepare the environment.

Installation Plan

The major, critical steps for installing OpenShift on OpenStack include:

- **1.** Prepare the environment
 - a. Update OpenStack configuration
- 2. Director Node
 - a. Clone the openshift-on-openstack repository.
 - b. Customize the Heat templates
 - c. Execute the installation
- 3. OpenShift master
 - **a.** Configure and deploy a registry
 - b. Configure and deploy a router
 - c. Configure end users
 - d. Configure management users (also for CloudForms)
- **4.** Deploy a sample application

Prepare the Environment on page 16 delves deeper into each step.

Prepare the Environment

Follow these procedures to prepare the OpenShift installation environment:

- Ensure Subscriptions Credentials and Pool ID on page 16
- Network Requirements on page 16
- Obtain the Guest Image on page 17
- Set Ample Default Quotas on page 17
- Configure LBaaS on All Controllers on page 17
- Configure Heat Services on page 18
- Increase Keystone Token Expiration Value on page 20
- Upload the Image into Glance on page 21
- Obtain the OpenShift-on-OpenStack Repository on page 21
- Prepare the Heat YAML Files on page 22

Ensure Subscriptions Credentials and Pool ID

You must have Red Hat subscriptions to:

- Red Hat OpenStack Platform 9
- OpenShift Container Platform 3.3

Have ready the username, password, and pool ID for the Red Hat OpenStack Platform and OpenShift.

Network Requirements

Network requirements include:

- VMs require access to the Internet to download packages.
- (Optional) Complete access by the CloudForms VM to the Provisioning VLAN, to address the Undercloud VM and Overcloud Nodes.

See Integrating CloudForms 4.2 and OpenShift 3.3 in the Dell EMC Ready Bundle for Red Hat OpenStack - Version 6.0.1 for more information.

Obtain the Guest Image

Ensure that you have a RHEL 7.2 KVM Guest Image, in QCOW2 format.

The *rhel-guest-image-7.2-20160302.0.x86_64.qcow2* file can be found at *https://access.redhat.com/ downloads/content/69/ver=/rhel---7/7.2/x86_64/product-software*.

Set Ample Default Quotas

To set default quotas:

- 1. Log into the OpenStack Horizon dashboard as the Admin user.
- 2. Select Identities.
- 3. Click to expand the dropdown list next to the Admin project, and then select Manage Quotas.
- **4.** Set **all** your quotas **very high** (10,000 or higher.) This enables you to launch as many VMs as you require, create security groups, etc.
- 5. Click on Save to continue.

Configure LBaaS on All Controllers

To configure Load Balacing as a Service (LBaaS), perform the following procedures:

- 1. On all Controller Nodes, enable the *HAProxy* plug-in using the service_provider parameter, by editing the */etc/neutron/neutron_lbaas.conf* file.
 - **a.** Find the following line in the file, and ensure that it is set as follows:

Note: THIS LINE IS SPLIT HERE, BUT MUST BE PUT IN CONFIGURATION FILE AS ONE LINE

service_provider=LOADBALANCER:Haproxy:neutron_lbaas.services.loadbalancer. drivers.haproxy.plugin_driver.HaproxyOnHostPluginDriver:default

- 2. On all Controller Nodes, enable the *LBaaS* plug-in using the service_plugins value, by editing the / *etc/neutron/neutron.conf* file.
 - **a.** Find the following line in the file, and ensure that it is set as follows:

service_plugins = router,qos,lbaas

- 3. On all Controller Nodes, enable LBaaS Integration with Dashboard using the enable_lb option, by editing the /etc/openstack-dashboard/local_settings file.
 - **a.** Find the following line in the file, and ensure that it is set as follows:

OPENSTACK_NEUTRON_NETWORK = { 'enable_lb': True,

- 4. On all Controller Nodes, enable the HAProxy load balancer in the /etc/neutron/lbaas_agent.ini file.
 - a. Find the following line in the file, and ensure that it is set as follows:

Note: This line is split in this example, but **must** be put into the configuratin file as one line.

device_driver = neutron_lbaas.services.loadbalancer.drivers.haproxy. namespace_driver.HaproxyNSDriver

5. On all Controller Nodes, configure the user_group option in the /etc/neutron/lbaas_agent.ini file.

a. Find the following line in the file, and ensure that it is set as follows:

```
# The user group
# user_group = nogroup
user_group = haproxy
```

- 6. On all Controller Nodes, select the required driver in the /etc/neutron/lbaas_agent.ini file.
 - **a.** Find the following line in the file, and ensure that it is set as follows:

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver

7. On any one Controller Node only, restart all the services by executing the following command:

```
# pcs resource restart neutron-server
# pcs resource restart httpd.service
```

- **8.** Log into to the Director Node as the *osp_admin* user.
- **9.** Restart the LBaaS services by executing the following commands:

```
$ for mysystem in cntl0 cntl1 cntl2; do ssh $mysystem systemctl \
restart neutron-lbaas-agent ; done
$ for mysystem in cntl0 cntl1 cntl2; do ssh $mysystem systemctl \
enable neutron-lbaas-agent ; done
```

10.Ensure that LBaaS is running on your system by executing the following command:

\$ neutron agent-list

Configure Heat Services

Follow these procedures to set up and configure more Heat services:

- Confirm or Create the heat-cfn Service on page 18
- Set Metadata Server URLs on page 19

Confirm or Create the heat-cfn Service

The heat-cfn service must be present. If it is not, it must be created. For more information see https:// access.redhat.com/documentation/en/red-hat-openstack-platform/8/installation-reference/92-configure-the-orchestration-service.

 From the Director, Source the overcloudrc file to authenticate to the Overcloud, by executing the following command:

. ./overcloudrc

2. Check the output of the following command to see if the service has been created:

keystone service-list | grep heat-cfn

If there is no output, then the service has not been created. Create the service by executing the following command:

keystone service-create --name heat-cfn --type cloudformation

4. Check the output of the following command to see if the heat-cfn endpoint has already been been created:

keystone endpoint-list | grep heat-cfn

5. If there is no output (other than warnings associated with command deprecation), then create the endpoint using the value substitutions as in the following example.

```
Ð
```

Note: The <Heat VIP> value can either be the VIP dedicated to Heat, or the IP address of the current Controller host on the OpenStack Public API network. In this example, the <Heat VIP> is 192.168.190.70, as shown in the ip address command.

<pre># keystone endpoint-createservice heat-cfn \ publicurl 'http://<openstack api="" ip="" public="">:8000/v1' \ adminurl 'http://<openstack api="" ip="" public="">:8000/v1' \ internalurl 'http://<heat vip="">:8000/v1' \ region 'regionOne'</heat></openstack></openstack></pre>		
Property	Value	
adminurl http://192.168.190.70:8000/v1 id 996190feff1c48fbb8029f1723ff627c internalurl http://192.168.140.71:8000/v1 publicurl http://192.168.190.70:8000/v1 region regionOne service_id d6653ae8e8294890b81b03de9056226a		

Set Metadata Server URLs

The default installation has the Heat APIs incorrectly sending the heat_metadata_server_url and heat_waitcondition_server_url to clients as the *192.168.140.x* addresses of the Controllers. They should be telling the clients to access these services through the VIP (i.e., the OpenStack Public API IP address).

To set the proper metadata server URLs:

1. On all Controller Nodes, ensure that the heat_metadata_server_url is the URL with the OpenStack Public API IP Address port 8000, by editing the /etc/heat/heat.conf file:

```
# heat things to listen
# URL of the Heat metadata server. (string value)
#heat_metadata_server_url =
heat_metadata_server_url =http://<OpenStack Public API IP Address>:8000
# URL of the Heat waitcondition server. (string value)
#heat_waitcondition_server_url = <None>
heat_waitcondition_server_url = http://<OpenStack Public API IP
Address>:8000/v1/waitcondition
# URL of the Heat CloudWatch server. (string value)
#heat_watch_server_url =
```

heat_watch_server_url =http://<OpenStack Public API IP Address>:8003

2. On any one Controller Node only, restart all the services by executing the following command:

```
\# pcs resource show | grep heat | awk ' { print $3 }' | xargs -n1 pcs \backslash resource restart
```

3. Ensure proper service restart:

```
# pcs resource | grep -A1 heat
Clone Set: openstack-heat-engine-clone [openstack-heat-engine]
Started: [ tan-controller-0 tan-controller-1 tan-controller-2 ]
--
Clone Set: openstack-heat-api-clone [openstack-heat-api]
```

```
Started: [ tan-controller-0 tan-controller-1 tan-controller-2 ]
--
Clone Set: openstack-heat-api-cloudwatch-clone [openstack-heat-api-cloudwatch]
    Started: [ tan-controller-0 tan-controller-1 tan-controller-2 ]
--
Clone Set: openstack-heat-api-cfn-clone [openstack-heat-api-cfn]
    Started: [ tan-controller-0 tan-controller-1 tan-controller-2 ]
```

4. Ensure that the endpoints that can be accessed from the VMs are created by examining the endpoint with the following command:

<pre># openstack (openstack) endpoint show heat-cfn</pre>			
Field	Value		
<pre>adminurl enabled id internalurl publicurl region service_id service_name service_type</pre>	http://192.168.140.70:8000/v1 True 84784ef00c3540a08bdd941b238f258f http://192.168.140.70:8000/v1 http://192.168.190.125:8000/v1 regionOne e80d0db1d99f42c784333072bf4bb61f heat-cfn cloudformation		
(openstack)	'		

5. Ensure that the watch server is listening by executing the following command:

\$ ss -lntp	grep	8003		
LISTEN	0	128	192.168.140.73:8003	*:*
LISTEN	0	128	192.168.190.125:8003	*:*
LISTEN	0	128	192.168.140.70:8003	*:*

Increase Keystone Token Expiration Value

Automated portions of the installation can exceed the default timeout of the Keystone token that the Heat client obtains when it first begins the automated installation.

To increase the token expiration value:

1. On all Controller Nodes, increase the value by executing the following command:

```
# . ~/overcloudrc
# openstack-config --verbose --set /etc/keystone/keystone.conf token \
expiration 86400
```

2. On any one Controller Node only, restart the Keystone service by executing the following command:

pcs resource restart openstack-keystone

3. Ensure that the new 24-hour setting (86400 seconds) appears by executing the following command:

```
# . ~/overcloudrc
# openstack token issue -c expires
```

Upload the Image into Glance

Now you can upload the RHEL 7.2 QCOW2 image, obtained in *Obtain the Guest Image* on page 17, into Glance.

To upload the image:

- 1. On the Director Node, become user *osp_admin*.
- 2. Source the *overcloudrc* file to authenticate to the Overcloud, by executing the following command:

```
# . ./overcloudrc
```

3. Check the Glance version by executing the following command:

```
$ glance --version
1.1.1
```

4. Create the Glance image:

Ð

```
Note: Some versions of the Glance client express "--is-Public True" differently.
```

<pre>\$ glance image-createname rhel72is-public True \ disk-format qcow2container-format bare \ file rhel-guest-image-7.2-20151102.0.x86_64.qcow2</pre>			
Property	Value		
checksum container_format created_at deleted deleted_at disk_format id is_public min_disk min_ram name owner protected size status updated_at virtual_size	486900b54f4757cb2d6b59d9bce9fe90 bare 2016-05-13T18:38:19.000000 False None qcow2 c0d6cf3d-196e-4fc8-a62c-39bae4a36152 True 0 0 rhe172 c1b740d8571f4cb5aa66f8ddcfdec015 False 474909696 active 2016-05-13T18:38:26.000000 None		

Obtain the OpenShift-on-OpenStack Repository

To obtain the OpenShift-on-OpenStack Github repository:

- 1. Log into the Director Node as user *root*.
- 2. Clone the repository by executing the following commands:

```
# cd
# git clone https://github.com/redhat-openstack/openshift-on-openstack.git
  \ --branch v0.9.5 --single-branch
# cd openshift-on-openstack
# git checkout -b v0.9.5
```

Prepare the Heat YAML Files

The installation is directed by Heat YAML files. You must prepare them with the proper parameters before they can be utilized.

To prepare the YAML files:

- 1. Create a file, named openshift_parameters.yaml, in the openshift-on-openstack directory that was created in Obtain the OpenShift-on-OpenStack Repository on page 21.
- **2.** Paste the following into that file:

Note: Ensure that this file is properly indented when you create your version. YAML is very whitespace sensitive.

```
parameters:
 internal_subnet: 192.168.1.0/24
  container_subnet: 10.1.0.0/24
  ssh_key_name: key_name
  server_image: rhel72
  flavor: 'm1.medium'
  external_network: public
  dns_nameserver: 8.8.4.4,8.8.8.8
 node_count: 2
 rhn_username: "dellcloudsol"
  rhn_password: ""
  rhn_pool: '8a85f98153a7bdce0153a971ce9373f1'
  extra_rhn_pools: '8a85f98153dfb4020153e15cdfc6618f'
  deployment_type: openshift-enterprise
  domain_name: "example.com"
  master_hostname: "openshift-master"
 node_hostname: "openshift-node"
  ssh_user: cloud-user
  master_docker_volume_size_gb: 25
 node_docker_volume_size_gb: 25
  master_count: 2
  master_server_group_policies: affinity
  deploy_registry: false
  os_auth_url: http://192.168.190.125:5000/v2.0
  os_username: admin
  os_password: pZ4CGyJU4XDbEuMVT7qMKdP6b
  os_tenant_name: admin
  openshift_ansible_git_url: https://github.com/openshift/openshift-
ansible.git
  openshift_ansible_git_rev: master
resource_registry:
  OOShift::LoadBalancer: loadbalancer_neutron.yaml
```

3. Review *Table 2: openshift_parameters.yaml Parameters* on page 22 to ensure the correct parameters.

OOShift::ContainerPort: sdn_flannel.yaml

Table 2: openshift	parameters.	yaml Parameters
--------------------	-------------	-----------------

Parameter: Example Value	Description
internal_subnet:	The subnet that is attached to all hosts.
container_subnet:	The subnet that is attached to all hosts, except the Infra host VM.
ssh_key_name: key_name	The key name of the key uploaded to Nova with nova keypair-add.

Parameter: Example Value	Description
server_image: rhel72	The name of the RHEL 7.2 image you uploaded to Glance.
ssh_user: cloud-user	The SSH username that the above <i>server_image</i> allows to login via ssh_key_name. RHEL 7.2 image uses cloud-user.
flavor: 'm1.medium'	The medium sized flavor of VM that OpenStack will launch for the Master and Node VMs.
external_network: nova	The name of the network in OpenStack that has access to the Internet. <i>nova</i> is the external network name created by the Dell EMC Ready Bundle for Red Hat OpenStack post-installation testing.
dns_nameserver: 8.8.4.4,8.8.8.8	DNS nameservers with public Internet query access. Use local DNS servers if available.
node_count: 4	The number of Nodes (OpenShift Compute VMs) to launch. Set to 2 in a POC. Set higher for multi- user deployments. OpenShift installation spreads the nodes out over <i>nova-compute</i> nodes.
rhn_username: ""	The Red Hat Network username to register your subscriptions.
rhn_password: ""	The password of your Red hat Network user.
rhn_pool: '8a85f98153a7bdce0153aaaaae9373f1'	The Pool ID that give you entitlements to OpenShift 3.3.
extra_rhn_pools: '8a85f98153dfb4020153e15cdfc6618f'	The Pool IDs that give you entitlements to the Red Hat OpenStack Platform. It provides the important configuration management and OpenStack integration with OpenShift.
deployment_type: openshift-enterprise	The OpenShift Container Platform product. The other possible option is <i>origin</i> , but OpenShift Origin is not supported by Red Hat.
domain_name: "example.com"	The domain that will be served by the DNS server on the OpenShift on OpenStack Infra host VM.
	The <i>example.com</i> domain is often used, because by IETF policy it is not supposed to be routed over the Internet. therefore, it is acceptable for example installations. If deploying to production, consult your naming administrators.
master_hostname: "openshift-master"	The hostname prefix that all OpenShift Master nodes will receive. For example, <i>delloss-openshift- master-49ouivsnsh2.example.com</i> . In this case <i>delloss</i> is the name of the Heat stack used in <i>Execute Heat Templates</i> on page 26.
node_hostname: "openshift-node"	As above, but for the OpenShift Compute nodes where the containerized workloads are executed.

Parameter: Example Value	Description
master_docker_volume_size_gb: 25	Volume size for Master nodes. Will be provisioned out of Cinder volumes, backed by Red Hat Ceph Storage.
node_docker_volume_size_gb: 25	Volume size for Node servers. Will be provisioned out of Cinder volumes, backed by Red Hat Ceph Storage.
master_count: 3	The number of Master replicas to launch and cluster. OpenShift has its own multi-master replication built in.
master_server_group_policies: affinity	The Master cluster policy type.
deploy_registry: false	Whether or not to deploy a docker registry.
os_auth_url: http://192.168.190.125:5000/v2.0	The os_auth_url is found in your overcloudrc file as export OS_AUTH_URL=http://192.168.190.125:5000, v2.0.
os_username: admin	The username in the <i>overcloudrc</i> file.
os_password: "pZ4CGyJU4XDbEuMVT7qMKdP6b"	The password in the <i>overcloudrc</i> file.
os_tenant_name: admin	The tenant name in the <i>overcloudrc</i> file.

Chapter

4

Installation and Configuration

Topics:

- Execute Heat Templates
- Troubleshoot and Debug Failures

Now that the solution installation environment is set up, you can install and configure the solution itself.

Execute Heat Templates

This procedure strings together several YAML files to feed into Heat, in order to change the deployment configurations.

To execute the Heat templates:

- **1.** Log into the Director Node.
- 2. Source the *overcloudrc* file by executing the following command:

\$. ./overcloudrc

3. Execute the templates with the following command, replacing <stackname> with a unique name without punctuation or numbers, to define your stack:

Note: As indicated in *Prepare the Heat YAML Files* on page 22, our example uses the stack name *delloss*.

```
$ heat stack-create <stackname> --poll -t 120 \
    -e openshift_parameters.yaml \
    -f ~/openshift-on-openstack/openshift.yaml \
    -e ~/openshift-on-openstack/env_flannel.yaml
```

You will see output for about 30 minutes over the course of the entire installation. The --poll argument ensures that you see updates from the Heat subsystem.

Troubleshoot and Debug Failures

If the stack-create operation fails you will see some basic debugging output:

- If the problem was in OpenStack, the error message will likely be very clear and helpful.
- If the error message is in the OpenShift Ansible deployment portion, it is likely to be obscure.

Further depth can be found in the troubleshooting document in the *openshift-on-openstack* code repository: *https://github.com/redhat-openstack/openshift-on-openstack/blob/master/README_debugging.adoc.*

Some common troubleshooting information is presented in the following topics:

- Heat Events on page 26
- Time-savers on page 27
- Debugging in Proper Order on page 27
- About Ansible Log Files on page 28

Heat Events

Here are some common Heat events troubleshooting steps:

1. Get a list of all the events leading up to your error, by executing the following command on the Director.

heat event-list -n 2 delloss

- Ensure that all services are running correctly. See the <u>Dell EMC Ready Bundle for Red Hat OpenStack</u> <u>Deployment Guide - Version 6.0.1</u> for suggestions about how to fix these errors.
- You see the following error message:

```
Error: No such flavor
```

You might be set into the Undercloud, not the Overcloud. Remember to source the *overcloudrc* file with the following command:

. ./overcloudrc

Time-savers

When debugging you are likely to log into the VMs several times. Here are some short scripts and actions to make that much quicker.

• To copy the ssh key from the Director to a Controller:

```
$ scp key_name.pem heat-admin@cntl0:
key_name.pem
```

- Here are some short scripts for the Controller node. Normally, you must look up the IP address of the VMs. This script that enables you to:
 - ./ssh-oc <stackname>-infra to quickly ssh to your stack's OpenShift Infra VM
 - ./ssh-oc delloss-openshift-master-0 to get to master-0
 - get-oc <stackname-hostname>: make it easy to get the Floating IP address of a node:

```
#!/bin/bash
nova list| grep $1 | awk '{print $(NF-1) }'
```

· Example: Easy lookup of infra node IP

```
[heat-admin@tan-controller-0 ~]$ ./get-oc delloss-infra
192.168.191.8
```

 ssh-oc: <stackname-hostname>: use the above script inside the following script to ssh to the desired node quickly

```
#!/bin/bash
ssh -i key_name.pem cloud-user@`./get-oc $1`
```

• Example: Easy ssh to infra node.

```
[heat-admin@tan-controller-0 ~]$ ./ssh-oc delloss-infra
Warning: Permanently added '192.168.191.8' (ECDSA) to the list of known
hosts.
Last login: Fri Jun 24 11:12:30 2016 from localhost
[cloud-user@delloss-infra ~]$
```

- Best log files to check: /var/log/cloud-init.log /var/log/messages
 - Log into the Infra VM and check some log files:

```
director: ssh cntl0
[heat-admin@tan-controller-0 ~]$ ./ssh-oc delloss-infra
Last login: Fri Jun 24 11:36:37 2016 from 192.168.190.128
[cloud-user@flannel2-infra ~]$ sudo -i
[root@flannel2-infra ~]# less /var/log/cloud-init.log
[root@flannel2-infra ~]# less /var/log/messages
```

Debugging in Proper Order

Proper order is crucial to successfully debugging the installation. Follow the procedures below in the order presented:

- 1. Watch heat event-list <stackname> for failing events until the Infra VM comes up. This takes about 10 seconds.
- **2.** Log into the Infra VM, and watch */var/log/cloud-init.log* while it configures itself and prepares Ansible. This takes about 15 minutes.
- 3. From the Director Node or a Controller, watch heat event-list <stackname> again, for it to create the masters and nodes VMs. This takes about 10 minutes, until the long wait at "openshift-nodes" with the notification of "loadbalancer" CREATE_COMPLETE.
- **4.** Log into the Infra VM again, and watch /var/log/ansible* for Ansible events.
 - a. Find failing events with grep '^failed:' /var/log/ansible*, or
 - **b.** Search for *failed*: in an editor or pager of your choice.

It will take over 30 minutes to execute all 20,000 Ansible plays to install a 3 Master, 4 node cluster on Dell's lab Internet link and standard 13G stamp.

You may have to log into the individual VMs, to track their /var/log/cloud-init.log and /var/log/messages for Ansible logging locally.

About Ansible Log Files

Ansible runs on the Infra VM, and installs servers independently to hasten deployment. There can be up to three Ansible log files. If there are none, then your installation did not succeed in */var/log/cloud-init.log*, so you should be looking there first.

The */var/log/cloud-init.log* files from the masters and nodes are not brought to the Infra VM. If there is an installation problem early in the boot process of the masters or nodes, you must ssh to them to examine them.

The */var/log/ansible.** files are **very** verbose. You can more easily watch Ansible progress by executing the following command:

tail -f /var/log/ansible.* | grep '^TASK'

Chapter

5

Validate the Installation

Topics:

- List the Nodes
- Ensure a Working Router
- Deploy the Router Pod to a Master

This topic describes the procedures you will use to validate the installation.

List the Nodes

Validate the installation by making sure that the system knows about its components.

To list the nodes:

- 1. From the Director Node, ssh to a Controller node.
- 2. Source the overcloudrc file:

\$. ./overcloudrc

3. Display the nodes' floating IP addresses by executing the following command:

\$ nova list

4. Then ssh to the floating IP address of a Master node from the list:

\$ ssh -i key_name.pem cloud-user@192.168.191.19

5. List the nodes by executing the following command:

\$ oc get nodes

The output should display as many masters and nodes as you requested in the Heat template.

Ensure a Working Router

Sometimes the Ansible installer does not properly deploy the router. Check it by ensuring that there is a pod associated with it.

To check the router status:

1. Execute the following command:

```
$ oc status
In project default on server https://ossdell-lb.example.com:8443
svc/kubernetes - 172.30.0.1 ports 443, 53, 53
svc/router - 172.30.15.96 ports 80, 443, 1936
dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.2.0.44
deployment #1 deployed about an hour ago - 0 pods
View details with 'oc describe <resource>/<name>' or list everything with
'oc get all'.
```

If there are no pods in the router deployment, you must perform the procedures in *Deploy the Router Pod* to a *Master* on page 30.

Deploy the Router Pod to a Master

To deploy the router pod to a Master node:

Note: Our example uses *Master-0*.

1. List the nodes:

```
# oc get nodes
NAME STATUS AGE ossdell-openshift-master-0.example.com
Ready,SchedulingDisabled 1h
ossdell-openshift-master-1.example.com
Ready,SchedulingDisabled 1h
ossdell-openshift-node-45j22uvs.example.com Ready
1h
ossdell-openshift-node-9g7fs5b4.example.com Ready
1h
ossdell-openshift-node-v8r3iny2.example.com Ready
1h
```

2. Set the *Master-0* node to schedulable:

```
# oadm manage-node ossdell-openshift-master-0.example.com --
schedulable=true
NAME STATUS AGE
ossdell-openshift-master-0.example.com Ready 1h
```

Verify that Master-0 is now schedulable:

- **4.** Delete the existing router deployment configuration and service, and redeploy the router.
 - **a.** Examine the services created by the oc adm router command. Most importantly, you should see "1 pod" running under the dc/router.

```
# oc delete dc router; oc delete service router; oc adm router --
selector="region=infra"
```

 Watch the pods that are available for the complete creation of the OpenShift Router on one of the Master node VMs:

```
# oc get pods
              READY STATUS
                                           RESTARTS AGE
NAME
router-2-1981m 0/1
                       ContainerCreating
                                                     85
                                           0
# oc get pods
              READY STATUS RESTARTS AGE
NAME
router-2-1981m 1/1
                        Running 0
                                           44s
# oc status
In project default on server https://ossdell-lb.example.com:8443
svc/kubernetes - 172.30.0.1 ports 443, 53, 53
svc/router - 172.30.15.96 ports 80, 443, 1936
  dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.2.0.44
   deployment #2 deployed 4 minutes ago - 1 pod
   deployment #1 deployed about an hour ago
```

View details with 'oc describe <resource>/<name>' or list everything with 'oc get all'.

The OpenShift router is now properly deployed.

Chapter 6

Configure a Docker Registry with Persistent Storage

Topics:

- Create a Cinder Volume
- Configure Red Hat Ceph Storage and Cinder Persistent Storage
- Create the Docker-Registry
- Create a Sample User in
 OpenShift

This topic describes the procedures you will follow to configure a Docker registry with persistent storage.

Create a Cinder Volume

From the Director Node, you can create a Cinder Volume for the registry.

To create a Cinder volume:

1. Check to see if there was already a registry created. If so, note its ID.

Ð

Note: In this example, a Cinder volume for the docker-registry was created: ossdell-registry_volume-cr4v3l33qm5n.

\$ cinder list | grep registry_volume

```
| 108226c8-7de4-4905-9e67-7c61699aba0a | available | - | ossdell-
registry_volume-cr4v3l33qm5n | 10 | - | false | False | |
```

2. If no volume was created, create one and note its ID:

```
$ cinder create --name docker-registry 100
```

The output will contain information similar to Table 3: Cinder Volume Values on page 34.

Table 3: Cinder Volume Values

Property	Value
attachments	0
availability_zone	nova
bootable	false
consistencygroup_id	None
created_at	2016-06-03T02:49:46.000000
description	None
encrypted	False
id	81fd05bf-8653-45eb-baf4-6df7fffb643e
metadata	8
migration_status	None
multiattach	False
name	docker-registry
os-vol-host-attr:host	rbd:volumes@tripleo_ceph#tripleo_ceph
os-vol-mig-status-attr:migstat	None
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	c1b740d8571f4cb5aa66f8ddcfdec015
os-volume-replication:driver_data	None
os-volume-replication:extended_status	None
replication_status	disabled

Property	Value
size	100
snapshot_id	None
source_volid	None
status	creating
user_id	3d0e3655d9224e5292b5f0cd3646a5ac
volume_type	None

Configure Red Hat Ceph Storage and Cinder Persistent Storage

To configure Red Hat Ceph Storage and Cinder persistent storage for the registry:

- 1. Access an OpenShift master.
- 2. Create a new file, called pv.yaml.
 - **a.** Paste the calues below into *pv.yaml*. Be sure to substitute the volume_ID at the end for the id from *Table 3: Cinder Volume Values* on page 34.

Note: Ensure that the following formatting pastes correctly into your new file. Use two spaces for each level of indentation. This is YAML.

```
apiVersion: "v1"
kind: "PersistentVolume"
metadata:
   name: "docker-reg-volume"
spec:
   capacity:
    storage: "100Gi"
   accessModes:
        - "ReadWriteOnce"
   cinder:
        fsType: "ext3"
        volumeID: "<volume_ID>"
```

3. Create the persistent volume objects, and verify them by executing the following commands:

```
# oc create -f pv.yaml
persistentvolume "docker-reg-volume" created
# oc get pv
NAME CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
docker-reg-volume 100Gi RWO Available 36s
```

 Have the docker-registry pod claim that persistent volume by creating a Persistent Volume Claim file, called *pvc.yaml*, on the same Master host:

Note: Ensure that the following formatting pastes correctly into your new file. Use two spaces for each level of indentation. This is YAML.

```
apiVersion: "v1"
kind: "PersistentVolumeClaim"
metadata:
   name: "docker-registry-pvc1"
spec:
   accessModes:
```

```
- "ReadWriteOnce"
resources:
   requests:
    storage: "100Gi"
```

5. Create those Persistent Volume Claim objects, and verify them by executing the following commands on the Master host:

```
# oc create -f pvc.yaml
persistentvolumeclaim "docker-registry-pvcl" created
# oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
docker-registry-pvcl Bound docker-reg-volume 100Gi RWO 2d
```

Create the Docker-Registry

To create the docker-registry right the first time, you must create a custom docker-registry YAML file with the proper IP address.

Note: Other pods cannot access this registry unless it resides on a network managed by Flannel; only one network per host is managed by Flannel. That network must be selected for the docker-registry to be accesible.

To create the docker-registry:

ip r

1. On a Master node, create a registry YAML file, called, reg.yaml:

```
# oc create -f pvc.yaml
persistentvolumeclaim "docker-registry-pvcl" created
# oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
docker-registry-pvcl Bound docker-reg-volume 100Gi RWO 2d
```

- 2. Find an appropriate clusterIP address by finding out which 172.30.x.0/24 address range is hosted on **this** server.
 - a. Note which range is on the *docker0* bridge interface.
 - b. In the example below, 172.30.9.0/24 is on the *docker0* bridge interface. So, choose an unused IP address on the 172.30.9.0/24 network.
 - **c.** 192.168.9.215 appears to be unused, so check that by pinging that IP address and waiting for a failed response, indicating that there is no host listening on the IP address.
 - **d.** That will be the clusterIP address, since that is Kubernetes' terminology.

```
default via 192.168.10.1 dev eth0 proto static metric 100
10.10.0.0/24 dev eth1 proto kernel scope link src 10.10.0.5 metric 100
172.30.9.0/24 dev docker0 proto kernel scope link src 172.30.9.1
172.30.21.0/24 via 10.10.0.4 dev eth1
172.30.90.0/24 via 10.10.0.8 dev eth1
172.30.92.0/24 via 10.10.0.7 dev eth1
172.30.94.0/24 via 10.10.0.6 dev eth1
192.168.10.0/24 dev eth0 proto kernel scope link src 192.168.10.7 metric
100
```

3. Edit ~/reg.yaml to add a clusterIP and portalIP (same as clusterIP) address to the "kind: Service" section as in the following example, then save the file:

Ø

Note: Ensure that the following formatting pastes correctly into your new file. Use two spaces for each level of indentation. This is YAML.

```
apiVersion: v1
kind: Service
metadata:
    creationTimestamp: null
    labels:
        docker-registry: default
        name: docker-registry
    spec:
        clusterIP: 172.30.9.215
        portalIP: 172.30.9.215
        ports:
            - name: 5000-tcp
            port: 5000
            targetPort: 5000
```

4. Build the docker-registry objects, and kick off the build and deployment of the docker-registry pods and containers, by executing the following command:

oc create -f ~/reg.yaml

- 5. Watch the deployment build for success by executing the following command:
 - **Note:** It might take some time for the results to appear. You can keep checking by executing the oc status command several times.

```
# oc status
In project default on server https://ossdell-lb.example.com:8443
svc/docker-registry - 172.30.105.235:5000
dc/docker-registry deploys registry.access.redhat.com/openshift3/ose-
docker-registry:v3.2.0.44
deployment #1 deployed 3 minutes ago - 1 pod
svc/kubernetes - 172.30.0.1 ports 443, 53, 53
svc/router - 172.30.15.96 ports 80, 443, 1936
dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.2.0.44
deployment #2 deployed 15 minutes ago - 1 pod
deployment #1 deployed about an hour agoView details with 'oc describe <resource>/<name>' or list everything with
'oc get all'.
```

6. Now that the docker-registry is running, update it to use the Persistent Volume Claim by executing the following commands on the Master host:

```
# oc volume deploymentconfigs/docker-registry --add \
--name=docker-registry-volume -t pvc \
--claim-name=docker-registry-pvcl \
--overwrite deploymentconfigs/docker-registry
# oc describe dc/docker-registry
----Output truncated-----
Volumes:
registry-storage:
Type: EmptyDir (a temporary directory that shares a pod's
lifetime)
Medium:
docker-registry-volume:
```

```
Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
ClaimName: docker-registry-pvc1
ReadOnly: false
-----Output truncated-----
```

7. You can observe the *docker-registry-2-deploy* pod coming up to deploy your docker-registry again with the persistent storage attached, by executing the following commands:

```
# oc status
In project default on server https://ossdell-lb.example.com:8443
svc/docker-registry - 172.30.105.235:5000
  dc/docker-registry deploys registry.access.redhat.com/openshift3/ose-
docker-registry:v3.2.0.44
   deployment #2 pending 41 seconds ago
    deployment #1 deployed 34 minutes ago - 1 pod
svc/kubernetes - 172.30.0.1 ports 443, 53, 53
   svc/router - 172.30.15.96 ports 80, 443, 1936
 dc/router deploys docker.io/openshift3/ose-haproxy-router:v3.2.0.44
   deployment #2 deployed 46 minutes ago - 1 pod
   deployment #1 deployed 2 hours ago
View details with 'oc describe <resource>/<name>' or list everything with
 'oc get all'.
# oc get pods
NAME
                        READY STATUS
                                               RESTARTS AGE
docker-registry-1-vghsw 1/1 Running
                                               0 33m
docker-registry-2-deploy 0/1 ContainerCreating 0
                                                       46s
router-2-1981m
                       1/1 Running
                                              0
                                                        43m
```

 Examine the docker-registry, and ensure that its second deployment comes up cleanly, by executing the following commands:

```
# oc get pods
NAME
                        READY STATUS RESTARTS AGE
docker-registry-2-xjmuo 1/1 Running 0
                                              2m
# oc describe pod docker-registry-2-xjmuo
----Output truncated-----
Events: (truncated to show only From and Message fields)
  From
                                                         Message
  _ _ _ _
                                                         _ _ _ _ _ _ _ _ _
  {default-scheduler)
                                                         Successfully
 assigned docker-registry-2-xjmuo to ossdell-openshift-node-
vm4047k3.example.com
  {kubelet ossdell-openshift-node-vm4047k3.example.com} Container image
 "registry.access.redhat.com/openshift3/ose-docker-registry:v3.2.0.20"
 already present on machine
  {kubelet ossdell-openshift-node-vm4047k3.example.com} Created container
 with docker id 2a204472c9fc
  {kubelet ossdell-openshift-node-vm4047k3.example.com} Started container
 with docker id 2a204472c9fc
# oc describe service docker-registry
Name:
                        docker-registry
Namespace:
                        default
Labels:
                      docker-registry=default
```

Selector: docker-registry=default Type: ClusterIP IP: 172.30.19.92 5000-tcp Port: 5000/TCP Endpoints: 10.1.6.2:5000 Session Affinity: ClientIP No events. # oc get pods NAMEREADYSTATUSRESTARTSAGEdocker-registry-1-vghsw1/1Running034mdocker-registry-2-deploy1/1Running01m READY STATUS docker-registry-2-po9az0/1ContainerCreating0router-2-1981m1/1Running0 28s 43m # oc get pods READY STATUS RESTARTS AGE NAME docker-registry-2-po9az1/1Running055srouter-2-1981m1/1Running044m

Note: By using PersistentVolumes, these docker-registry pods can fail at any time, and the underlying replicated storage is still intact. OpenShift will quickly bring up another docker-registry, thanks to the deployment configuration: docker-registry.

9. To test that the docker-registry has been properly deployed and networked, curl the docker-registry **ClusterIP** that you set above from the Master host, and from any of the other OpenShift masters or nodes:

```
# curl -v http://<ClusterIP>:5000
* About to connect() to 172.30.207.92 port 5000 (#0)
* Trying 172.30.207.92...
* Connected to 172.30.207.92 (172.30.207.92) port 5000 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 172.30.207.92:5000
> Accept: */*
>
< HTTP/1.1 200 OK</pre>
```

a. If you can access the **ClusterIP** only from one of the masters and not from any of the other masters and nodes, then add the route in all the other master and OpenShift nodes:

ip r add <ClusterIP> via <docker0IP> dev docker0

10.Make sure your registry is populated by image streams and templates, and very importantly, have the same correct ClusterIP for the docker-registry, by executing the following commands on a Master VM:

GS	UPDATED
	OT DITTED

11.If the docker-registry's ClusterIP does not match the docker-registry ClusterIP, or there is no output from the command perform the following steps:

a. Remove all the image streams and templates by executing the following once on a Master VM:

oc delete is --all

b. On each Master, restart all the OpenShift processes:

```
# systemctl restart atomic-openshift-node
# systemctl restart atomic-openshift-master-controllers
# systemctl restart atomic-openshift-master-api
```

c. Recreate the image streams by executing the following commands on a master-0

```
# oc create -f /usr/share/openshift/examples/image-streams/ \
image-streams-rhel7.json
```

```
# oc get is
```

-	172.30.21.10:5000/default/jenkins	TAGS 1,latest	UPDATED 8
minutes	-		
-	172.30.21.10:5000/default/mongodb	2.4,2.6,latest	8
minutes	ago		
mysql	172.30.21.10:5000/default/mysql	5.5,5.6,latest	8
minutes	ago		
nodejs	172.30.21.10:5000/default/nodejs	0.10,latest	7
minutes	ago		
perl	172.30.21.10:5000/default/perl	5.16,5.20,latest	8
minutes	ago		
php	172.30.21.10:5000/default/php	5.5,5.6,latest	7
minutes	ago		
postgreso	[1 172.30.21.10:5000/default/postgre	latest,9.2,9.4	8
minutes	ago		
python	172.30.21.10:5000/default/python	2.7,3.3,3.4	8
minutes	ago		
ruby	172.30.21.10:5000/default/ruby	latest,2.0,2.2	8
minutes	ago		

d. Reinstate the templates by executing the following commands on a master-0:

```
# ls /usr/share/openshift/examples/db-templates/*.json| xargs -n 1 oc
  create -f
```

```
Error from server: error when creating "/usr/share/openshift/examples/
db-templates/mongodb-ephemeral-template.json": templates "mongodb-
ephemeral" already exists
Error from server: error when creating "/usr/share/openshift/examples/
db-templates/mongodb-persistent-template.json": templates "mongodb-
persistent" already exists
template "mysql-ephemeral" created
template "mysql-persistent" created
template "postgresql-ephemeral" created
template "postgresql-ephemeral" created
```

e. Reinstate the quickstart-templates by executing the following commands on a master-0:

```
# ls /usr/share/openshift/examples/quickstart-templates/*.json | xargs -
n 1 oc create -f
template "cakephp-example" created
template "cakephp-mysql-example" created
template "dancer-example" created
template "dancer-mysql-example" created
template "django-example" created
```

<pre>template "django-psql-examp template "jenkins-ephemeral template "jenkins-persisten template "nodejs-example" c: template "nodejs-mongodb-exa template "rails-postgresql-" # oc get templates</pre>	" created t" created reated ample" created	
NAME	DESCRIPTION	PARAMETERS
OBJECTS cakephp-example cakephp-mysql-example dancer-example dancer-mysql-example django-example django-psql-example jenkins-ephemeral The username is 'admin' jenkins-persistent The username is 'admin'	Jenkins service, with	18 (3 blank) 7 10 (4 blank) 5 17 (4 blank) 7 15 (9 blank) 5
<pre>mongodb-ephemeral mongodb-persistent mysql-ephemeral mysql-persistent nodejs-example nodejs-mongodb-example postgresql-ephemeral postgresql-persistent rails-postgresql-example</pre>	MongoDB database servi MongoDB database servi MySQL database service MySQL database service An example Node.js app An example Node.js app PostgreSQL database se PostgreSQL database se An example Rails appli	7 (3 generated) 2 8 (3 generated) 3 6 (2 generated) 2 7 (2 generated) 3 14 (8 blank) 5 15 (3 blank) 7 6 (2 generated) 2 7 (2 generated) 3

You have now successfully created a docker-registry in the OpenStack cluster.

Create a Sample User in OpenShift

The final procedure before logging into the OpenShift GUI is to create a sample user in OpenShift.

To create a sample user in OpenShift:

1. Execute the following command on all of the OpenShift masters, creating a password of your choosing.

Caution: You must use the same one on each host.

```
# htpasswd /etc/origin/openshift-passwd osadmin
New password:
Re-type new password:
Adding password for user osadmin
```

You can now proceed to Configure OpenShift Web GUI Access on page 42.

Chapter

7

Configure OpenShift Web GUI Access

Topics:

- Make DNS World Accessible
- Ensure the Wildcard Domain Resolves to the Router
- Add DNS to the Bastion Host
- Navigate to the OpenShift Web
 Console

This topic describes the procedures you will perform to configure OpenShift web GUI access.

Make DNS World Accessible

To ensure that DNS is accessible by everyone:

1. On the Director Node execute the following command:

\$ nova list

- 2. Note the floating IP address of the OpenShift master-0 VM.
- **3.** ssh into the Infra VM.
- 4. Fix named/bind to accept queries from anywhere, by editing the /etc/named.conf file, changing the allow-query value to be any;

```
# vi /etc/named.conf
allow-query { any; };
```

Ensure the Wildcard Domain Resolves to the Router

To enable the wildcard domain to resolve to the router:

- **1.** On the Infra VM, edit /var/named/openshift-cluster.zone.
 - **a.** Increment the ; Serial entry.
 - **b.** Add the wildcard domain entry like so: *.cloudapps IN A <FloatingIP of Master-0>, with the Floating IP address of the *master-0* that you noted in *Make DNS World Accessible* on page 43.

Note: Ensure that the following formatting pastes correctly into your new file. This is a BIND9 Zone File.

```
$TTL 1d
  IN SOA flannel-infra openshift (
@
              1466012102 ; Serial <- INCREMENT THIS NUMBER
              12h ; Refresh
              3m; Retry4w; Expire3h; TTL for negative replies
         )
     IN NS flannel-infra
flannel-infra IN A 192.168.10.5
flannel-openshift-master-0 IN A 192.168.10.7
flannel-openshift-master-1 IN A 192.168.10.6
flannel-openshift-node-x9hh4188 IN A 192.168.10.11
flannel-openshift-node-4dzubun2 IN A 192.168.10.9
flannel-openshift-node-x18df21a IN A 192.168.10.10
flannel-lb IN A 192.168.191.14
*.cloudapps IN A <FloatingIP of Master-0>
```

2. Restart the DNS server process to pickup all of the changes:

systemctl restart named

Add DNS to the Bastion Host

To add DNS to your Windows bastion host:

- 1. In Windows, navigate to Network and Sharing Center, then select Change Adapter Settings.
- 2. Right-click on the adapter that you use to connect to the OpenShift console (usually the public network), then choose Properties.
- 3. Double-click on Internet Protocol Version 4, then change the Preferred DNS Server to the public IP address of the Infra VM.
- 4. Click on **OK**, then on **OK** again to close the Network Properties dialogue box and ensure that the setting was saved.
- 5. Run cmd.exe to display a command console.
- **6.** Ensure that the DNS server was accepted by the configuration, and applied to the Network settings, by executing the following command:

```
C:\> ipconfig /all
```

7. Ensure network connectivity by executing the following command:

C:\> ping <infra host IP address>

8. Execute the following command to return the IP address of the load balancer:

```
C:\> nslookup <lb FQDN> <infra host IP address>
```

Navigate to the OpenShift Web Console

To log into the console on the bastion host:

- **1.** In a web browser, navigate to http://openshift-lb.example.com/console.
- **2.** Accept the Security Exception for the self-signed certificate.
- 3. Login with these credentials:
 - **a.** Username: *osadmin*
 - **b.** Password: *password* (the password that you set, above)
- **4.** If the URL is not accessible immediately, or becomes inaccesible after some time, the keys may have been rotated. To regain accessibility:
 - a. Access the OpenStack Dashboard in a web browser.
 - **b.** Navigate to the **Admin Project > Network > Load Balancers > Members**.
 - c. Ensure the status of each member is Active.
 - **d.** If the status is not Active, select **Edit Member**, then save it with no changes to force OpenStack to refresh the members properly.
 - e. Browse to openshift-lb.example.com:8443/console.
 - f. Accept the new certificates.
- Do not log out you will need this access for the next procedure, *Deploy a Sample Application* on page 45.

Chapter

8

Deploy a Sample Application

Topics:

Application Deployment
 Procedure

Now you can deploy a sample application in the OpenShift Container Platform web GUI.

Ð

Application Deployment Procedure

To deploy a sample application:

- 1. Log into the OpenShift Enterprise console.
- 2. Create a new project with a name that you like.

Note: Projects are namespaces in which you deploy one or more applications that will share resources.

3. Create a new application from the Quickstart Templates:

<u>File Edit View History Bookmarks Tools H</u> elp									_ 8 :	×
OpenShift Web Console × 🕞 Welcome to OpenShift × +										
(Inttps://flannel2-lb.flannel9example.com:8443/console/project/project9/c	reate		C Q Search	+	A	☆	é (e e		2
OPENSHIFT ENTERPRISE						@ ~	1 os	admin	~	
РНР		JBOSS Starson	jboss-decisionserver62-openshift:1.2 BUILDER DECISIONSERVER JAVA XPAAS				e.	•		1
php:5.5 BUILDER PHP	8		jboss-eap64-openshift:1.1			_				
php:5.6 BUILDER PHP	۲	the second	BUILDER EAP JAVAEE JAVA JBOSS XPAAS				0	•		
php:latest BUILDER PHP	٥	€ Boss € Bysen	amq62-basic Version: 1.3.1 MESSAGING AMQ JEOSS XPAAS				Ę	ć		
Cakephp-example QUICKSTART PHP CAKEPHP	† 🖸 An examp	Je CakePHP app	amq62-persistent Version: 1.3.1 MESSAGING AMQ JBOSS XPAAS ication with no database				[5		
cakephp-mysql-example	5 F	+ Bress	amq62-persistent-ssl				6	-		•

Figure 2: Example Application with No Database

4. Accept all the defaults and click Create:

Eile Edit View Higtory Bookmarks Tools Help		_ 8 ×
OpenShift Web Console × +		
🔄 🛈 🔒 https://flannel2-lb.flannel9example.com:8443/console/project/asdfasdff/create/fromtemplate?name=cakephp-examp 🛛 🖉	earch 🕹 🏠 🕻	☆ 🖻 🛡 😕 🚍
OPENSHIFT ENTERPRISE	0	👻 👤 osadmin 🛩
Security cipher seed for session hash.		<u> </u>
OPcache Revalidation Frequency		
2		
How often to check script timestamps for updates, in seconds. 0 will result in OPcache checking updates on every request.	ţfor	
Labels	About labels	
Each label is applied to each created resource.		
Name Value	Add	
template cakephp-example		
Create		
		-

Figure 3: New Application

5. Click through the informational screen, and watch the application build on the overview screen:

Project Project Add to project Image: Constraint of the project o	🔶 🛈 🔒 https:	//flannel2-lb.flannel9example.com:8443/consolo	/project/project9/overview		C Q Search	+	^ ☆ €		∍≡
Overview Filter by label Add Ext Select an object to see more details. Browse SERVICE : CAKEPHP-EXAMPLE http://cakephp-example-project9.cloudapps.flannel B080/TCP - 8080 A pod contains one or more Docker containers that run together on a node, containing your application code. Completes. View Log Build cakephp-example #1 is pending. A new deployment will be created automatically once the build completes. View Log A deployment is an update to your application, triggered by a changed image or configuration.	f			✓ Add to project			@ ~	👤 osad	min 🗸
Filter by label Add Ex Select an object to see more details. Browse SERVICE: CAKEPHP-EXAMPLE http://cakephp-example-project9.cloudapps.flannel B0807CP - 8080 bit dakephp-example #1 is pending. A new deployment will be created automatically once the build completes. View Log B0807CP - 8080 bit dakephp-example #1 is pending. A new deployment will be created automatically once the build completes. View Log A pod contains one or more Docker containers that run together on a node, containing your application code.		Overview				Details			
Image: Settings O Build cakephp-example #1 is pending. A new deployment will be created automatically once the build completes. View Log and an optional, load-balanced IP address to access them. A deployment is an update to your application, triggered by a changed image or configuration. A deployment is an update to your application, triggered by a changed image or configuration.	Å	SERVICE : CAKEPHP-EXAMPLE		nnel		A pod contains one or mo together on a node, conta	ore Docker conta aining your appli	cation code	N.
		completes. View Log	and an optional, load-balanced IP address to access th A deployment is an update to your application, trigge						

Figure 4: Overview

Ð

6. In a matter of moments, the build is complete; the deployment completes shortly thereafter.

Note: You can click the View Log link to see the progress.

<u>Eile E</u>dit <u>V</u>iew Higtory <u>B</u>ookmarks <u>T</u>ools <u>H</u>elp _ 8 × 🗿 OpenShift Web Console × 🗑 Welcome to OpenShift × + < 🛈 🖴 | https://flannel2-lb.flannel9example.com:8443/console/project/project9/overview?main-tab=openshiftConsole%2Fove C Q Search ♣ 合 ☆ 自 ♥ 😕 \equiv 🔞 🖌 👤 osadmin 🗸 ♠ Overview Details Ⅲ 夜 Filter by label Add Select an object to see more details. A **pod** contains one or more Docker containers that run **.** SERVICE : CAKEPHP-EXAMPLE $8080/\text{TCP} \rightarrow 8080$ together on a node, containing your application code. http://cakephp-example-project9.cloudapps.flannel... A service groups pods and provides a common DNS name and an optional, load-balanced IP address to access them. Build cakephp-example #1 completed. View Log | Dismiss A deployment is an update to your application, triggered by DEPLOYMENT: CAKEPHP-EXAMPLE, #1 - C IN PROGRESS in 2 minutes from image change a changed image or configuration. CONTAINER: CAKEPHP-EXAMPLE Opods Image: project9/cakephp-example ≁ Ports: 8080/TCP cakephp-example-project9.cloudapps.flannel9example.com

Figure 5: Build Complete

7. Click on the application's link to display the working application:

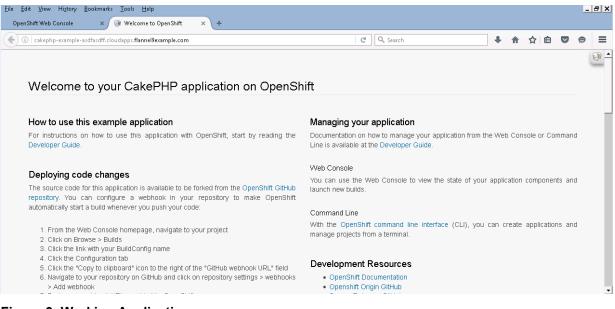


Figure 6: Working Application

The OpenShift Container Platform is now deployed in the Dell EMC Ready Bundle for Red Hat OpenStack.

Chapter

9

Next Steps

Now that the OpenShift Container Platform is now deployed in the Dell EMC Ready Bundle for Red Hat OpenStack, follow the procedures in the guide listed below to deploy Red Hat CloudForms on the Dell EMC Ready Bundle for Red Hat OpenStack:

 Technical Guide - Deploying CloudForms 4.2 in the Dell EMC Ready Bundle for Red Hat OpenStack - Version 6.0.1

Appendix

Getting Help

Topics:

- Contacting Dell EMC
- References

This appendix details contact and reference information for the Dell EMC Ready Bundle for Red Hat OpenStack.

Contacting Dell EMC

For customers in the United States, call 800-WWW-DELL (800-999-3355).

Note: If you do not have an active Internet connection, you can find contact information on your purchase invoice, packing slip, bill, or Dell EMC product catalog.

Dell EMC provides several online and telephone-based support and service options. Availability varies by country and product, and some services may not be available in your area. To contact Dell EMC for sales, technical support, or customer service issues:

- 1. Visit *dell.com/support*.
- 2. Click your country/region at the bottom of the page. For a full listing of country/region, click All.
- 3. Click All Support from the Support menu.
- 4. Select the appropriate service or support link based on your need.
- 5. Choose the method of contacting Dell EMC that is convenient for you.

References

Additional information can be obtained at *http://www.dell.com/en-us/work/learn/openstack-cloud* or by e-mailing *openstack@dell.com*.

If you need additional services or implementation help, please contact your Dell EMC sales representative.

To Learn More

For more information on the Dell EMC Ready Bundle for Red Hat OpenStack visit *http://www.dell.com/learn/us/en/04/solutions/red-hat-openstack*.

Copyright [©] 2014-2017 Dell Inc. or its subsidiaries. All rights reserved. Trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Specifications are correct at date of publication but are subject to availability or change without notice at any time. Dell EMC and its affiliates cannot be responsible for errors or omissions in typography or photography. Dell EMC's Terms and Conditions of Sales and Service apply and are available on request. Dell EMC service offerings do not affect consumer's statutory rights.

Dell EMC, the DELL EMC logo, the DELL EMC badge, and PowerEdge are trademarks of Dell Inc.