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Overview 

This paper is intended to provide an overview of the Dell In-Memory Appliance for Cloudera Enterprise 

with Spark support. This paper is intended for Hadoop users and customers looking for a better 

understanding of the Dell In-Memory Appliance, built on Cloudera Enterprise with Spark, as well as an 

outline of the use cases.    

The paper will cover a high-level technology overview of Spark and streaming workload use cases. 

This paper is not a solution sizing document or deployment guide for the Dell In-Memory Appliance 

for Cloudera Enterprise. 

Customers with interest in deploying a proof of concept (POC) can utilize the Dell Solution Centers. 

The Dell Solution Centers are a global network of connected labs that enable Dell customers to 

architect, validate and build solutions. Customers may contact their account team to have them 

submit a request to take advantage of these free services.     
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Executive Summary  

Data is the new currency and competitive differentiator, data is being created and consumed at rates 

never before seen.  This is not unique to a single industry; it will affect all vertical markets. Customers 

are struggling to ingest, store, analyze, and build insights from all this data. As more connected devices 

and machines with embedded sensors proliferate throughout the world, this will create even greater 

challenges for customers. This new type of  streaming data is causing  customer’s needs to  change 

based on new use cases and the need to analyze data in as fast and as efficient a manner as possible, 

and within a short window of time, and on a continuous basis.  

Customers are evolving, they want to ingest and analyze data in a short window of time. Hadoop 

traditionally uses MapReduce as the processing framework; MapReduce is batch processing. Running 

batch jobs can take minutes or hours to complete. Batch processing was suitable for the types of data 

customers were analyzing, yet with the proliferation of connected devices, sensors and smarter, 

connected devices this has changed. Customers need to speed up their processing based on these 

new live streams of data that require a new modern manner of processing. 

Customers need a processing engine to be more efficient and have the ability to process data in 

seconds.  Spark is an alternative to the traditional batch MapReduce model and Spark can be used for 

streaming data processing and fast interactive queries that finish within seconds. 

Additionally, data analysis is a complex process made up of many steps and various tools that allow 

users to handle different types of analysis. In order to accomplish the work they need to complete, 

businesses build a workflow comprised of many tools that slow down productivity because the users 

must provide the translation necessary to give context to each different tool. These extra steps 

dramatically affect productivity, as well as the speed to deliver the results a business needs in order to 

make immediate, proactive decisions.   

Dell, together with Cloudera and Intel, want to help customers solve this problem with a turnkey, 

purpose built in-memory advanced analytics data platform. The Dell In-Memory Appliance for 

Cloudera Enterprise represents a unique collaboration of partners within the big data ecosystem. 

Together Dell, Cloudera and Intel deliver both the platform and the software to help enterprises 

capitalize on high-performance data analysis by leveraging the Cloudera Enterprise in-memory 

features (Spark) for interactive analytics and multiple types of workloads. Cloudera Enterprise also 

features Impala for fast query and Cloudera Search for interactive search. The result – one tool for 

both processing and analyzing streaming workloads – this simplifies the customer workflow. This one 

tool reduces the amount of time spent writing code to help translate workflow the between different 

tools. 

Apache Spark 
The Apache Spark project is a fast and general engine for large-scale data processing and interactive 

analysis. Spark was created out of the Berkley AMP Lab and is focused around speed, ease of use, and 

sophisticated analytics. The Berkley AMP Lab Team had three goals for Spark: 1. Speed: Build an Open 

Source processing engine with speed, 2. Easy: Make Spark easy to use - write applications faster, and 
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Integrate analytics giving user’s one tool for data processing and analysis. 3. Generality: Combine SQL, 

streaming, and complex analytics. As a result, Spark allows users to do in-memory computing resulting 

in programs running up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk. 

Spark powers a stack of high-level tools including Spark SQL, MLlib for machine learning, GraphX, and 

Spark Streaming. You can combine these frameworks seamlessly in the same application. 

Spark runs in Hadoop clusters through Hadoop YARN or Spark's standalone mode, and it can process 

data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both 

general data processing (similar to MapReduce) and new workloads like streaming, interactive queries, 

and machine learning. Spark supports Scala, Java and Python programming languages. 

Spark can process data efficiently using Spark Streaming. Many applications need the ability to process 

and analyze not only batch data, but also streams of new data in a short window of time. Running on 

top of Spark, Spark Streaming enables powerful interactive and analytical applications across both 

streaming and historical data, while inheriting Spark’s ease of use and fault tolerance characteristics. It 

readily integrates with a wide variety of popular data sources, including HDFS, Flume, Kafka, and 

Twitter.  

Spark enables a user to cache a data set, or an intermediate result, in the memory across cluster 

nodes, performing iterative computations faster than with Hadoop MapReduce and allowing for 

interactive analysis. Spark’s application programming interfaces (APIs) also allow a user to express 

distributed computations—not only map and reduce but also filtering for subsets of data, joining 

multiple data sets together and more—all as operations over Resilient Distributed Datasets (RDDs), and 

all with less code to write. This abstraction enables simpler, more concise implementations and 

performance improvements, especially for complex sequences of operations. Other scripting 

languages and abstractions simplify MapReduce jobs (e.g., Pig and Cascading) but are built on the 

Hadoop MapReduce engine and thus lack the advantages of in-memory data sharing. Another 

advantage of Spark’s APIs, in particular the Python API, is compatibility with existing libraries for 

scientific computing and visualization. 

RDDs are built with fault tolerance; RDDs can automatically recover from failures. Individual RDDs 

track transformations used to build a lineage graph. The lineage graph is used to rerun in failed 

operations and to reconstruct any lost partitions.  As a result there won’t be a need to replicate data, 

saving time that would have been spent writing data over the network.  Additionally, if a piece of data 

is lost from a partition because of node failure in the cluster, Spark will automatically start rebuilding by 

applying a filter to the corresponding block on that HDFS file.   

Spark Technologies 

Resilient Distributed Datasets (RDD) 

RDD technology is a core piece of the Spark architecture.  

Let’s begin with background on how MapReduce works as this will help in the understanding of RDDs. 
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MapReduce is a computing model that divides a large computation into two steps: a ‘map’ step, in 

which data are partitioned and analyzed in parallel, and a ‘reduce’ step, where intermediate results are 

combined or summarized. During each step, data must be loaded from disk for each operation, which 

can slow iterative computations (including many machine-learning algorithms), and makes interactive, 

exploratory analysis difficult. 

Spark extends and generalizes the MapReduce model, by introducing a concept called a resilient 

distributed data set (RDD) creating a memory caching layer. A user can cache a data set, or an 

intermediate result, in the memory across cluster nodes. RDDs are efficient for applications that reuse 

intermediate results across multiple computations. For example, data reuse is common in many 

iterative machine learning and graph algorithms, including PageRank, K-means clustering, and logistic 

regression. Another compelling use case is interactive data mining, where a user runs multiple adhoc 

queries on the same subset of the data. 

Figure 3 provides an example in how jobs are executed in MapReduce versus Spark. 

A. MapReduce jobs-after reduce phase, the result is written to disk, if the result needs be re-used 

it must be pulled up from disk, very inefficient for certain use cases. 

B. Pipelined MapReduce Jobs (Multiple MapReduce Jobs Pipelined Together)- each job is 

unaware of  other jobs resulting in un-optimized jobs since it has to pull data from disk for 

every job in the pipeline. This causes unnecessary data replication misusing  network 

resources.  

C. Spark Jobs- multiple operations in a single job, data is cached in-memory via higher level 

operations provided by the Spark API.  

Figure 3: MapReduce and Spark Processing  
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Spark API 

Spark exposes RDDs through a language-integrated API, where each dataset is represented as an 

object and transformations are invoked using various methods on these objects. Spark lets users 

quickly write applications in Java, Scala, or Python. It comes with a built-in set of over 80 high-level 

operators that allow users to interactively query data within the Scala or Python shell. Users create 

RDDs by applying operations called transformations (these transformations include  map, filter, and 

groupBy), to data in a stable storage system, such as the Hadoop Distributed File System (HDFS). The 

high level Spark API and built-in operations allow users to write code more efficiently and with fewer 

lines of code.   

There are two types of operations: transformations, which define a new dataset based on previous 

ones, and actions, which kick off a job to execute on a cluster. Programmers start by defining one or 

more RDDs through transformations on data from HDFS. Users can then use these RDDs in actions, 

which are operations that return a value to the application or export data to HDFS. Spark computes 

RDDs lazily the first time they are used in an action, so that it can pipeline transformations. 

Figure 4 provides an example of how Spark computes job stages. Boxes with solid outlines are RDDs. 

Partitions are shaded rectangles, in black if they are already in memory. To run an action on RDD G, 

we build stages at wide dependencies and pipeline narrow transformations inside each stage. In this 

case, stage one’s output RDD is already in RAM, so we run stage two and then three. 

Stage one: an RDD-A is created in-memory to process a groupBy transformation resulting in RDD-B 

which is persisted in memory.  

Stage two: a new RDD-C is created in-memory to process a map transformation resulting in a new 

RDD-D then pipelining an additional filter transformation that results in a new RDD-E. 

Stage three calls for the result of stage 2, RDD-E to be joined with the result in stage one RDD-B, then 

joins the results in RDD-F.  

This leads to fast execution of the job because each stage automatically pipelines the next function to 

the next stage and avoids having to go to disk because of in-memory data locality.     

Figure 4:   Example of How Spark Computes Job 

Stages  
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Table 2: Transformations and actions available on RDDs in Spark 
 
Transformations map- Return a new distributed dataset formed by passing 

each element of the source through a function func 

Filter- Return a new dataset formed by selecting those 

elements of the source on which func returns true. 

flatMap- Similar to map, but each input item can be mapped 

to 0 or more output items (so func should return a Seq rather 

than a single item) 

sample- Sample a fraction of the data, with or without 

replacement, using a given random number generator seed 

groupByKey- When called on a dataset of (K, V) pairs, returns a 

dataset of (K, Seq[V]) pairs 

reduceByKey- When called on a dataset of (K, V) pairs, returns 

a dataset of (K, V) pairs where the values for each key are 

aggregated using the given reduce function 

union- Return a new dataset that contains the union of the 

elements in the source dataset and the argument 

join- When called on datasets of type (K, V) and (K, W), returns 

a dataset of (K, (V, W)) pairs with all pairs of elements for each 

key 

cogroup- When called on datasets of type (K, V) and (K, W), 

returns a dataset of (K, Seq[V], Seq[W]) tuples. 

sortByKey- When called on a dataset of (K, V) pairs where K 

implements Ordered, returns a dataset of (K, V) pairs sorted by 

keys in ascending or descending order, as specified in the 

 oolean ascending argument 

Actions count- Return the number of elements in the dataset 

collect- Return all the elements of the dataset as an array at 

the driver program 

reduce- Aggregate the elements of the dataset using a 

function func (which takes two arguments and returns one) 

first- Return the first element of the dataset  

takeSample- Return an array with a random sample of num 

elements of the dataset, with or without replacement, using 

the given random number generator seed 

saveAsTextFile- Write the elements of the dataset as a text file 

(or set of text files) in a given directory in the local filesystem, 

HDFS or any other Hadoop-supported file system. Spark will 

call toString on each element to convert it to a line of text in 
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the file 

saveAsSequenceFile- Write the elements of the dataset as a 

Hadoop SequenceFile in a given path in the local filesystem, 

HDFS or any other Hadoop-supported file system 

countByKey- Only available on RDDs of type (K, V). Returns a 

`Map` of (K, Int) pairs with the count of each key 

foreach- Run a function func on each element of the dataset. 

This is usually done for side effects such as updating an 

accumulator variable (see below) or interacting with external 

storage systems 

 

Spark Analytics 

Spark provides a unique solution for customers because it provides not only an in-memory processing 

engine but, is also integrated with tools for different types of analysis. 

Spark Streaming provides the ability to process and analyze not only batch data, but also streams of 

new data. It processes and analyzes that data interactively and on a continuous basis. Running on top 

of Spark, Spark Streaming enables powerful interactive and analytical applications across both 

streaming and historical data, while inheriting Spark’s ease of use and fault tolerance characteristics. It 

readily integrates with a wide variety of popular data sources, including HDFS, Flume, Kafka, and 

Twitter. 

Machine Learning: MLlib built on top of Spark, MLlib is a scalable machine learning library that delivers 

both high-quality algorithms and speed. The library is usable in Java, Scala, and Python as part of Spark 

applications, that way you can include it in the complete workflow. 

Graph Processing: GraphX extends the distributed fault-tolerant collections, API and interactive 

console, of Spark with a new graph API which leverages recent advances in graph systems enabling 

users to easily and interactively build, transform, and reason graph structured data at scale. 

The Spark interactive shell via Scala or Python, allows users the ability to quickly interact with data 

without having to write an application.  

Dell In-Memory Appliance for Cloudera Enterprise Use Cases 
The Dell In-Memory Appliance for Cloudera Enterprise provides a single platform for data processing 

and interactive analysis of streaming data.  Spark makes business sense when customers have a need 

to analyze data interactively, and when the data set requires different types of analysis like interactive, 

iterative, graph, or streaming analysis. Typically the data sets are large and comprised of structured, 

semi-structured, and unstructured data. In addition the data streams into a customer environment on 

a continuous basis and needs to be analyzed in a small window of time in order to gain insights from 

the data. 
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Spark processing excels on workloads that require iterative computation or on complex pipelined jobs. 

The benefits of Spark are realized on iterative computation workloads because of in-memory 

processing combined with RDDs that allow intermediate results to be cached in-memory without 

having to go to disk.  Machine Learning is an example of iterative computation; an algorithm is run 

iteratively across multiple computations over the same dataset. A prime use case is clustering, it takes 

items in a particular class and organizes them into naturally occurring groups, the items are bundled 

into the same group because of similarity, and this is beneficial for statistical analysis.    

The benefits of Spark are recognized on complex pipelined jobs because of in-memory processing, 

combined with the high level Spark API, that write Spark jobs in multiple stages. Because each stage is 

aware of the next, the previous stage pipelines the next function while continuing in-memory thus 

leading to a faster execution of the job. Next, Spark is a fit for interactive data mining, in this workload 

multiple ad hoc queries are run over the same dataset. 

The Dell In-Memory Appliance for Cloudera Enterprise also features Impala and Cloudera Search. 

Impala is a massively parallel processing (MPP) SQL query engine that runs natively in Apache Hadoop, 

enabling users to directly query data stored in HDFS and Apache HBase. This allows users to be able to 

quickly interact with the data, saving the user time and effort. This is very useful for analysis that 

requires fast query capabilities on large data sets.  Cloudera Search allows users to do interactive 

search and navigated drill-down to help find relevant data across large, disparate data stores with 

mixed formats and structures. Users can discover the “shape of data” quickly and easily and expedite 

data modeling and result exploration 

The next section will provide more specific use case examples with greater detail around the end-to- 

end solution. Each use case represents a hypothetical architecture with options for multiple 

ecosystem tools to build the solution – specific customer environments might require different 

technologies.  

Use Cases 

Streaming Log Aggregation and Analysis for Machine Logs allow customers to continually ingest log 

data from different data sources to process and analyze the data in a short window of time to provide  

proactive insights for faster decision making.  

Customers can gain an understanding of all transactions in their environment by analyzing log data. 

Log data is valuable because it provides a definitive record of all user transactions, including customer 

behavior, sensor activity, machine behavior, security threats, or fraudulent activity. 

In this example, infrastructure/operations management, users see how to proactively monitor IT to 

ensure uptime by rapidly pinpointing and resolving problems. The goal is to identify infrastructure 

relationships, establish baselines,  and do predicative analysis by utilizing the Dell In-Memory 

Appliance for Cloudera Enterprise. 

In this use case example, the customer is streaming in-machine logs from client, server, and network 

switches to process and analyze the logs to help predict system failure before it happens. The result, 

help limit exposure due to system downtime. 
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Data Sources: 

Logs are created from client, server, and network switches. These logs are sent over the network to a 

data collection tool, examples- Kafka, Scribe, Fluent, Flume, Storm and Syslog.  

Data Collection: 

The data collection tool provides a messaging system that allows data to be collected and distributed 

into the in-memory spark appliance for data processing and analysis.  

Steam Processing & Analytics: 

The Dell In-Memory Appliance for Cloudera Enterprise consumes the message data from the data 

collection tool. The in-memory appliance communicates with the data collection tool by either 

receiving or pulling data.  The data is written to the Hadoop distributed file system for storage once 

the data is ready to be analyzed via spark streaming where it is put into memory for processing and 

analysis 

During the analysis phase, data is transformed, joined, aggregated, and processed via algorithms based 

on a model created by data scientists and then written in scala or python by software developers. 

Customers can use Impala for fast query, use Spark GraphX for graph processing analysis, use Spark 

MLlib to build machine learning algorithms, and use the Spark interactive shell for fast data access. 

Figure 5 provides a high level architectural view of the solution as it breaks down by data source, data 

collection, streaming processing and analytics and it shows the different tools available for analysis & 

query. 

Figure 5:   Streaming Log Aggregation and Analysis of Machine Logs  
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Use Case: 

Time series data on smart utility meters provides customers with points-in-time occurrences of an 

event as it happens. By analyzing event data, customers can identify trends that will allow users to 

better forecast future events. Time series data provides point-in-time event data as the events occur. 

Time series data is used to understand what is happening at a given point time and then is analyzed to 

look for trends to help predict future events. Smart utility meters with embedded sensors will send 

data to central points for data ingestion. The time series data is usually compromised of a time stamp, 

object ID, and event ID. The time series data can be collected by the second, minute, hour, or over 

days. 

In this use case a utility company is collecting time series data from smart utility meters with 

embedded sensors. The utility company collects the time series data on an hourly basis. The utility 

company wants to collect time series data that includes a time stamp, event- electrical usage, and 

meter ID #.  The utility company will analyze that data to compare utility usage on an hourly basis by 

street, block, neighborhood, city, district, and grid location. The utility company will look for trends 

and patterns to help them predict future events like spikes in power consumption and/or potential 

failures. 

Data Sources:   

Data sources include smart meters attached to houses and business offices where embedded sensors 

send time series data to a central data center for processing and analysis. 

Data Ingest: The time series data is sent over the network to a central data center where the data is 

typically written to a RMDBs/EDW or NoSQL DB (there are other options available, too), data can also 

be sent to a message system like Kafka or storm. From here the data is parsed and sent to the Spark 

appliance for processing and analysis. The data can be sent over to the appliance throughout the day 

in intervals of seconds, minutes, hours or days.  

Stream Processing Analytics: The Dell In-Memory Appliance consumes the data for processing and 

analysis. The in-memory appliance communicates with the data ingest tool by either receiving or 

pulling data.  The data is written to both a Hadoop distributed file system for storage and to memory 

to be analyzed via Spark streaming processing, to Spark Graphx for graph processing, or MLlib for 

machine learning analysis. 

Figure 6 provides a high level architectural view of the solution broken down by data source, data 

ingest, streaming processing, and analytics, it then shows the different tools for analysis. 
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Figure 6:   Time Series Data on Smart Utility Meters 

 

Complex Extract, Transform, Load (ETL) jobs is the process by which raw data is migrated from data 

sources, transformed into a consumable and normalized format, then loaded into a target system for 

performing advanced analytics, analysis, and reporting. 

In this use case, different data is sent to the Spark appliance where the data is transformed so that it 

can be processed and analyzed. The ETL jobs occur on a continuous basis as data changes in the 

different data sources. The data from different databases throughout the organization in different 

areas like – finance, procurement, operations, and sales – can be transformed or joined to help 

normalize the data for analysis. The goal is to join, group, and merge all of this data so that it can be 

analyzed for trends, relationships and patterns that can lead  to valuable insights.    

Data Sources: 

Data is stored in various databases across a customer environment and typically in different database 

technologies. These databases contain valuable data around customer transactions, financial 

reporting, product research, procurement data, customer data. The ETL process can take place in a 

dedicated RMDB or EDW, yet those systems are very expensive, they don’t scale well, and they eat up 

precious resources needed for other database functions. 

Processing & Analytics: 

In this use case the Spark appliance would transform the data and then analyze/query the data with 

Impala and Spark Interactive Shell. The transform operations occur in memory. Spark API provide the 

capability to write complex ETL jobs with multiple stages and operations in a single job.  This allows for 

faster and more efficient processing because the RDDs are persisted in-memory, after each 

operation/stage the results become a new cached partition in-memory allowing the operations to 

continue into stage two, three, and so on. This leads to fast execution of the job because each stage 

automatically pipelines the next function and to the next stage without having to go to disk.     
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Figure 7 provides a high level architectural view of the solution broken down by data source, data and 

processing, and analytics and includes the different tools available for analysis & query. 

Figure 7:   Time Series Data on Smart Utility Meters 

 

Summary 

To simplify the customer workflow, Dell, together with Cloudera and Intel, have collaborated to deliver 

this turnkey, purpose built in-memory advanced analytics data platform, the Dell In-Memory Appliance 

for Cloudera Enterprise. This one tool, reduces the amount of time spent writing code to help translate 

workflow between different tools and provides a solution that delivers quick answers to interactive 

queries for faster time to value.  

For additional information contact us at: Hadoop@Dell.com. 
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