

JULY 2015

A PRINCIPLED TECHNOLOGIES TEST REPORT
Commissioned by Dell

PERFORMANCE ADVANTAGES OF HADOOP ETL OFFLOAD WITH THE INTEL
PROCESSOR-POWERED DELL | CLOUDERA | SYNCSORT SOLUTION

Many companies are adopting Hadoop solutions to handle large amounts of

data stored across clusters of servers. Hadoop is a distributed, scalable approach to

managing Big Data that is very powerful and can bring great value to organizations.

Companies use extract, transform, and load (ETL) jobs to bring together data from many

different applications or systems on different hardware in order to modify or adjust the

data in some way, and then put it into a new format that they can mine for useful

information.

Using traditional ETL can require highly experienced, expensive, and hard-to-

find programmers to create jobs for execution. Dell, Cloudera, and Syncsort offer an

integrated Hadoop ETL solution that allows entry-level technicians—after only a few

days of training—to perform the same tasks that these Hadoop specialists perform,

often even more quickly.

In the Principled Technologies labs, one entry-level technician and one highly

experienced Hadoop expert worked to create three Hadoop analysis use cases. After

two and a half days of intensive training from Dell, the beginner used Syncsort DMX-h to

create these use cases. Our Hadoop expert designed and created the use cases from

scratch. In addition to finding that the Dell | Cloudera | Syncsort solution was faster,

easier, and less expensive to implement, we discovered that the ETL use cases our

http://www.principledtechnologies.com/

A Principled Technologies test report 2

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

beginner created with this solution ran up to 60.3 percent more quickly than those our

expert created with open-source tools.1

BOOST PERFORMANCE WITH THE DELL | CLOUDERA | SYNCSORT
SOLUTION

The Dell | Cloudera | Syncsort solution is a reference architecture that offers a

reliable, tested configuration that incorporates Dell hardware on the Cloudera Hadoop

platform, with Syncsort’s DMX-h ETL software. For organizations that want to optimize

their data warehouse environments, the Dell | Cloudera | Syncsort reference

architecture can greatly reduce the time needed to deploy Hadoop when using the

included setup and configuration documentation as well as the validated best practices.

Leveraging the Syncsort DMX-h software means Hadoop ETL jobs can be developed

using a graphical interface in a matter of hours, with minor amounts of training, and

with no need to spend days developing code. The Dell | Cloudera | Syncsort solution

also offers professional services with Hadoop and ETL experts to help fast track your

project to successful completion.2

To learn about the cost and performance advantages of the Dell | Cloudera |

Syncsort solution, we conducted a series of tests in the Principled Technologies labs.3

We had an entry-level technician and a highly experienced Hadoop expert work to

create three Hadoop ETL jobs using different approaches to meet the goals of several

use cases. The Dell | Cloudera | Syncsort reference architecture includes four Dell

PowerEdge R730xd servers and two Dell PowerEdge R730 servers, powered by the

Intel® Xeon® processor E5-2600 v3 product family.

The entry-level worker, who had no familiarity with Hadoop and less than one

year of general server experience, used Syncsort DMX-h to carry out these tasks. Our

expert had 18 years of experience designing, deploying, administering, and

benchmarking enterprise-level relational database management systems (RDBMS). He

has deployed, managed, and benchmarked Hadoop clusters, covering several Hadoop

distributions and several Big Data strategies. He set up the cluster and designed and

created the use cases using only free open-source do-it-yourself (DIY) tools. Based on

their experiences, we learned that using the Dell | Cloudera | Syncsort solution was

faster, easier, and—because a lower-level employee could use it to create ETL jobs—far

less expensive to implement.

1 Based on “Performance advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution,” August 2015. Claim compares a
use case based on data validation and preprocessing.
2 Learn more at en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-strategies-etl-offload-hadoop-reference-
architecture
3 See Cost advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution
www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_cost_0715.pdf and Design advantages of Hadoop ETL offload with the Intel processor-powered Dell |
Cloudera | Syncsort solution www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_design_0715.pdf.

Extract, Transform, and
Load

 ETL refers to the
following process in
database usage and data
warehousing:
• Extract the data from
multiple sources
• Transform the data so
it can be stored properly
for querying and analysis
• Load the data into the
final database,
operational data store,
data mart, or data
warehouse

http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-strategies-etl-offload-hadoop-reference-architecture
http://en.community.dell.com/dell-blogs/dell4enterprise/b/dell4enterprise/archive/2015/06/09/fast-track-data-strategies-etl-offload-hadoop-reference-architecture
http://www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_cost_0715.pdf
http://www.principledtechnologies.com/Dell/Dell_Cloudera_Syncsort_design_0715.pdf

A Principled Technologies test report 3

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

In addition to savings that come from having a less highly compensated

employee perform the design work more quickly, the Dell | Cloudera | Syncsort solution

offers another avenue to cost-effectiveness: performance.

In this paper, we provide a quick overview of the Dell | Cloudera | Syncsort

solution and then present the results of our performance testing.

ABOUT SYNCSORT DMX-h
Syncsort DMX-h is a high-performance data integration software that runs

natively in Hadoop, providing everything needed to collect, prepare, blend, transform,

and distribute data. DMX-h, with its Intelligent Execution, allows users to graphically

design sophisticated data flows once and deploy on any compute framework (Apache

MapReduce, Spark, etc. on premise or in the cloud), future-proofing the applications

while eliminating the need for coding.

Using an architecture that runs ETL processing natively in Hadoop, without code

generation, Syncsort DMX-h lets users maximize performance without compromising on

the capabilities and typical use cases of conventional ETL tools. In addition, the software

packages’ industrial-grade capabilities to deploy, manage, monitor, and secure your

Hadoop environment.

Figure 1: How the Dell | Cloudera | Syncsort solution for Hadoop works.

Syncsort SILQ®

 Syncsort SILQ is a technology that pairs well with DMX-h. SILQ is a SQL offload

utility designed to help users visualize and move their expensive data warehouse

(SQL) data integration workloads into Hadoop. SILQ supports a wide range of SQL

flavors and can parse thousands of lines of SQL code in seconds, outputting logic

flowcharts, job analysis, and DMX-h jobs. SILQ has the potential to take an

overwhelming SQL workload migration process and make it simple and efficient.

A Principled Technologies test report 4

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

WHAT WE FOUND
In this section, we discuss our findings. For detailed configuration of our test

systems, see Appendix A and for the detailed testing procedure, see Appendix B.

Use case 1: Fact dimension load with Type 2 SCD
Businesses often feed their Business Intelligence decisions using the

Dimensional Fact Model, which uses a set of dimensional tables (tables with active and

historical data about a specific category, such as Geography or Time) to feed a fact table

(a table that joins the active records of all the dimensional tables on a common field)

summarizing current business activity. While some dimension tables never change,

some often experience updates. The dimension tables must be up-to-date to feed the

fact table correctly, and many businesses would like to keep historical data as well for

archival purposes.

A common method to identify changes in data is to compare historical and

current data using Changed Data Capture (CDC). A common method for updating

records while retaining the outdated record is Type 2 Slowly Changing Dimensions

(SCD). We used outer joins and conditional formatting to implement CDC and identify

changed records. We then implemented Type 2 SCD to mark outdated records with an

end-date and insert the updated data as a new, current record (in our case, we used a

perpetual end-date of 12/31/9999 to specify a current record). We then fed the

information from the dimensional tables downstream to a fact table that could be

queried for Business Intelligence.

Both the Syncsort DMX-h and DIY jobs that we created performed Type 2 SCD to

feed the Dimensional Fact Model, but the Syncsort DMX-h job was able to complete the

task 17.6 percent faster (see Figure 2).4

Figure 2: Time to complete the
fact dimension load with Type
2 SCD use case. (Lower
numbers are better.)

4 Based on “Performance advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution,” August 2015. Claim compares a
use case based on slowly changes dimensions.

A Principled Technologies test report 5

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing
Data validation is an important part of any ETL process. It is important for a

business to ensure that only usable data makes it into their data warehouse. And when

data is unusable, it’s important to mark that unusable data with an error message

explaining why it’s invalid. Data validation can be performed with conditions and filters

to check for and discard data that is badly formatted or nonsensical.

Both the Syncsort DMX-h and DIY jobs that we created performed accurate data

validation, but the Syncsort DMX-h job was able to complete the task 60.3 percent

faster (see Figure 3). The Syncsort DMX-h GUI made it easy to quickly try new filters and

sample the outputs. Being able to rapidly prototype the data validation job meant less

time spent revising.5

Figure 3: Time to complete the
data validation and pre-
processing use case. (Lower
numbers are better.)

Use case 3: Vendor mainframe file integration
The need to reformat heterogeneous data sources into a more useable format is

a common requirement of businesses with many varied data sources. Often companies

have high-value data locked away in the mainframe and want to assimilate that data

into the cluster. Some mainframe data types use a COBOL copybook to specify field

formats. Syncsort DMX-h makes the process of reformatting mainframe data sources

easy by allowing the user to link a COBOL copybook into metadata and automatically

interpret the flat file’s record layout—one of many data integration features Syncsort

DMX-h offers. Syncsort DMX-h enabled an inexperienced IT person with no prior

exposure to mainframe-formatted files to interpret these legacy data types, all without

disturbing the integrity of the original data.

5 Based on “Performance advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution,” August 2015. Claim compares a
use case based on data validation and preprocessing.

A Principled Technologies test report 6

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Both the Syncsort DMX-h and DIY jobs that we created were able to reformat

the mainframe data successfully, but the Syncsort DMX-h job was able to complete the

task 17.9 percent faster (see Figure 4).6

Figure 4: Time to complete the
vendor mainframe file
integration use case. (Lower
numbers are better.)

CONCLUSION
High-level Hadoop analysis requires custom solutions to deliver the data that

you need, and the faster these jobs run the better. What if ETL jobs created by an entry-

level employee after only a few days of training could run even faster than the same

jobs created by a Hadoop expert with 18 years of database experience?

This is exactly what we found in our testing with the Dell | Cloudera | Syncsort

solution. Not only was this solution was faster, easier, and less expensive to implement,

but the ETL use cases our beginner created with this solution ran up to 60.3 percent

more quickly than those our expert created with open-source tools.

Using the Dell | Cloudera | Syncsort solution means that your organization can

compensate a lower-level employee for half as much time as a senior engineer doing

less-optimized work. That is a clear path to savings.

6 Based on “Performance advantages of Hadoop ETL offload with the Intel processor-powered Dell | Cloudera | Syncsort solution,” August 2015. Claim compares a
use case based on file integration.

A Principled Technologies test report 7

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

APPENDIX A – SYSTEM CONFIGURATION INFORMATION
Figure 5 provides detailed configuration information for the test systems.

Edge node Dell PowerEdge R730 Dell PowerEdge R730xd

Hadoop cluster

Roll assignment Edge node, name node Data node

Number of systems 2 4

Power supplies

Total number 2 2

Vendor and model number Dell 0HTRH4A01 Dell 0HTRH4A01

Wattage of each (W) 750 750

Cooling fans

Total number 6 6

RPM 3,600 3,600

General

Number of processor packages 2 2

Number of cores per processor 10 10

Number of hardware threads per
core

2 2

System power management policy Performance Performance

CPU

Vendor Intel Intel

Name Xeon Xeon

Model number E5-2650 v3 E5-2650 v3

Socket type FCLGA2011-3 FCLGA2011-3

Core frequency (GHz) 2.30 2.30

Bus frequency 9.6 GT/s 9.6 GT/s

L1 cache 32 KB + 32 KB (per core) 32 KB + 32 KB (per core)

L2 cache 256 KB (per core) 256 KB (per core)

L3 cache 20 MB 20 MB

Platform

Vendor and model number Dell PowerEdge R730 Dell PowerEdge R730

Motherboard model number 0599V5A06 0599V5A06

BIOS name and version Dell 1.2.10 Dell 1.2.10

BIOS settings Default Default

Memory module(s)

Total RAM in system (GB) 128 128

Vendor and model number Samsung® M393A2G40DB0-CPB Samsung M393A2G40DB0-CPB

Type DDR-4 DDR-4

Speed (MHz) 2,133 2,133

Speed running in the system (MHz) 2,133 2,133

Size (GB) 16 16

Number of RAM module(s) 8 8

Chip organization Double-sided Double-sided

Rank Dual Dual

A Principled Technologies test report 8

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Edge node Dell PowerEdge R730 Dell PowerEdge R730xd

Operating system

Name CentOS 6.5 CentOS 6.5

Build number 2.6.32-504.23.4.el6.x86_64 2.6.32-504.23.4.el6.x86_64

File system EXT4 EXT4

Language English English

RAID controller

Vendor and model number PERC H730 Mini PERC H730 Mini

Firmware version 25.2.2-0004 25.2.2-0004

Driver version N/A N/A

Cache size (MB) 1,024 1,024

Hard drives

Vendor and model number
Toshiba®
TH0W69TH2123353R026QA00

Toshiba MG03SCA400 (4TB), Toshiba
AL13SEB300 (300GB)

Number of drives 8 12 (4TB), 2 (300GB)

Size (GB) 1,000 4,000, 300

Type Physical disk Physical disk

Figure 5: System configuration information for the test systems.

A Principled Technologies test report 9

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

APPENDIX B – HOW WE TESTED
Installing the Dell | Cloudera Apache Hadoop Solution

We installed Cloudera Hadoop (CDH) version 5.4 onto our cluster by following the “Dell | Cloudera Apache

Hadoop Solution Deployment Guide – Version 5.4” with some modifications. The following is a high-level summary of

this process.

Configuring the Dell Force10 S55 and Dell PowerConnect S4810 switches
We used the Dell Force10 S55 switch for 1GbE external management access from our lab to the Edge Node. We

configured two Dell PowerConnect S4810 switches for redundant 10GbE cluster traffic.

Configuring the BIOS, firmware, and RAID settings on the hosts
We used the Dell Deployment Tool Kit to configure our hosts before OS installation. We performed these steps

on each host.

1. Boot into the Dell DTK USB drive using BIOS boot mode.

2. Once the CentOS environment loads, choose the node type (infrastructure or storage), and enter the iDRAC

connection details.

3. Allow the system to boot into Lifecycle Controller and apply the changes. Once this is complete, the system will

automatically reboot once more.

Installing the OS on the hosts
We installed CentOS 6.5 using a kickstart file with the settings recommended by the Deployment Guide. We

performed these steps on each node.

1. Boot into a minimal CentOS ISO and press Tab at the splash screen to enter boot options.

2. Enter the kickstart string and required options, and press Enter to install the OS.

3. When the OS is installed, run yum updates on each node, and reboot to fully update the OS.

Installing Cloudera Manager and distributing CDH to all nodes
We used Installation Path A in the Cloudera support documentation to guide our Hadoop installation. We chose

to place Cloudera Manager on the Edge Node so that we could easily access it from our lab network.

1. On the Edge Node, use wget to download the latest cloudera-manager-installer.bin, located on

archive.cloudera.com.

4. Run the installer and select all defaults.

5. Navigate to Cloudera Manager by pointing a web browser to

http://<Edge_Node_IP_address>:7180.

6. Log into Cloudera Manager using the default credentials admin/admin.

7. Install the Cloudera Enterprise Data Hub Edition Trial with the following options:

a. Enter each host’s IP address.

b. Leave the default repository options.

c. Install the Oracle® Java® SE Development Kit (JDK).

d. Do not check the single user mode checkbox.

e. Enter the root password for host connectivity.

8. After the Host Inspector checks the cluster for correctness, choose the following Custom Services:

a. HDFS

b. Hive

A Principled Technologies test report 10

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

c. Hue

d. YARN (MR2 Included)

9. Assign roles to the hosts using the information in Figure 6 below.

Service Role Node(s)

HBase

 Master nn01

 HBase REST Server nn01

 HBase Thrift Server nn01

 Region Server nn01

HDFS

 NameNode nn01

 Secondary NameNode en01

 Balancer en01

 HttpFS nn01

 NFS Gateway nn01

 DataNode dn[01-04]

Hive

 Gateway [all nodes]

 Hive Metastore Server en01

 WebHCat Server en01

 HiveServer2 en01

Hue

 Hue Server en01

Impala

 Catalog Server nn01

 Impala StateStore nn01

 Impala Daemon nn01

Key-value Store Indexer

 Lily Hbase Indexer nn01

Cloudera Management Service

 Service Monitor en01

 Activity Monitor en01

 Host Monitor en01

 Reports Manager en01

 Event Server en01

 Alert Publisher en01

Oozie

 Oozie Server nn01

Solr

 Solr Server nn01

Spark

 History Server nn01

 Gateway nn01

A Principled Technologies test report 11

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Service Role Node(s)

Sqoop 2

 Sqoop 2 Server nn01

YARN (MR2 Included)

 ResourceManager nn01

 JobHistory Server nn01

 NodeManager dn[01-04]

Zookeeper

 Server nn01, en01, en01

Figure 6: Role assignments.

10. At the Database Setup screen, copy down the embedded database credentials and test the connection. If the

connections are successful, proceed through the wizard to complete the Cloudera installation.

Installing the Syncsort DMX-h environment
Installation of the Syncsort DMX-h environment involves installing the Job Editor onto a Windows server,

distributing the DMX-h parcel to all Hadoop nodes, and installing the dmxd service onto the NameNode. We used the

30-day trial license in our setup.

Installing Syncsort DMX-h onto Windows
We used a Windows VM with access to the NameNode to run the Syncsort DMX-h job editor.

1. Run dmexpress_8-1-0_windows_x86.exe on the Windows VM and follow the wizard steps to install the job

editor.

Distributing the DMX-h parcel via Cloudera Manager
We downloaded the DMX-h parcel to the Cloudera parcel repository and used Cloudera Manager to pick it up

and send it to every node.

1. Copy dmexpress-8.1.7-el6.parcel_en.bin to the EdgeNode and set execute permissions for the root user.

2. Run dmexpress-8.1.7-el6.parcel_en.bin and set the extraction directory to /opt/cloudera/parcel-repo.

3. In Cloudera Manager, navigate to the Parcels section and distribute the DMExpress parcel to all nodes.

Installing the dmxd daemon on the NameNode
We placed the dmxd daemon on the NameNode in order to have it in the same location as the YARN

ResourceManager.

1. Copy dmexpress-8.1.7-1.x86_64_en.bin to the NameNode and set execute permissions for the root user.

2. Run dmexpress-8.1.7-el6.parcel_en.bin to install the dmxd daemon.

Post-install configuration
We made a number of changes to the cluster in order to suit our environment and increase performance.

Relaxing HDFS permissions
We allowed the root user to read and write to HDFS, in order to simplify the process of performance testing.

1. In Cloudera Manager, search for “Check HDFS Permissions” and uncheck the HDFS (Service-Wide) checkbox.

Setting YARN parameters
We made a number of parameter adjustments to increase resource limits for our map-reduce jobs. These

parameters can be found using the Cloudera Manager search bar. Figure 7 shows the parameters we changed.

A Principled Technologies test report 12

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Parameter New value

yarn.nodemanager.resource.memory-mb 80 GiB

yarn.nodemanager.resource.cpu-vcores 35

yarn.scheduler.maimum-allocation-mb 16 GiB

Figure 7: YARN resource parameter adjustments.

Custom XML file for DMX-h jobs
We created an XML file to set cluster parameters for each job. In the Job Editor, set the environment variable

DMX_HADOOP_CONF_FILE to the XML file path. The contents of the XML file are below.

<?xml version="1.0"?>

<configuration>

<!-- Specify map vcores resources -->

<property>

<name>mapreduce.map.cpu.vcores</name>

<value>2</value>

</property>

<!-- Specify reduce vcores resources -->

<property>

<name>mapreduce.reduce.cpu.vcores</name>

<value>4</value>

</property>

<!-- Specify map JVM Memory resources -->

<property>

<name>mapreduce.map.java.opts</name>

<value>-Xmx2048m</value>

</property>

<!-- Specify reduce JVM Memory resources -->

<property>

<name>mapreduce.reduce.java.opts</name>

<value>-Xmx7168m</value>

</property>

<!-- Specify map Container Memory resources -->

<property>

<name>mapreduce.map.memory.mb</name>

A Principled Technologies test report 13

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

<value>2560</value>

</property>

<!-- Specify reduce Container Memory resources -->

<property>

<name>mapreduce.reduce.memory.mb</name>

<value>8704</value>

</property>

<!-- Specify reducers to be used -->

<property>

<name>mapreduce.job.reduces</name>

<value>32</value>

</property>

</configuration>

Creating the Syncsort DMX-h use cases
In our testing, we measured the time required to design and create DMX-h jobs for three use cases. Screenshots

of the DMX-h jobs for each use case appear below.

Use case 1: Fact dimension load with Type 2 Slowly Changing Dimensions (SCD)
We used outer joins and conditional reformatting to implement Type 2 SCD for use case 1. Figure 8 shows the

UC1 job layout.

Figure 8: Use case 1 job
layout.

A Principled Technologies test report 14

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing
We used a copy task with conditional filters to implement Data Validation for use case 2. Figure 9 shows the UC2

job layout.

Figure 9: Use case 2 job
layout.

Use case 3: Vendor mainframe file integration
We used a copy task with imported metadata to implement Vendor Mainframe File Integration for use case 3.

Figure 10 shows the UC3 job layout.

Figure 10: Use case 3 job
layout.

A Principled Technologies test report 15

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Creating the DIY use cases
We used Pig, Python and Java to implement the DIY approaches to each use case. The DIY code for each use case

appears below.

Use case 1: Fact dimension load with Type 2 Slowly Changing Dimensions (SCD)

set pig.maxCombinedSplitSize 2147483648

set pig.exec.mapPartAgg true

-- uc1

-- parameters and constants

-- input and output files

%DECLARE IN_O_UPDATES '/UC1/200/Source/orders.tbl'

%DECLARE IN_P_UPDATES '/UC1/200/Source/part.tbl'

%DECLARE IN_S_UPDATES '/UC1/200/Source/supplier.tbl'

%DECLARE IN_O_HISTORY '/UC1/200/Source/ORDERS_DIM_HISTORY'

%DECLARE IN_P_HISTORY '/UC1/200/Source/PART_DIM_HISTORY'

%DECLARE IN_S_HISTORY '/UC1/200/Source/SUPPLIER_DIM_HISTORY'

%DECLARE IN_LINEITEM '/UC1/200/Source/lineitem.tbl'

%DECLARE OUT_O_HISTORY '/DIY/200/UC1/ORDERS_DIM_HISTORY'

%DECLARE OUT_P_HISTORY '/DIY/200/UC1/PART_DIM_HISTORY'

%DECLARE OUT_S_HISTORY '/DIY/200/UC1/SUPPLIER_DIM_HISTORY'

%DECLARE OUT_FACT '/DIY/200/UC1/SOLD_PARTS_DIM_FACT'

-- "interior" fields for the i/o tables. needed to assist with column projections

%DECLARE HI_O_FIELDS

'ho_custkey,ho_orderstatus,ho_totalprice,ho_orderdate,ho_orderpriority,ho_clerk,ho_shippr

iority'

%DECLARE HI_P_FIELDS

'hp_name,hp_mfgr,hp_brand,hp_type,hp_size,hp_container,hp_retailprice'

%DECLARE HI_S_FIELDS 'hs_name,hs_address,hs_nationkey,hs_phone,hs_acctbal'

%DECLARE UP_O_FIELDS

'uo_custkey,uo_orderstatus,uo_totalprice,uo_orderdate,uo_orderpriority,uo_clerk,uo_shippr

iority'

%DECLARE UP_P_FIELDS

'up_name,up_mfgr,up_brand,up_type,up_size,up_container,up_retailprice'

%DECLARE UP_S_FIELDS 'us_name,us_address,us_nationkey,us_phone,us_acctbal'

-- Option to use replicated JOIN for the supplier name lookup.

-- use it

%DECLARE USE_REP_JOIN 'USING \'REPLICATED\'' ;

-- don’t use it

-- %DECLARE USE_REP_JOIN ' ' ;

-- tag in end-date fieldstop signify an active records

%DECLARE OPEN_REC '12/31/9999'

-- tags for start/end date fields

%DECLARE TODAY_REC `date +%m/%d/%Y`

%DECLARE YESTE_REC `date --date="1 days ago" +%m/%d/%Y`

IMPORT 'uc1_macros.pig';

A Principled Technologies test report 16

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

-- supplier, new history

supplier = update_history('$IN_S_UPDATES', '$IN_S_HISTORY', '$UP_S_FIELDS',

'$HI_S_FIELDS');

STORE supplier INTO '$OUT_S_HISTORY' USING PigStorage('|');

-- part, new history

part = update_history('$IN_P_UPDATES', '$IN_P_HISTORY', '$UP_P_FIELDS', '$HI_P_FIELDS');

STORE part INTO '$OUT_P_HISTORY' USING PigStorage('|');

-- orders, new history

orders = update_history('$IN_O_UPDATES', '$IN_O_HISTORY', '$UP_O_FIELDS',

'$HI_O_FIELDS');

STORE orders INTO '$OUT_O_HISTORY' USING PigStorage('|');

--

--

-- drop expired records

supplier = FILTER supplier BY h_enddate == '$OPEN_REC';

part = FILTER part BY h_enddate == '$OPEN_REC';

orders = FILTER orders BY h_enddate == '$OPEN_REC';

-- data for fact table

lineitem = lOAD '$IN_LINEITEM' USING PigStorage('|') AS (

 l_orderkey,l_partkey,l_suppkey,

 l_linenumber,l_quantity,l_extendedprice,l_discount,l_tax,l_returnflag,

 l_linestatus,l_shipdate,l_commitdate,

l_receiptdate,l_shipinstruct,l_shipmode,l_comment

);

-- dereference supplier and save required keys (drop l_suppkey)

lineitem = JOIN lineitem by l_suppkey LEFT OUTER, supplier by h_key;

lineitem = FOREACH lineitem GENERATE

 l_orderkey,l_partkey,

 hs_name,hs_nationkey,hs_acctbal,supplier::h_startdate,l_linenumber .. l_comment;

-- dereference part and save required keys (drop l_partkey)

lineitem = JOIN lineitem by l_partkey LEFT OUTER, part by h_key;

lineitem = FOREACH lineitem GENERATE

 l_orderkey,

 hp_name,hp_mfgr,hp_brand,hp_type,hp_retailprice,part::h_startdate,hs_name ..

l_comment;

-- dereference orders and save required keys (drop l_orderkey)

A Principled Technologies test report 17

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

lineitem = JOIN lineitem by l_orderkey LEFT OUTER, orders by h_key;

lineitem = FOREACH lineitem GENERATE

 ho_custkey,ho_orderstatus,ho_totalprice,ho_orderdate,orders::h_startdate,hp_name ..

l_comment;

--

--

STORE lineitem INTO '$OUT_FACT' USING PigStorage('|');

uc1_macros.pig

DEFINE update_history(in_updates, in_history, update_fields, history_fields) RETURNS

history {

 -- update tables

 updates = LOAD '$in_updates' USING PigStorage('|') AS (

 u_key, $update_fields, u_comment

);

 -- historical tables

 historical = LOAD '$in_history' USING PigStorage('|') AS (

 h_key, $history_fields, h_comment, h_startdate:chararray,h_enddate:chararray

);

 -- remove expired records from the historical data and save for final table

 SPLIT historical INTO

 in_unexpired IF (h_enddate matches '^$OPEN_REC$'),

 in_expired OTHERWISE;

 -- full join by primary key to determine matches and left/right uniques

 joined = JOIN

 updates by u_key FULL OUTER,

 in_unexpired by h_key;

 SPLIT joined INTO

 new IF h_key IS NULL, -- totally new entry from updates

 old IF u_key IS NULL, -- unmatched historical entry

 matched OTHERWISE; -- match primary key: either redundant or updated entry

 -- format new and old entries for output

 new = FOREACH new GENERATE u_key .. u_comment, '$TODAY_REC', '$OPEN_REC';

 old = FOREACH old GENERATE h_key .. h_enddate;

 -- find updated entries

 SPLIT matched INTO

 updates IF (TOTUPLE($update_fields, u_comment) != TOTUPLE($history_fields,

h_comment)),

 redundant OTHERWISE;

 -- format redundant entries for output

 redundant = FOREACH redundant GENERATE h_key .. h_enddate;

 -- updated entry: expire historical; tag update

 modified = FOREACH updates GENERATE u_key .. u_comment, '$TODAY_REC', '$OPEN_REC';

 expired = FOREACH updates GENERATE h_key .. h_startdate, '$YESTE_REC';

 -- combine the record classes

 $history = UNION in_expired, new, old, redundant, modified, expired;

};

A Principled Technologies test report 18

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Use case 2: Data validation and pre-processing

set pig.maxCombinedSplitSize 1610612736

set pig.exec.mapPartAgg true

-- parameter and constants definitions

-- input and output files

%DECLARE IN_LINEITEM_VENDOR '/UC2/200/Source/lineitem_vendorx.tbl'

%DECLARE IN_SUPPLIER '/UC2/200/Source/supplier.tbl'

%DECLARE OUT_GOOD '/DIY/200/UC2/lineitem_validated'

%DECLARE OUT_BAD '/DIY/200/UC2/lineitem_errors'

-- Option to use replicated JOIN for the supplier name lookup.

-- use it

%DECLARE USE_REP_JOIN 'USING \'REPLICATED\'' ;

-- don’t use it

-- %DECLARE USE_REP_JOIN ' ' ;

-- REGEX to match valid Gregorian dates in the form yyyy-mm-dd for

-- years 0000 to 9999 (as a mathematical concept, not political).

%DECLARE VALID_DATE '^(?:\\\\d{4}-(?:(?:0[1-9]|1[0-2])-(?:0[1-9]|1\\\\d|2[0-8])|(?:0[13-

9]|1[0-2])-(?:29|30)|(?:0[13578]|1[02])-

31)|(?:\\\\d{2}(?:[02468][48]|[13579][26]|[2468]0)|(?:[02468][048]|[13579][26])00)-02-

29)$'

-- header for invalid data error message field and other nerror messages

%DECLARE ERR_MSG_HEAD 'ERROR(S) in LINEITEM source record:'

%DECLARE ORD_ERR ' invalid L_ORDERKEY value;'

%DECLARE PAR_ERR ' invalid L_PARTKEY value;'

%DECLARE SUP_ERR ' invalid L_SUPPKEY value;'

%DECLARE LIN_ERR ' invalid L_LINENUMBER value;'

%DECLARE QUN_ERR ' invalid L_QUANTITY value;'

%DECLARE DIS_ERR ' invalid L_DISCOUNT value;'

%DECLARE TAX_ERR ' invalid L_TAX value;'

%DECLARE RET_ERR ' L_RETURNFLAG must be one of A,N,R;'

%DECLARE LIS_ERR ' L_LINESTATUS must be one of O,F;'

%DECLARE SHI_ERR ' L_SHIPMODE must be one of AIR,FOB,MAIL,RAIL,REG AIR,SHIP,TRUCK;'

%DECLARE NAM_ERR ' supplier lookup failed;'

%DECLARE COD_ERR ' invalid L_COMMITDATE;'

%DECLARE SHD_ERR ' invalid L_SHIPDATE;'

%DECLARE RED_ERR ' invalid L_RECEIPTDATE;'

%DECLARE SRD_ERR ' L_SHIPDATE after L_RECEIPTDATE;'

-- start of the main program

-- data to be validated

lineitem = LOAD '$IN_LINEITEM_VENDOR' USING PigStorage('|') AS (

 l_orderkey:int, l_partkey:int, l_suppkey:int, l_linenumber:int, l_quantity:int,

 l_extendedprice:float, l_discount:float, l_tax:float,

 l_returnflag:chararray, l_linestatus:chararray,

 l_shipdate:chararray, l_commitdate:chararray, l_receiptdate:chararray,

A Principled Technologies test report 19

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

 l_shipinstruct:chararray, l_shipmode:chararray,

 l_comment);

-- lookup table for supplier name and validation

-- only first two columns from supplier

suppnames = LOAD '$IN_SUPPLIER' USING PigStorage('|') AS (

 s_suppkey:int, s_name:chararray);

-- anti join idiom (completed below) for the supplier lookup (i.e., null is if unmatched)

-- We use known cardinality of TPC-H tables (supplier is small; lineitem is

-- huge) to choose JOIN type. For example, when the TPC-H SF is 1000, the entire

-- supplier table is about 1.4GB and 10,000,000 rows. So, we know the supplier table

-- with two fields will fit (partitioned or not) in RAM -- so replicated JOIN

good1 = JOIN lineitem BY l_suppkey LEFT OUTER, suppnames BY s_suppkey $USE_REP_JOIN ;

good2 = FOREACH good1 GENERATE

--

-- start of error message

 CONCAT('$ERR_MSG_HEAD', CONCAT(

 (l_orderkey > 0 ? '' : '$ORD_ERR'), CONCAT(

 (l_partkey > 0 ? '' : '$PAR_ERR'), CONCAT(

 (l_suppkey > 0 ? '' : '$SUP_ERR'), CONCAT(

 (l_linenumber > 0 ? '' : '$LIN_ERR'), CONCAT(

 (l_quantity > 0 ? '' : '$QUN_ERR'), CONCAT(

 ((l_discount >= 0.0F AND l_discount <= 1.0F)

 ? '' : '$DIS_ERR'), CONCAT(

 (l_tax >= 0.0F ? '' : '$TAX_ERR'), CONCAT(

 (l_returnflag IN ('A','N','R')

 ? '' : '$RET_ERR'), CONCAT(

 (l_linestatus IN ('F','O')

 ? '' : '$LIS_ERR'), CONCAT(

 (l_shipmode IN ('AIR','FOB','MAIL','RAIL','REG AIR','SHIP','TRUCK')

 ? '' : '$SHI_ERR'), CONCAT(

 (s_name is NOT NULL ? '' : '$NAM_ERR'), CONCAT(

 (l_commitdate matches '$VALID_DATE'

 ? '' : '$COD_ERR'), CONCAT(

 (l_shipdate matches '$VALID_DATE'

 ? '' : '$SHD_ERR'), CONCAT(

 (l_receiptdate matches '$VALID_DATE'

 ? '' : '$RED_ERR'), -- last CONCAT

 ((l_shipdate matches '$VALID_DATE' AND l_receiptdate matches '$VALID_DATE')

 ? ((DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd')) >= 0)

 ? '' : '$SRD_ERR')

 : '')

))))))))))))))) AS err_message,

-- end of error message

--

 l_orderkey .. l_suppkey, s_name, l_linenumber .. l_shipmode,

--

-- start of shipping time and rating as a TUPLE

 ((l_shipdate matches '$VALID_DATE' AND l_receiptdate matches '$VALID_DATE')

 ? TOTUPLE((int)DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd')),

A Principled Technologies test report 20

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

 (CASE (int)DaysBetween(ToDate(l_receiptdate,'yyyy-MM-

dd'),ToDate(l_shipdate, 'yyyy-MM-dd'))

 WHEN 0 THEN 'A' WHEN 1 THEN 'A' WHEN 2 THEN 'A'

WHEN 3 THEN 'A'

 WHEN 4 THEN 'B' WHEN 5 THEN 'B' WHEN 6 THEN 'B'

WHEN 7 THEN 'B'

 WHEN 8 THEN 'C' WHEN 9 THEN 'C' WHEN 10 THEN 'C'

WHEN 11 THEN 'C' WHEN 12 THEN 'C' WHEN 13 THEN 'C'

 ELSE 'D' END))

 : TOTUPLE(999, 'Z')) AS t1:tuple(shippingtime_days:int,

shipping_ratingi:chararray),

-- end of shipping time and rating as a TUPLE

--

 l_comment;

SPLIT good2 INTO

 good IF ENDSWITH(err_message, ':'),

 bad OTHERWISE;

good = FOREACH good GENERATE l_orderkey .. l_shipmode, FLATTEN(t1), l_comment;

bad = FOREACH bad GENERATE err_message .. l_suppkey, l_linenumber .. l_shipmode,

l_comment;

STORE good into '$OUT_GOOD' USING PigStorage('|');

STORE bad into '$OUT_BAD' USING PigStorage('|');

A Principled Technologies test report 21

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

Use case 3: Vendor mainframe file integration

set pig.maxCombinedSplitSize 2147483648

set pig.exec.mapPartAgg true

-- uc3

-- djs, 13 july 2015

-- parameters and constants

-- input and output files

%DECLARE IN_ORDERITEM '/UC3/200/Source/ORDRITEM'

%DECLARE OUT_ORDERS '/DIY/200/UC3/orders'

%DECLARE OUT_LINEITEM '/DIY/200/UC3/lineitem'

-- job parameterrs

-- set the property for fixed-lengthed records; unsure which it is

set mapreduce.input.fixedlengthinputformat.record.length 178;

set mapreduce.lib.input.fixedlengthinputformat.record.length 178;

set fixedlengthinputformat.record.length 178;

-- UDF loader: fixed-length reads and ebscdic decoing

register myudfs.jar;

-- this UDF loader reads fixed-length records (178 bytes), and performs

-- EBCDIC conversion on the string and formats the fields, using the fixed

-- copybook format for this table. A loader that works for

-- general-purpose copybooks is out of scope, but could be done with the

-- Jrecord classes.

cobol = LOAD '$IN_ORDERITEM' USING myudfs.SimpleFixedLengthLoader;

SPLIT cobol INTO

 orders if (chararray)$0 == 'O',

 lineitem if (chararray)$0 == 'L';

-- remove record-type field

orders = FOREACH orders GENERATE $1 .. ;

lineitem = FOREACH lineitem GENERATE $1 .. ;

store orders into '$OUT_ORDERS' USING PigStorage('|');

store lineitem into '$OUT_LINEITEM' USING PigStorage('|');

SimpleFixedLengthLoader.java

package myudfs;

/* compile with, for example,

 CP=/opt/cloudera/parcels/CDH-5.4.3-1.cdh5.4.3.p0.6/lib/pig/pig-0.12.0-cdh5.4.3.jar

 export PATH=$PATH:/usr/java/jdk1.7.0_67-cloudera/bin

A Principled Technologies test report 22

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

 export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera

 javac -cp $CP SimpleFixedLengthLoader.java

*/

import java.io.IOException;

import java.util.List;

import java.util.ArrayList;

import java.util.Arrays;

import org.apache.hadoop.mapreduce.InputFormat;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.FixedLengthInputFormat;

import org.apache.hadoop.io.BytesWritable;

import org.apache.pig.FileInputLoadFunc;

import org.apache.pig.LoadFunc;

import org.apache.pig.PigException;

import org.apache.pig.backend.executionengine.ExecException;

import org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigSplit;

import org.apache.pig.data.DataByteArray;

import org.apache.pig.data.Tuple;

import org.apache.pig.data.TupleFactory;

import org.apache.hadoop.classification.InterfaceAudience;

public class SimpleFixedLengthLoader extends LoadFunc {

 protected RecordReader in = null;

 private ArrayList<Object> mTuple = null;

 private TupleFactory mTupleFactory = TupleFactory.getInstance();

 public SimpleFixedLengthLoader() {

 }

 @Override

 public Tuple getNext()

 throws IOException {

 mTuple = new ArrayList<Object>();

 try {

 if (!in.nextKeyValue()) {

 return null;

 }

 BytesWritable val = (BytesWritable) in.getCurrentValue();

 byte[] buf = val.getBytes();

 String str = new String(buf, 0, 178, "Cp037");

 addTupleValue(mTuple, doSingle(str, 0)); // record type

 switch (str.charAt(0)) {

 case 'O':

 addTupleValue(mTuple, cleanL(str, 1, 13)); // orderkey

 addTupleValue(mTuple, cleanL(str, 13, 25)); // custkey

 addTupleValue(mTuple, doSingle(str, 25)); // orderstatus

 addTupleValue(mTuple, unpackBCD(buf, 26, 34)); // totalprice

 addTupleValue(mTuple, doDate(str, 34)); // orderdate

 addTupleValue(mTuple, cleanR(str, 42, 57)); // orderpriority

 addTupleValue(mTuple, cleanR(str, 57, 72)); // clerk

 addTupleValue(mTuple, doSingle(str, 72)); // shippriority

 addTupleValue(mTuple, cleanR(str, 73, 152)); // comment

A Principled Technologies test report 23

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

 break;

 case 'L':

 addTupleValue(mTuple, cleanL(str, 1, 13)); // orderkey

 addTupleValue(mTuple, cleanL(str, 13, 25)); // partkey

 addTupleValue(mTuple, cleanL(str, 25, 37)); // suppkey

 addTupleValue(mTuple, cleanL(str, 37, 41)); // linenumber

 addTupleValue(mTuple, unpackBCD(buf, 41, 49)); // quantity

 addTupleValue(mTuple, unpackBCD(buf, 49, 57)); // extendedprice

 addTupleValue(mTuple, unpackBCD(buf, 57, 65)); // discount

 addTupleValue(mTuple, unpackBCD(buf, 65, 73)); // tax

 addTupleValue(mTuple, doSingle(str, 73)); // returnflag

 addTupleValue(mTuple, doSingle(str, 74)); // linestatus

 addTupleValue(mTuple, doDate(str,75)); // shipdate

 addTupleValue(mTuple, doDate(str,83)); // commitdate

 addTupleValue(mTuple, doDate(str,91)); // receiptdate

 addTupleValue(mTuple, cleanR(str, 99, 124)); // shipinstruct

 addTupleValue(mTuple, cleanR(str,124, 134)); // shipmode

 addTupleValue(mTuple, cleanR(str,134, 178)); // comment

 break;

 default:

 String unr = "Error: unknown record type";

 addTupleValue(mTuple, unr); // error message

 break;

 }

 Tuple tt = mTupleFactory.newTupleNoCopy(mTuple);

 return tt;

 } catch (InterruptedException e) {

 int errCode = 6018;

 String errMsg = "Error while reading input";

 throw new ExecException(errMsg, errCode,

 PigException.REMOTE_ENVIRONMENT, e);

 }

 }

 private String unpackBCD(byte[] buf, int start, int end) {

 StringBuffer sb = new StringBuffer();

 byte bcd, high, low;

 for (int i = start; i < end-1; i++) {

 bcd = buf[i];

 high = (byte) (bcd & 0xf0);

 high >>>= (byte) 4;

 high = (byte) (high & 0x0f);

 low = (byte) (bcd & 0x0f);

 sb.append(high);

 sb.append(low);

}

 bcd = buf[end-1];

 high = (byte) (bcd & 0xf0);

 high >>>= (byte) 4;

 high = (byte) (high & 0x0f);

 low = (byte) (bcd & 0x0f);

 sb.append(high);

// add decimal -- no check for length

 sb.insert(sb.length()-2, '.');

A Principled Technologies test report 24

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

// add sign

 if (low == 0x0d) sb.insert(0, '-');

 return (sb.toString()).replaceFirst("^(-?)0+(?!\\.)","$1");

 }

 private String doSingle(String str, int start) {

 return str.substring(start, start+1);

 }

 private String cleanR(String str, int start, int end) {

 return str.substring(start, end).replaceFirst("\\s+$", "");

 }

 private String cleanL(String str, int start, int end) {

 return str.substring(start, end).replaceFirst("^0+(?!$)", "");

 }

 private String doDate(String str, int start) {

 return str.substring(start,start+4) + '-' + str.substring(start+4,start+6) +

'-' + str.substring(start+6,start+8);

 }

 private void addTupleValue(ArrayList<Object> tuple, String buf) {

 tuple.add(new DataByteArray(buf));

 }

 @Override

 public InputFormat getInputFormat() {

 return new FixedLengthInputFormat();

 }

 @Override

 public void prepareToRead(RecordReader reader, PigSplit split) {

 in = reader;

 }

 @Override

 public void setLocation(String location, Job job)

 throws IOException {

 FileInputFormat.setInputPaths(job, location);

 }

}

A Principled Technologies test report 25

Performance advantages of Hadoop ETL offload with the Intel
processor-powered Dell | Cloudera | Syncsort solution

ABOUT PRINCIPLED TECHNOLOGIES

Principled Technologies, Inc.
1007 Slater Road, Suite 300
Durham, NC, 27703
www.principledtechnologies.com

We provide industry-leading technology assessment and fact-based
marketing services. We bring to every assignment extensive experience
with and expertise in all aspects of technology testing and analysis, from
researching new technologies, to developing new methodologies, to
testing with existing and new tools.

When the assessment is complete, we know how to present the results to
a broad range of target audiences. We provide our clients with the
materials they need, from market-focused data to use in their own
collateral to custom sales aids, such as test reports, performance
assessments, and white papers. Every document reflects the results of
our trusted independent analysis.

We provide customized services that focus on our clients’ individual
requirements. Whether the technology involves hardware, software,
websites, or services, we offer the experience, expertise, and tools to
help our clients assess how it will fare against its competition, its
performance, its market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked
together in technology assessment for over 20 years. As journalists, they
published over a thousand articles on a wide array of technology subjects.
They created and led the Ziff-Davis Benchmark Operation, which
developed such industry-standard benchmarks as Ziff Davis Media’s
Winstone and WebBench. They founded and led eTesting Labs, and after
the acquisition of that company by Lionbridge Technologies were the
head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:
PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER,
PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND
ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE.
ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED
TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR
DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES,
INC.’S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S
TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.

http://www.principledtechnologies.com

