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Executive Summary  

Because of the significant cost reduction in Next Generation Sequencing (NGS), the usage of this technique has become 

widespread from both an academia and an industry standpoint. The cost of NGS data analysis has become directly 

proportional to the size of the NGS data. Therefore, there is high demand for a plug-and-play solution incorporating 

massive compute, storage, and networking capabilities to handle this data more cost-effectively.  

In August 2013, Dell HPC system for genomics v1.01 was introduced to tackle this and many other challenges1 faced by 

the lifesciences community. Since then, there have been several improvements to the technology and the software 

which comprised the solution. A few of them are: the introduction of 13th generation servers of Dell which include the 

latest Intel E5-2600 v3 (code name: Haswell) processors, updated server portfolio, improved memory, and storage 

subsystem performance.  HPC system for genomics v1.0 was capable of processing 37 genomes per day as measured 

in our benchmarking. HPC system for genomics v2.0 is aimed at answering the following question: At the pace at which 

requirements for NGS analysis in terms of compute/storage/networking are growing, will the technological advances 

deliver the required performance? 

This whitepaper describes the architectural changes and updates to the follow-on of HPC system for genomics v1.0, 

the v2.0. It explains the new features, demonstrates the benefits, and shows the improved performance.  HPC system 

for genomics v2.0 is capable of processing up to 163 genomes per day while consuming 2 Kilowatt-hour (kWh) per 

genome. That is an almost 4.5x improvement from HPC system for genomics v1.0.  

We are very thankful to Dr. Brad Chapman from the Harvard School of Public health for his valuable time and expertise 

in helping us run the whole genome analysis.  

Audience 
This document is intended for organizations interested in accelerating genomic research with advanced computing and 

data management solutions. System administrators, solution architects, and others within those organizations 

consititute the target audience.  
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1 Introduction 
Next generation sequencing (NGS) has been adopted as a standard method in the life sciences domain. 

Thanks to the low costs of sequencing, less than $2,300 per genome today2, there is an explosion of 

sequencing data requiring complex bioinformatics analysis. State-of-the-art, high performance computing 

solutions are essential to analyze this data for meaningful results, while keeping up with the speed of data 

generated. Along with being reliable (system uptime) and easy to maintain, these solutions must provide 

high throughput processing. However, deploying the required resources, compute and storage 

infrastructure is not a simple and straightforward procedure.  

HPC genomics system of Dell was introduced as a solution to these challenges faced by the contemporary 

life sciences industry. Some of these challenges are listed here. It was designed to be a plug-and-play 

turnkey solution so that researchers could spend more time working on matters in their domain rather than 

concerning themselves with the computer science aspect of getting the system to function, which deals 

with cluster deployment and maintenance.  

 Advancements in low-cost genome sequencing2 

o  This resulted in a meteoric rise in the volume of data generated, and with it, rose the 

compute and storage infrastructure required to effectively analyze genomic data. 

 Data explosion 

o The size of each genome sample can range from a tens of gigabytes to the order of 

terabytes. The challenge is in accessing, managing, migrating, and archiving data of this 

magnitude. 

 Compute requirements 

o The increase in complexity and advancements to the pipelines (set of applications) used to 

process this genomic data has been immense. The requirement in a clinical setting is to 

drastically reduce the time to insight. This lead to a need for a faster compute infrastructure. 

 Managing the Infrastructure 

o Deploying and managing these compute, network, and storage components is challenging 

without the proper know-how. Cloud computing solutions are starting to catch up, but are 

not yet able to handle the confidentiality and privacy concerns because of the personal 

nature of human genomic data. 

After the success of the first iteration of HPC genomics system (August 2013), the solution was updated to 

include the latest advances in the high performance computing industry. HPC genomics system v1.6 moved 

the compute component from Intel’s E5-2400 (Sandy Bridge EN) processor to Intel’s E5-2400 v2 (Ivy Bridge) 

processor. It also incorporated several memory and storage subsystem updates. HPC genomics system v2 

is the most recent version of this class of genomic data processing solutions. Further sections in this 

technical white paper describe the architecture, the updates, and performance characterization of the 

solution HPC genomics system v2.0.  

Note: Coverage of detailed genomic analysis is outside the scope of this document. 
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1.1 The Solution 
HPC genomics system v2.0, similar to its predecessor, is a pre-integrated, tested, tuned, and purpose-built 

platform, leveraging the most relevant of Dell’s High Performance Computing line of products and best-in-

class partner products3. It encompasses all the hardware resources requied for genome analysis while 

providing an optimal balance of compute density, energy efficiency, and performance from Enterprise server 

line-up of Dell.  

Figure 1 provides an insight into the updated solution with all its components. A detailed account of all the 

changes to HPC genomics system v2 from HPC genomics system v1 are listed in section 2.1. HPC genomics 

system v2.0 provides a 480 TB Intel Enterprise Edition Lustre® file system (IEEL0), which acts as the fast 

scratch space for the solution; and, 240 TB of Network File System (NSS2.2.2.1) accessible storage, which acts 

as primary storage for user or home directories and application data. The data from next generation 

sequencing instruments can be moved into the Lustre file system for processing via the Common Internet 

File System (CIFS) gateway. The solution comprises of 40 x Dell PowerEdge FC430 quarter width sleds (1120 

cores with a theoretical peak performance of 34 TFLOPS in 10U) representing best-in-class 

performance/Watt and performance/U rating. These constitute the compute platform for the solution. After 

these FC430 sleds process the data from the NGS, results can be moved from the scratch space to the 

primary storage for analysis. Also, the solution includes a Dell PowerEdge R930 with 1.5 TB of memory for 

customers performing genomic assemblies. All these features make this infrastructure capable of handling 

the compute and storage requirements of genome analysis workflows.  

The software components used in the solution are Bright Cluster Manager (BCM)2.2.4.1 and Biobuilds from 

Lab72.2.4.2. BCM is used to deploy, manage, and maintain the solution’s head nodes, login nodes, and 

compute infrastructure. Biobuilds is a collection of opensource bio informatics tools prebuilt for Linux on 

x86 which is primarily maintained by Lab7. 

The above description is of a fully loaded configuration. Some of these components are optional or can be 

tailored to meet individual customers’ requirements. More details of which components can be deleted 

down are in Table 3. In Figure 1: 

 MDS: metadata servers 

 MDT: metadata targets 

 OSS: object storage servers 

 OST: object storage targets 
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Figure 1 HPC genomics system v2 

Note: The PowerEdge FC430 sleds have IB connectivity out the front. The Mellanox InfiniBand switches face the cold isle and have 

their airflow configured from ports to PSU. 
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2 Solution Overview 
This section describes the architectural changes in v2.0 of the solution from the previous version. It 

describes the various components used and the rationale for the components’ selection that make them 

optimal for a solution targeted towards genomics. The primary changes are:  

 The move from 12th generation hardware of Dell to 13th generation enterprise server portfolio 

o Upgrade to Intel Haswell processors 

o Support for higher wattage processors 

o Upgrade to 2133 MHz memory 

 The improvements to the storage subsystems which include NFS and Lustre file systems 

o Updated 12 Gbps SAS controllers  

o Updated to Intel’s Enterprise Edition Lustre 

o Updated to NSS6.0–HA  

 The updates to the high speed interconnect 

o Updated InfiniBand FDR network 

 The updates to the power infrastructure 

2.1 HPC system for genomics v2.0: Comparison to v1.0 
Table 1 Comparison between HPC genomics system v1.0 and v2.0 

Switching 
component 

HPC genomics system v1.0 HPC genomics system v2.0 

InfiniBand  1 x Mellanox SX 6036 FDR switch 3 x Mellanox SX 6036 FDR switch 

FDR10 connectivity among compute 
nodes with a 2:1 Blocking 

FDR connectivity among compute 
nodes with a 2:1 Blocking 

Compute Platform PowerEdge M1000e chassis with 32 x 
PowerEdge M420 Blades 

5 x PowerEdge FX2 chassis with 8 x 
FC430 servers per chassis 

2 x E5-2470 (2.30 GHz) @ 8c 2 x E5-2695 v3 (2.30 GHz) @ 14c 

48 GB (6x8 GB at 1600 MHz) 128 GB (8x16 GB at 2133 MHz) 

Switches in Compute 
Chassis 

2 x Mellanox M4001T FDR10 IB switches 
in slots B1 and C1  

1 x F410T 10 GB I/O Aggregator per FX 
chassis 

Storage Dell NFS Solution (NSS 4.5 HA)  
180 TB raw space 

Dell NFS Solution (NSS 6.0 HA)  
240 TB raw space 

Intel Enterprise Edition for Lustre 
Software 
360 TB raw space 

Intel Enterprise Edition for Lustre 
Software 
480 TB raw space 
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Dell PowerVault MD3460 with 6 GB SAS 
controllers 

Dell PowerVault MD3460 with 12 Gbps 
SAS controllers 

Login & 
Head Nodes 

4 x PowerEdge R420s 4 x PowerEdge R430s 

Fat Node PowerEdge R820 with 1.5 TB of memory PowerEdge R930 with 1.5 TB of 
memory 

2 QPI links per socket 3 QPI links per socket 

 

2.2 Architecture 
HPC genomics system v2.0 provides more flexibility in the number of options for the solution. In the previous 

generation of the HPC genomics system, the platform was available in two variants, depending on the 

cluster interconnects selected, which can be either 10 Gigabit Ethernet or InfiniBand®(IB) FDR. In this version, 

the following options are available: 

 PowerEdge FX2 compute subsystem with IB FDR fabric 

 PowerEdge FX2 compute subsystem with 10 GigE fabric 

 PowerEdge C6320 compute subsystem with IB FDR fabric 

 PowerEdge C6320 compute subsystem with 10 GigE fabric 

Table 1 shows a bird’s-eye view of the updates made in HPC genomics system v2.0 when compared to v1.0. 

Figure 1 shows the components of a fully loaded rack that is using the PowerEdge FX2 chassis as the 

compute subsystem and InfiniBand as the cluster high speed interconnect. The solutions are nearly identical 

for the InfiniBand and the 10 Gigabit Ethernet versions, except for a couple of changes in the switching 

infrastructure and network adapters. These differences are outlined in section 0. The solution ships in a deep 

rack enclosure, which was chosen because of its ease of mounting PDUs and for effortless cable 

management. This rack houses the compute, storage, and networking modules of the solution. Also, there 

are software modules which deploy, manage, and maintain the cluster.  

2.2.1 Compute and Management Components 
The compute infrastructure consists of the following components: 

 Dell PowerEdge FX2 chassis with 8 x FC430 chassis each 

 Dell PowerEdge R930 

 Dell PowerEdge R430  

2.2.1.1 Dell PowerEdge FX2 chassis with 8 x FC430 chassis each 
There were several studies4 which determided the choice of the compute workhorse of this solution and 

other details such as the BIOS tuning options9,  and the Intel processor model5. The conclusion was that, 

for a solution targeted at genomic workloads, it is required to optimize the performance per U (density) and 

performance per Watt (Energy efficiency) rather than focusing just on pure performance. HPC genomics 
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system v1.0 could accommodate 512 Intel Sandy Bridge compute cores into a 10 U rack space, where as 

the updated version can pack 1120 Intel Haswell cores in the same rack space.  

The move from the Dell PowerEdge M420 to the FC430 servers was complelling for many reasons. 

 More density.  

o A single FX2 chassis takes up 2U of rack space and houses 8 servers. 10U of rack space can 

now accommodate 40 servers instead of the 32 M420 servers in HPC genomics system v1.0.  

o The PowerEdge M420s have a limit on the supported processor wattage (<= 95 W). The FC 

430 compute sleds can accommodate up to 120 W processors. This improves the flexibility 

customers have in terms of picking the processor.  

o The FC430s can also accommodate faster DIMMS (2133 MHz). 

 Flexibility. 

o Customers can get compute nodes in multiples of 8. The solution, by default, is configured 

with 5 x FX2 chassis. If all 5 are not requried, there is an option to delete down and configure 

the solution with fewer compute servers which helps with flexibility in terms of cost and rack 

space.  

 Improvements to Intel’s E5-2600 v3 processor architecture compared to Intel E5-2400 and E5-

2400 v2 architectures. 

o QPI speeds 

o Memory controllers 

Embarrassingly parallel integer-based sequence alignment codes do not require the most beefy and power 

hungry processors, which are underutilized in most situations. The 40 PowerEdge FC430 servers configured 

with Intel Xeon E5-2695 v3 processors provide a sustained 29.6 TFlops of high performance linpack 

performance putting them at an efficiency of ~87% for 1120 Haswell compute cores, which fulfills the 

requirement of most applications. Within a chassis, the individually serviceable sleds take advantage of the 

shared infrastructure by sharing the power and networking components. 

2.2.1.2 Dell PowerEdge R930 
The Dell PowerEdge R930 is a 4-socket, 4U platform, equipped with the Intel Haswell E7-8860 v3 

processors (16 cores per socket – 64 cores in server) and is dubbed “the fat node”, because of its 1.5 TB of 

memory capacity. This processor has 3 QPI links per socket. In HPC genomics system v1.0’s fat node, the 

sockets were connected in a “ring” so that farthest sockets had two hops. The three QPI links in the 

PowerEdge R930 allow each CPU socket to be connected to its neighbors in the ring and diagonally across. 

All these features benefit applications or methodologies, such as DE novo, Velvet, and Velour, which are 

targeted at genome sequence assemblies. The size of the data on which these applications operate is 

massive. Hosting this data in memory with 64 cores operating on this data eliminates the overhead caused 

by interconnects, disk look-ups, and swapping, resulting in a speedup in time-to-results. This server is an 

optional component and can be added to the solution. One FX2 chassis hosting eight FC430 sleds will be 

removed to accommodate this 4U server in the HPC genomics system v2.0 rack.  
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2.2.1.3 Dell PowerEdge R430 
The solution includes four Dell PowerEdge R430 servers. Two of these servers are designated as login nodes. 

Users can log in to these nodes and submit, monitor, or delete jobs. The other two nodes function as 

redundant head nodes for the cluster, which are used by Bright Cluster Manager®2.2.4.1 for the purpose of 

deploying, provisioning, managing, and monitoring the cluster in a high availability (HA) configuration. The 

head nodes are in an active–passive HA state and use the NSS6.0-HA2.2.2.1 solution as shared storage. 

2.2.2 Storage Components 
The storage infrastructure consists of the following components: 

 NFS storage solution with HA (NSS6.0-HA)2.2.2.1 

 Intel Enterprise Edition Lustre solution0 

 Dell PowerEdge R430 as the CIFS Gateway 

Note: The Lustre solution can scale to the order of petabytes. NSS6.0-HA can scale up to 480 TB of raw disk space in a single 

namespace and up to 960 TB of raw disk space if two namespaces are used. Increasing the capacities will also require more rack space. 

2.2.2.1 NSS 6.0 HA 
The solution uses NSS6.0-HA6 as the primary storage for user or home directories and for application 

data with a raw storage capacity (disk space) of 240 TB.  

NSS6.0-HA is Dell’s high performance computing network file system (NFS) storage solution optimized for 

performance, availability, resilience, and data reliability. The best practices used to implement this solution 

result in better throughput compared to non-optimized network file system. It uses a high availability (HA) 

cluster to provide a highly reliable and available storage service to the HPC compute cluster; the HA cluster 

consists of a pair of Dell PowerEdge R630 servers and a network switch. The network switch in this case is 

the Dell Force10 S3048-ON partitioned with untagged Virtual LANs.  

The two Dell PowerEdge R630 servers are used as NFS servers which are in an active-passive mode. A Dell 

PowerVault MD3460 dense storage enclosure provides storage for the file system. The solution uses a total 

of 60 x 4 TB, 7.2K near line SAS drives, which amount to 240 TB of raw disk space in 4U. There are 6 virtual 

disks (VDs). Each VD consists of 10 hard drives (HDDs), and is configured in RAID6 (8+2).  

The NFS server nodes are directly attached to the dense storage enclosures via 12 Gbps SAS connections. 

NSS6.0-HA provides two network connectivity options: InfiniBand FDR and 10 Gigabit Ethernet. NSS’s active 

and passive nodes run Red Hat Enterprise Linux 7.0 with Red Hat’s Scalable File System (XFS) and Red Hat 

Cluster Suite for implementing the HA feature. A detailed study of the design and performance optimizations 

used in NSS6.0-HA can be found in Reference 5.  
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2.2.2.2 Intel Enterprise Edition for Lustre Software 
Intel EE for Lustre Software7 is used as the parallel file system in the solution for computational scratch 

space with a raw capacity of 480 TB under a single name space.  

Dell partners with Intel to provide the Dell Storage for HPC with Intel EE for Lustre software solution, a Lustre 

file system-based storage appliance consisting of a management interface, Lustre metadata servers, Lustre 

object storage servers, and the associated backend storage which can scale, both in capacity and 

performance. The management interface provides end-to-end management and monitoring for the entire 

Lustre storage system.  

Figure 2 shows an overview of the components and their connectivity used in the Lustre appliance as a part 

of the Dell Dell HPC system for genomics solution.  

 

Figure 2 Intel Lustre appliance components and logical connectivity diagram 

The solution uses two Dell PowerEdge R630 servers as the metadata servers, in an active-passive high 

availability configuration. The metadata servers are directly attached, via 12 Gbps SAS connections, to a Dell 

PowerVault MD3420 storage array populated with 24, 15K 600 GB SAS drives, which acts as the metadata 

target. The meta data target is configured with 22 drives in RAID 10 with two hot-spares. This amounts to 

13.2 TB of raw storage capacity, of which, the Lustre solution provides about 6.1 TB of usable disk space for 

metadata. The metadata servers are responsible for routing file and directory requests to the appropriate 

object storage targets. These requests are handled across LNET (Lustre Networking Layer) by either 

InfiniBand FDR or 10 Gigabit Ethernet links, depending upon the type of solution. 

The solution uses two Dell PowerEdge R630 servers as Object Storage Servers (OSS) in an active-active 

configuration. The OSS servers are directly attached to two Dell PowerVault MD3460 dense storage 

enclosures with 240 TB of raw capacity (each), which provide the Object Storage Targets (OST). Each 

storage array is fully populated with 60, 4 TB, 3.5”, 7.2K near-line SAS drives. Each Dell PowerEdge R630 acts 

as the active node to one Dell PowerVault MD3460 disk array and as the passive node to the other array, 
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resulting in a resilient HA configuration. Each OSS has two dual port 12 Gbps SAS controllers, which are 

connected to each controller of the two Dell PowerVault MD3460 dense storage arrays as shown in Figure 

2. Each storage enclosure is configured with six OSTs by dividing the storage array into 6 x RAID 6 virtual 

disks. Each of the virtual disks consists of eight data and two parity disks, using two disks per tray. Each OST 

provides ~29 TB of formatted object storage space. There are 12 OSTs per single pair of OSSs.  

A Dell PowerEdge R630 acts as the management server and is connected to the rest of the Lustre solution 

through an internal one Gigabit Ethernet link to the switch. The management server handles management 

tasks for the Lustre file system via a web graphical user interface (GUI) as shown in Figure 3, which provides 

an intuitive and user friendly managing and monitoring for all the components. Performance and health 

metrics for the Lustre file system and servers can be collected for extended periods of time and presented 

to the user in an easy-to-use, interactive GUI. The GUI allows detailed monitoring of the file system and 

clients usage of it. The analytics section provide’s information about possible problems and even useful 

trend analysis, which can be used to predict if the scratch space will be exhausted, and how soon it may 

happen.  

  

Figure 3 IEEL Management GUI 

A Dell PowerEdge R430 is used as the CIFS gateway for transferring data generated by the next generation 

sequencing machines into the Lustre file system. 
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2.2.3 Network Components 
The Dell HPC system for genomics is available in two variants―InfiniBand FDR and 10 Gigabit Ethernet. The 

differences in switching infrastructure between the two are shown in Table 2. There is also a Force10 S3048-

ON Gigabit Ethernet switch which is used in both configurations whose purpose is described here. In the 

InfiniBand version, the Dell PowerEdge FC430 sleds have 2:1 blocking FDR connectivity to the top of rack 

FDR switch.          

2.2.3.1 Force10 S3048-ON switch 
In the InfiniBand configuration, the Force10 S3048-ON switch ports are split into multiple untagged virtual 

LANs to accommodate multiple internal networks.  

The port assignment of a Force10 S3048-ON switch for the InfiniBand version of the solution is as follows.   

 Ports 0–23 are assigned to the cluster’s private management network to be used by Bright Cluster 

Manager®.  

o The FC430 server’s Ethernet and iDRAC consititute of a majority of these ports.  

 Ports 24–29 are used for the private network associated with NSS6.0-HA.   

 The rest of the ports from 30–47 are allocated to the Lustre solution for its private management network.  

For the 10GbE configuration, the deployment and management of the cluster is done over the 10 Gigabit 

Ethernet network by using the Dell Force10 S4820T switch. So, the first virtual LAN on the S3048-ON, from 

ports 0–16, is not used. The other two virtual LANs are still used for the same purpose as in the InfiniBand 

configuration.  

Table 2 Differences in Switching Infrastructure Between InfiniBand and 10GbE Configurations 

Switching component InfiniBand FDR 10 Gigabit Ethernet 

Top of Rack switch 3 x Mellanox SX 6036 FDR switch 
1 x Force10 S3048-ON 1 GbE 
switch 

1 x Force10 S4820T 10GbE switch 
1 x Force10 S3048-ON 1 GbE 
switch 

Switches/IOAs in Dell PowerEdge 
FX2 chassis 

1 x FN 410T 10GB I/O Aggregator 
1 Link per chassis to Force10 
S3048-ON 

2 x FN 410T 10GB I/O Aggregator 
6 links up to Force10 S4820T and 
2 links for stacking. 

Adapters in Login nodes, head 
nodes, NFS servers, Lustre 
Metadata servers and Object 
storage servers, CIFS gateway 

Mellanox ConnectX-3 InfiniBand 
FDR adapter 

Intel X520 DA SFP+ DP 10 GigE 
low profile adapter 

Interconnect on Dell PowerEdge 
FC430 sleds 

Mellanox ConnectX-3 FDR 
Mezzanine adapter 

10 GigE LOM 
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2.2.4 Software components 
Along with the hardware components, the solution includes the following software components: 

 Bright Cluster Manager 7.1® 

o MLNX OFED 2.4-1.0.4 

o Red Hat Enterprise linux 6.6 (RHEL 6.6) 

o Lab7 Bio-Builds 

2.2.4.1 Bright Cluster Manager® 7.1 
Bright Cluster Manager® (BCM)8 for Dell is a comprehensive solution for provisioning, monitoring, and 

managing Dell clusters.  

Two Dell PowerEdge R430 servers are deployed as head nodes in a HA active-passive configuration by using 

the NSS6.0-HA solution as shared storage. The active head node is responsible for deploying and monitoring 

the 40 Dell PowerEdge FC430 sleds, the Dell PowerEdge R930 (if used) and the other Dell PowerEdge R430 

servers which act as the login nodes. In a scenario where the active head node fails, Bright Cluster Manager® 

provides an option of automatically failing over to the second head node, or a failover can also be done 

manually in case the active head node requires servicing. The BCM image includes Mellanox OFED and Red 

Hat Enterprise Linux version (RHEL) 6.6, with which, the head nodes and compute nodes are deployed. The 

Bright Cluster Manager® 7.1 can be used to perform several day-to-day tasks, a few of which are:  

 Monitoring made easier with on-the-fly graphs, rack view, multiple clusters, and custom metrics 

 Parallel shell to run commands on all or a subset of the nodes effortlessly 

 Powerful automation: thresholds, email alerts, and actions 

 Integration with key workload managers such as SLURM, PBS Pro, Moab, Maui, Torque, Grid 

Engine, LSF, and OpenLava 

 Simplified patching and updating OS to keep the system secure 

2.2.4.2 Lab7 BioBuilds13 
BioBuilds is a well maintained, versioned and continuously growing collection of open-source bio-

informatics tools from Lab7. They are prebuilt and optimized for a variety of platforms and environments. 

BioBuilds tries to solve the software challenges faced by the life sciences domain.  

 Imagine a newer version of a tool being released. Updating it may not be  straight forward and would 

probably involve updating all the dependencies the software has as well. BioBuilds includes the 

softwares and its supporting dependencies for ease of deployment. 

 Using BioBuilds among all the collaboraters can ensure reproducibility since everyone is running the 

same version of the software. 

In short, it is a turnkey application package. More information about Lab7 and Bio-Builds can be found at 

Reference 13. 
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2.3 Customizations 
The solution described in this paper is a fully-loaded configuration and can be customized to accommodate 

individual user requirements. Customizations and their respective consequences are listed in Table 3. For 

example, a fully loaded configuration of HPC genomics system v2.0 has 2 login nodes. They can be deleted 

down to 0 or 1, if the customer does not have a requirement for login nodes. The storage subsystem (NSS 

and IEEL), however, is not an optional component. So, Table 3 does not mention any delete-down options 

for them. 

Table 3 Delete Down Options From Fully Loaded Configurations 

Component Standard 
Deleted down 
to 

Consequence 

Login nodes 2 0 or 1 If no login nodes are present, the head nodes must be 
used as submission hosts. If a single login node is 
present, there is loss of HA capability at the login node 
level. 

Head nodes 2 1 Lose HA capability 

R930 0 1 If limited by rack space at customer site, will lose an FX2 
chassis to accommodate the fat node. This means, loss 
of 224 cores. 

FC430 40 Variable Density/U varies depending on the number of FX2 
chassis blades used. Processors and memory can be 
customized. 

2.4 Application Workflow 
The following is the workflow outlining how application data moves through various components of the 

solution are: 

1. Next generation sequencing machines output the data generated by the sequencing operation.  

2. This data, residing on a Windows machine, is transferred into the computational scratch space (.  
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3. Intel Enterprise Edition for Lustre Software) of the Dell HPC system for genomics by using the CIFS 

gateway.  

4. The compute nodes (Dell PowerEdge FX2 chassis with 8 x FC430 chassis each ) process the data. 

5. The final results and user files are moved to the primary storage which is the NFS Storage Solution 

(NSS 6.0 HA) and are accessible by researchers for further investigation and analysis via NFS. 
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2.5 Benefits 
This section, summarizes the benefits of the Dell Dell HPC system for genomics Platform solution.  

 High Availability: The solution has HA at various levels to provide improved resiliency to failures. HA 

features are present on the head nodes, login nodes, NSS6.0-HA servers, and Lustre metadata 

servers and object storage servers. There is also HA on the PDU configuration. 

 Improved Time to Insight: The compute, network, and storage components of the solution have 

been chosen specifically for genome analysis workloads, thereby substantially decreasing the time 

required to process sequencing data. 

o High speed Interconnect among compute nodes and distributed storages provide enough 

bandwidth to handle large amount of data simultaneously. 

o Large memory configuration will cover memory requirements for various genomic data 

analysis ranging from alignment to assemblies. For example, the minimum requirement to 

perform a De novo assembly of a mammalian genome is about 512 GB12. 

 Scalability: Compute and storage infrastructure can be scaled further based on future requirements. 

Lustre (performance storage) is highly scalable. 

 Fully customizable solution: It is simple to change the configuration from one mode to other. For 

example, it is easy to convert from a configuration supporting high memory applications to a 

configuration for the application requiring large disk I/Os. 

 Energy Efficiency: With the usage of lower wattage mid-range processors for the life sciences 

domain, the solution strikes a critical balance between performance and performance/Watt. 

 Plug and Play Model: The solution is already customized in terms of servers, memory, storage, 

network, management software, and deployment tools, and is pre-integrated and tested before 

shipping in a single 42U rack, making it a no-hassle turnkey solution. 
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3 Test Configuration 
The test configuration used for the results shown in the following sections is the InfiniBand version, using 

the PowerEdge FX2 chassis as the compute workhorse of the Dell HPC system for genomics. Each 

component and its details are shown in Table 4. The BIOS settings on all the Dell PowerEdge FC430 blades 

are set to DAPC (Dell Active Power Controller) profile, which is the default power profile, to optimize 

performance and energy efficiency9 .  

Table 4 Dell HPC system for genomics Test Configuration 

Component Usage Details 

4 x Dell PowerEdge R430s 2 x Login Nodes 
2 x Head Nodes 

2 x Intel Xeon E5-2470 v3 (2.30 GHz) 
64 GB (8x8 GB 2133 MHz) 

40 x Dell PowerEdge FC430 
sleds 

compute nodes 2 x Intel Xeon E5-2695 v3 (2.30 GHz) 
128 GB (16x8 GB 2133 MHz) 

5 x Dell PowerEdge FX2 Chassis Enclosure 1 x Dell PowerEdge FN 410T I/O Aggregator 
each 

3 x Dell PowerVault MD3460 1 x NSS backend storage 
2 x Lustre backend 
storage 

60 x 4 TB, 3.5”, 7.2K, NL SAS drives 

1 x Dell PowerVault MD3420 Lustre Metadata storage 24x600 GB drives (2.5") 

4 x Dell PowerEdge R630 Lustre Metadata servers 
Lustre Object storage 
servers 

2x Intel Xeon E5-2660 v3 (2.6 GHz) 
256 GB memory (16x16 GB 2133 MHz) 
 

2 x Dell PowerEdge R630 NSS servers 2x Intel Xeon E5-2697 v3 (2.6 GHz) 
128 GB memory (16x8 GB 2133 MHz) 
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Component Usage Details 

1 x Dell PowerEdge R630 Lustre Management 
server 

2xE5-2660 v3 (2.6 GHz) 
64 GB memory (8x8 GB 2133 MHz) 

1 x Dell PowerEdge R430 CIFS gateway 1x E5-2670 v3 (2.30 GHz) 
48 GB (6x8 GB 2133 MHz) 

Software Component Operating system RHEL 6.6 
 

OFED Distribution Mellanox OFED 2.4-1.0.4 

Cluster manager Bright Cluster Manager 7.1® 

Workload Manager Torque with MAUI scheduler 
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4 Test Methodology 
The solution is stressed and tested with respect to performance and power consumption. The idle power 

consumed by the solution is measured over a period of time when the solution has completed the boot up 

process and is not under any workload. To obtain the power and energy consumption at a whole rack level, 

a Fluke 1735 Three-Phase Power Logger is used10. The maximum, minimum, and average power 

consumption are recorded over the course of the benchmarking effort every 1–5 minutes.  

Note: These tests aim at creating new metrics which are relevant to the life sciences domain, rather than using the 

traditional GFLOPS. The new metrics obtained as a part of this effort are Kilowatt-hours/genome and Number of 

genomes analyzed/day.  

4.1 Whole Genome Pipeline Analysis 
The software pipeline framework used to run the whole genome analysis is called bcbio-nextgen11. It is a 

python toolkit, providing best-practice pipelines for fully automated high-throughput, variance calling 

analysis. A typical variance calling pipeline consists of two major steps; aligning sequence reads to a 

reference sequence and identifing regions contain mutations/SNPs. In the tested pipeline, Burrows-Wheeler 

Aligner (BWA) is used for the alignment step and Genome Analysis Tool Kit (GATK) is selected for the variance 

calling step. These are considered as standard tools for aligning and variance calling in genomic sequence 

analysis. The reference genome used is the GRCh37 (Genome Reference Consortium Human build 37). For 

the purpose of benchmarking, we used the 10x coverage whole genome human sequencing data from the 

Illumina platinum genomes project, named ERR091571_1.fastq.gz and ERR091571_2.fastq.gz11. Further tests 

with 50x coverage whole genomes was done to check for scalability of the solution as the data size 

increases. The details of the dataset are mentioned in Table 5. 

Table 5  The details for read sequence files for benchmarking 

Fastq files Coverage Depth Number of  Raw 
Reads 

Read Length in 
Nucleotides(nt) 

Total Nucleotides 

ERR091571_1.fastq 10x 211,437,919 102 21,566,667,738 

ERR091571_2.fastq 10x 211,437,919 102 21,566,667,738 

ERR194146_1.fastq 50x 813,180,578 102 82,944,418,956 

ERR194146_2.fastq 50x 813,180,578 102 82,944,418,956 

 
Since the application (bcbio-nextgen) is optimized to run multiple genome samples in parallel, 78 genomes 

were run by using a total of 1092 compute cores. The data points obtained from this test are: 

 The time taken to analyze 78 genomes. If the time taken to analyze 78 genomes is “x” hours, the 

number of genomes analyzed/day is calculated by using 
24 ℎ𝑜𝑢𝑟𝑠 ∗ 78 𝑔𝑒𝑛𝑜𝑚𝑒𝑠

𝑥 ℎ𝑜𝑢𝑟𝑠
 

 Energy consumed by the whole solution while analyzing 78 genomes. If this value is “y” Kilowatt-

hours (kWh), the number of kWh/genome can be calculated as
𝑦 kWh

78 𝑔𝑒𝑛𝑜𝑚𝑒𝑠
.  

 Time spent in the various analysis steps such as alignment, alignment post-processing, variant 

calling, and variant post-processing.  

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR091/ERR091571
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5 Results and Analysis 

5.1 Whole Genome Analysis 
Bcbio-nextgen runs through several phases for the purpose of analyzing the whole genome. The first four 

phases are common for most genome analysis pipelines and thus are considered for the purpose of this 

testing. They are the alignment phase, alignment post-processing phase, variant calling phase, and variant 

post-processing phase. The alignment and the variant calling phases are mostly CPU and memory intensive, 

whereas the post-processing phases are very I/O intensive.  

Table 6 lists the results in terms of performance and power consumption of the whole solution while running 

the genome analysis pipeline. The metrics introduced in section 4 are also shown in this table.  HPC 

genomics system v2.0 provides (10x data) 

 ~4.4X improvement in terms of genomes/day than HPC genomics system v1.0. 

 ~3.75X improvement in terms of kWh/genome than HPC genomics system v1.0. 

When comparing the metrics HPC genomics system v2.0 while using 10x data vs 50x data,  

 ~3x more 10x samples/day than 50x samples. 

 ~4x more energy consumed/50x sample than 10x sample. 

Table 6 Performance and Power Consumption - Whole Genome Analysis 

Parameter V1.0 (30 Samples 10x) V2.0 (78 Samples 10x) V2.0 (78 Samples 50x) 

Time taken for analyzing 
samples 

19.5 Hours 11.45 Hours 34.32 Hours 

Energy Consumption for 
analyzing samples 

222.7 kWh 154.5 kWh 637.3 kWh 

kWh/Genome 7.42 kWh/Genome 2 kWh/Genome 8.2 kWh/Genome 

Genomes/day 37 163 54 

Idle Power ~7.2 kW ~11.05 kW ~11.05 kW 
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Peak power during 
genome analysis 

14.35 kW 20.9 kW 20.9 kW 

 

During the course of the pipeline’s run, a maximum power consumption of 20.9 kW was recorded during 

the alignment phase and a minimum power consumption of 11.5 kW was recorded during the variant post-

processing phase.  

Figure 4 and Figure 5 show the time spent and the energy consumed by the whole solution during each 

phase of the pipeline while analyzing 78 10x samples by using HPC genomics system v2.0 (blue bar) and 

compare that to HPC genomics system v1.0 while running 30 10x samples (red bar).  

 

Figure 4 Comparison of time taken at various phases 
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Figure 5 Energy Consumed Comparison 
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6 Conclusion 
This technical white paper demonstrates the improvement in performance because of the architectural 

changes or updates in HPC genomics system v2.0. The solution was tested by using the whole genome 

analysis pipeline and the results were compared against HPC genomics system v1.0.  

The upgraded solution is capable of processing 163 genomes per day (~4.4X compared to HPC genomics 

system v1.0) while consuming ~2kWh per genome (~3.75X lower energy compared to HPC genomics 

system v1.0). The solution also scales almost linearly when the size of the data increases. While using 50x 

data, the HPC genomics system v2.0 solution can process ~3x more 10x samples/day and take up ~4x more 

energy/sample.  

Most of this improvement can be attributed to the updated server platform in Dell’s 13th generation servers. 

This includes the improved core counts, processor architecture, improved memory speeds and bandwidth, 

updates to NSS and Lustre solutions, and so on.  

Future plans include further experimentation with the Lustre file system’s performance tuning, performance 

of other pipelines. to obtain best practices for the Dell HPC system for genomics. Results from these follow-

up experiments with the solution and the genome analysis pipeline will be posted as technical blog posts. 
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